Dielectric Responses of (Zn0.33Nb0.67)xTi1−xO2 Ceramics Prepared by Chemical Combustion Process: DFT and Experimental Approaches
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Nan, C.W.; Lin, Y.; Deng, Y. Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 2002, 89, 217601. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Stennett, M.C.; Hyatt, N.C.; Pokorny, J.; Prado-Gonjal, J.; Li, M.; Sinclair, D.C. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 2012, 32, 3313–3323. [Google Scholar] [CrossRef]
- Liu, L.; Fan, H.; Fang, P.; Chen, X. Sol–gel derived CaCu3Ti4O12 ceramics: Synthesis, characterization and electrical properties. Mater. Res. Bull. 2008, 43, 1800–1807. [Google Scholar] [CrossRef]
- Li, J.; Wu, K.; Jia, R.; Hou, L.; Gao, L.; Li, S. Towards enhanced varistor property and lower dielectric loss of CaCu3Ti4O12 based ceramics. Mater. Des. 2016, 92, 546–551. [Google Scholar] [CrossRef]
- Xu, T.; Wang, C.-A. Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process. J. Eur. Ceram. Soc. 2016, 36, 2647–2652. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Huang, J.; Zhu, C.; Wang, C.; Cao, Y. High dielectric permittivity of Li and Sc co-doped NiO ceramics. J. Mater. Sci. Mater. Electron. 2014, 25, 1298–1302. [Google Scholar] [CrossRef]
- Ni, W.; Ye, J.; Guo, Y.; Cheng, C.; Lin, Z.; Li, Y.; Wang, H.; Yu, Y.; Li, Q.; Huang, S.; et al. Decisive role of mixed-valence structure in colossal dielectric constant of LaFeO3. J. Am. Ceram. Soc. 2017, 100, 3042–3049. [Google Scholar] [CrossRef]
- Ni, L.; Chen, X.M. Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 2007, 91, 122905. [Google Scholar] [CrossRef]
- Ke, S.; Fan, H.; Huang, H. Dielectric relaxation in A2FeNbO6 (A = Ba, Sr, and Ca) perovskite ceramics. J. Electroceramics 2009, 22, 252–256. [Google Scholar] [CrossRef]
- Zhang, C.-h.; Zhang, K.; Xu, H.-x.; Song, Q.; Yang, Y.-t.; Yu, R.-h.; Xu, D.; Cheng, X.-n. Microstructure and electrical properties of sol–gel derived Ni-doped CaCu3Ti4O12 ceramics. Trans. Nonferrous Met. Soc. China 2012, 22, s127–s132. [Google Scholar] [CrossRef]
- Shi, Y.; Hao, W.; Wu, H.; Sun, L.; Cao, E.; Zhang, Y.; Peng, H. High dielectric-permittivity properties of NaCu3Ti3Sb0.5Nb0.5O12 ceramics. Ceram. Int. 2015, 42, 116–121. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, M.; Zhang, Q.; Hao, H.; Yao, Z.; Wang, Z.; Song, Z.; Zhang, Y.; Hu, W.; Liu, H. Dielectric Relaxation in Zr-Doped SrTiO3 Ceramics Sintered in N2 with Giant Permittivity and Low Dielectric Loss. J. Am. Ceram. Soc. 2015, 98, 476–482. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Zhang, C. Dielectric and impedance characteristics of Na1/3Ca1/3Y1/3Cu3Ti4O12 ceramic prepared by solid-state reaction method. J. Mater. Sci. Mater. Electron. 2016, 27, 11757–11761. [Google Scholar] [CrossRef]
- Nautiyal, A.; Autret, C.; Honstettre, C.; De Almeida-Didry, S.; Amrani, M.E.; Roger, S.; Negulescu, B.; Ruyter, A. Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3−yMgy)Ti4O12 ceramics: Importance of the potential barrier at the grain boundary. J. Eur. Ceram. Soc. 2016, 36, 1391–1398. [Google Scholar] [CrossRef]
- Jumpatam, J.; Thongbai, P.; Yamwong, T.; Maensiri, S. Effects of Bi3+ doping on microstructure and dielectric properties of CaCu3Ti4O12/CaTiO3 composite ceramics. Ceram. Int. 2015, 41, S498–S503. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Withers, R.L.; Frankcombe, T.J.; Noren, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H.; et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821–826. [Google Scholar] [CrossRef]
- Nachaithong, T.; Kidkhunthod, P.; Thongbai, P.; Maensiri, S. Surface barrier layer effect in (In + Nb) co-doped TiO2 ceramics: An alternative route to design low dielectric loss. J. Am. Ceram. Soc. 2017, 100, 1452–1459. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Zhuang, Y.; Jin, L.; Wang, L.; Wei, X.; Xu, Z.; Zhang, S. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J. Appl. Phys. 2014, 116, 074105. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Z.-J. Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 2004, 70, 174306. [Google Scholar] [CrossRef]
- Lunkenheimer, P.; Fichtl, R.; Ebbinghaus, S.; Loidl, A. Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B 2004, 70, 172102. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Jie, W.; Yang, Z.; Zheng, F.; Zeng, H.; Liu, Y.; Hao, J. Colossal permittivity properties of Zn,Nb co-doped TiO2 with different phase structures. J. Mater. Chem. C 2015, 3, 11005–11010. [Google Scholar] [CrossRef]
- Thongyong, N.; Tuichai, W.; Chanlek, N.; Thongbai, P. Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics. Ceram. Int. 2017, 43, 15466–15471. [Google Scholar] [CrossRef]
- Nachaithong, T.; Thongbai, P.; Maensiri, S. Colossal permittivity in (In1/2Nb1/2)xTi1−xO2 ceramics prepared by a glycine nitrate process. J. Eur. Ceram. Soc. 2017, 37, 655–660. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, L.; Li, J.; Jin, L.; Wang, L.; Wei, X.; Xu, Z.; Li, F. The dielectric properties for (Nb,In,B) co-doped rutile TiO2 ceramics. Ceram. Int. 2017, 43, 6403–6409. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, Z.; Zhou, Y.; Peng, B.; Zhang, X.; Li, L. Temperature-dependent dielectric properties, thermally-stimulated relaxations and defect-property correlations of TiO2 ceramics for wireless passive temperature sensing. J. Eur. Ceram. Soc. 2016, 36, 1923–1930. [Google Scholar] [CrossRef]
- Nachaithong, T.; Tuichai, W.; Kidkhunthod, P.; Chanlek, N.; Thongbai, P.; Maensiri, S. Preparation, characterization, and giant dielectric permittivity of (Y3+ and Nb5+) co–doped TiO2 ceramics. J. Eur. Ceram. Soc. 2017, 37, 3521–3526. [Google Scholar] [CrossRef]
- Yang, C.; Wei, X.; Hao, J. Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2. Ceram. Int. 2018, 11, 12395–12400. [Google Scholar] [CrossRef]
- Hu, W.; Lau, K.; Liu, Y.; Withers, R.L.; Chen, H.; Fu, L.; Gong, B.; Hutchison, W. Colossal Dielectric Permittivity in (Nb+Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure. Chem. Mater. 2015, 27, 4934–4942. [Google Scholar] [CrossRef]
Sample | Lattice Parameter (Å) | ||
---|---|---|---|
a | c | ||
(a) | 0.5% Zn-TiO2 powder | 4.5961 | 2.9618 |
(b) | 0.5% Nb-TiO2 powder | 4.5964 | 2.9619 |
(c) | (Zn0.33Nb0.67)xTi1−xO2 powder with x = 0.5% | 4.5971 | 2.9621 |
(d) | (Zn0.33Nb0.67)xTi1−xO2 powder with x = 2.5% | 4.5994 | 2.9624 |
(e) | 0.5% ZNTO | 4.5967 | 2.9625 |
(f) | 2.5% ZNTO | 4.5997 | 2.9647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nachaithong, T.; Moontragoon, P.; Thongbai, P. Dielectric Responses of (Zn0.33Nb0.67)xTi1−xO2 Ceramics Prepared by Chemical Combustion Process: DFT and Experimental Approaches. Molecules 2022, 27, 6121. https://doi.org/10.3390/molecules27186121
Nachaithong T, Moontragoon P, Thongbai P. Dielectric Responses of (Zn0.33Nb0.67)xTi1−xO2 Ceramics Prepared by Chemical Combustion Process: DFT and Experimental Approaches. Molecules. 2022; 27(18):6121. https://doi.org/10.3390/molecules27186121
Chicago/Turabian StyleNachaithong, Theeranuch, Pairot Moontragoon, and Prasit Thongbai. 2022. "Dielectric Responses of (Zn0.33Nb0.67)xTi1−xO2 Ceramics Prepared by Chemical Combustion Process: DFT and Experimental Approaches" Molecules 27, no. 18: 6121. https://doi.org/10.3390/molecules27186121
APA StyleNachaithong, T., Moontragoon, P., & Thongbai, P. (2022). Dielectric Responses of (Zn0.33Nb0.67)xTi1−xO2 Ceramics Prepared by Chemical Combustion Process: DFT and Experimental Approaches. Molecules, 27(18), 6121. https://doi.org/10.3390/molecules27186121