Direct In Vitro Comparison of the Anti-Leishmanial Activity of Different Olive Oil Total Polyphenolic Fractions and Assessment of Their Combined Effects with Miltefosine
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Total Phenolic Fraction 1 (TPF1) and Total Phenolic Fraction 2 (TPF2)
2.2. Anti-Promastigote Activity Evaluation (IC50) of TPF1 and TPF2 against Leishmania spp.
2.3. Anti-Amastigote Activity Evaluation (IC50), Cytotoxicity (CC50) and Selectivity Index Calculation (SI)
2.4. Effect of TPF1 and TPF2 on Growth Kinetics of Leishmania spp. Promastigotes
2.5. TPF1 and TPF2 Induce ROS Generation in Leishmania spp. Promastigote
2.6. TPF1 and TPF2 Induce Phosphatidylserine Externalization and Cause Loss of Cell Membrane Integrity in Leishmania spp. Promastigotes
2.7. TPF1 and TPF2 Induce DNA Fragmentation
2.8. Anti-Leishmanial Interaction of TPF1 and TPF2 with Miltefosine
2.9. Effect of Drug Interaction with Miltefosine on the Induction of Oxidative Stress in Leishmania spp. Promastigotes
3. Discussion
4. Materials and Methods
4.1. Starting Material
4.2. Extraction of TPFs from EVOO
4.3. HPLC-DAD Analysis and Quantification
4.4. Parasite and Eukaryotic Cell Culture
4.5. In Vitro Activities against L. infantum and L. major Promastigotes
4.6. In Vitro Cytotoxicity Assay
4.7. In Vitro Activities against L. infantum and L. major Amastigotes
4.8. Effects of TPF1 and TPF2 on Growth Kinetics of L. infantum and L. major Promastigote Cultures
4.9. Detection of Reactive Oxygen Species (ROS) Production in L. infantum and L. major Promastigotes
4.10. Annexin V Binding and Propidium Iodide Staining
4.11. Terminal Deoxyribonucleotidyl Transferase (TdT)-Mediated dUTP Nick-End Labelling (TUNEL) Assay
4.12. DNA Extraction Protocol
4.13. Assessment of Drug Interactions
4.14. Determination of Fractional Inhibitory Concentrations (FICs) Index
4.15. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Arenas, R.; Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J. Leishmaniasis: A Review. F1000Research 2017, 6, 750. [Google Scholar]
- Gebremichael Tedla, D.; Bariagabr, F.H.; Abreha, H.H. Incidence and Trends of Leishmaniasis and Its Risk Factors in Humera, Western Tigray. J. Parasitol. Res. 2018, 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Olliaro, P. Leishmaniasis Chemotherapy-Challenges and Opportunities. Clin. Microbiol. Infect. 2011, 17, 1478–1483. [Google Scholar] [CrossRef]
- Rodrigues, I.A.; Mazotto, A.M.; Cardoso, V.; Alves, R.L.; Amaral, A.C.F.; Silva, J.R.D.A.; Pinheiro, A.S.; Vermelho, A.B. Natural Products: Insights into Leishmaniasis Inflammatory Response. Mediat. Inflamm. 2015, 2015, 12. [Google Scholar] [CrossRef]
- Akbari, M.; Oryan, A.; Hatam, G. Application of Nanotechnology in Treatment of Leishmaniasis: A Review. Acta Trop. 2017, 172, 86–90. [Google Scholar] [CrossRef]
- Uliana, S.R.B.; Trinconi, C.T.; Coelho, A.C. Chemotherapy of Leishmaniasis: Present Challenges. Parasitology 2018, 145, 464–480. [Google Scholar] [CrossRef]
- Ghodsian, S.; Taghipour, N.; Deravi, N.; Behniafar, H.; Lasjerdi, Z. Recent Researches in Effective Antileishmanial Herbal Compounds: Narrative Review. Parasitol. Res. 2020, 119, 3929–3946. [Google Scholar] [CrossRef]
- Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment Options for Leishmaniasis. Clin. Exp. Dermatol. 2022, 47, 516–521. [Google Scholar] [CrossRef]
- Madusanka, R.K.; Silva, H.; Karunaweera, N.D. Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infect. Dis. Ther. 2022, 11, 695–711. [Google Scholar] [CrossRef]
- Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front. Chem. 2020, 8, 579891. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.C.D.O.; Bispo-Da-Silva, L.B.; Napolitano, D.R.; Costa, M.S.; Figueira, M.M.N.R.; Rodrigues, R.S.; Rodrigues, V.D.M.; Yoneyama, K.A.G. In Vitro Additive Interaction between Ketoconazole and Antimony against Intramacrophage Leishmania (Leishmania) Amazonensis Amastigotes. PLoS ONE 2017, 12, e0180530. [Google Scholar] [CrossRef] [PubMed]
- Rebello, K.M.; Andrade-Neto, V.V.; Gomes, C.R.B.; De Souza, M.V.N.; Branquinha, M.H.; Santos, A.L.S.; Torres-Santos, E.C.; D’Avila-Levy, C.M. Miltefosine-Lopinavir Combination Therapy against Leishmania Infantum Infection: In Vitro and in Vivo Approaches. Front. Cell. Infect. Microbiol. 2019, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Twarog, N.R.; Connelly, M.; Shelat, A.A. A Critical Evaluation of Methods to Interpret Drug Combinations. Sci. Rep. 2020, 10, 5144. [Google Scholar] [CrossRef]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H. Review Olive-Oil Consumption and Health Olive-Oil Consumption and Health: The Possible Role of Antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea Europaea L.)-A Review. Int. J. Mol. Sci. 2012, 13, 1291–1340. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Gammazza, A.M.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 547. [Google Scholar] [CrossRef]
- Kouka, P.; Tsakiri, G.; Tzortzi, D.; Dimopoulou, S.; Sarikaki, G.; Stathopoulos, P.; Veskoukis, A.S.; Halabalaki, M.; Skaltsounis, A.L.; Kouretas, D. The Polyphenolic Composition of Extracts Derived from Different Greek Extra Virgin Olive Oils Is Correlated with Their Antioxidant Potency. Oxid. Med. Cell. Longev. 2019, 2019, 19. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, by-Products, and Leaf of Olea Europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Nikou, T.; Liaki, V.; Stathopoulos, P.; Sklirou, A.D.; Tsakiri, E.N.; Jakschitz, T.; Bonn, G.; Trougakos, I.P.; Halabalaki, M.; Skaltsounis, L.A. Comparison Survey of EVOO Polyphenols and Exploration of Healthy Aging-Promoting Properties of Oleocanthal and Oleacein. Food Chem. Toxicol. 2019, 125, 403–412. [Google Scholar] [CrossRef]
- European Union. Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Off. J. Eur. Union 2012, 2, 136/1. [Google Scholar]
- Weaver, C.M. Bioactive Foods and Ingredients for Health. Adv. Nutr. 2014, 5, 306S–311S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriazis, J.D.; Aligiannis, N.; Polychronopoulos, P.; Skaltsounis, A.L.; Dotsika, E. Leishmanicidal Activity Assessment of Olive Tree Extracts. Phytomedicine 2013, 20, 275–281. [Google Scholar] [CrossRef]
- Kyriazis, I.D.; Koutsoni, O.S.; Aligiannis, N.; Karampetsou, K.; Skaltsounis, A.L.; Dotsika, E. The Leishmanicidal Activity of Oleuropein Is Selectively Regulated through Inflammationand Oxidative Stress-Related Genes. Parasites Vectors 2016, 9, 441. [Google Scholar] [CrossRef]
- Kyriazis, I.; Smirlis, D.; Papadaki, A.; Koutsoni, O.; Aligiannis, N.; Skaltsounis, A.; Dotsika, E. Leishmanicidal Activity of Oleuropein: Leishmania Donovani Promastigote Cell Death through a Possibly ROS-Independent Mechanism. J. Pharmacogn. Nat. Prod. 2017, 3, 141. [Google Scholar] [CrossRef]
- Karampetsou, K.; Koutsoni, O.S.; Badounas, F.; Angelis, A.; Gogou, G.; Skaltsounis, L.-A.; Halabalaki, M.; Dotsika, E. Exploring the Immunotherapeutic Potential of Oleocanthal against Murine Cutaneous Leishmaniasis. Planta Med. 2022, 88, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Koutsoni, O.S.; Karampetsou, K.; Kyriazis, I.D.; Stathopoulos, P.; Aligiannis, N.; Halabalaki, M.; Skaltsounis, L.A.; Dotsika, E. Evaluation of Total Phenolic Fraction Derived from Extra Virgin Olive Oil for Its Antileishmanial Activity. Phytomedicine 2018, 47, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Karampetsou, K.; Koutsoni, O.S.; Gogou, G.; Angelis, A.; Skaltsounis, L.A.; Dotsika, E. Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of Apoptotic-like Cell Death in Leishmania Spp. Promastigotes and in Vivo Potential of Therapeutic Immunomodulation. PLoS Negl. Trop. Dis. 2021, 15, 1–30. [Google Scholar] [CrossRef]
- Sunter, J.; Gull, K. Shape, Form, Function and Leishmania Pathogenicity: From Textbook Descriptions to Biological Understanding. Open Biol. 2017, 7, 170165. [Google Scholar] [CrossRef]
- Batista, M.F.; Nájera, C.A.; Meneghelli, I.; Bahia, D. The Parasitic Intracellular Lifestyle of Trypanosomatids: Parasitophorous Vacuole Development and Survival. Front. Cell Dev. Biol. 2020, 8, 396. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). Terminology Relating to Methods for the Determination of Susceptibility of Bacteria to Antimicrobial Agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A Novel Interpretation of the Fractional Inhibitory Concentration Index: The Case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst Essential Oils against Staphylococcus aureus Strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef]
- Lahlou, M. Screening of Natural Products for Drug Discovery. Expert Opin. Drug Discov. 2007, 2, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Agiomyrgianaki, A.; Petrakis, P.V.; Dais, P. Influence of Harvest Year, Cultivar and Geographical Origin on Greek Extra Virgin Olive Oils Composition: A Study by NMR Spectroscopy and Biometric Analysis. Food Chem. 2012, 135, 2561–2568. [Google Scholar] [CrossRef]
- Basmaciyan, L.; Casanova, M. Cell Death in Leishmania. Parasite 2019, 26, 71. [Google Scholar] [CrossRef]
- Ali, R.; Tabrez, S.; Akand, S.K.; Rahman, F.; Husein, A.; Arish, M.; Alqahtani, A.S.; Ahmed, M.Z.; Husain, M.; Rub, A. Sesamol Induces Apoptosis-Like Cell Death in Leishmania Donovani. Front. Cell. Infect. Microbiol. 2021, 11, 749420. [Google Scholar] [CrossRef] [PubMed]
- Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M.S.S.; Souza, P.V.R.; Moreira, D.L.; Hardoim, D.J.; Taniwaki, N.N.; Costa, V.F.A.; Bertho, A.L.; Brondani, D.; et al. Carajurin Induces Apoptosis in Leishmania Amazonensis Promastigotes through Reactive Oxygen Species Production and Mitochondrial Dysfunction. Pharmaceuticals 2022, 15, 331. [Google Scholar] [CrossRef]
- Fonseca-Silva, F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Effect of Apigenin on Leishmania Amazonensis Is Associated with Reactive Oxygen Species Production Followed by Mitochondrial Dysfunction. J. Nat. Prod. 2015, 78, 880–884. [Google Scholar] [CrossRef]
- Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive Oxygen Species Production and Mitochondrial Dysfunction Contribute to Quercetin Induced Death in Leishmania Amazonensis. PLoS ONE 2011, 6, e14666. [Google Scholar] [CrossRef]
- Van Griensven, J.; Balasegaram, M.; Meheus, F.; Alvar, J.; Lynen, L.; Boelaert, M. Combination Therapy for Visceral Leishmaniasis. Lancet Infect. Dis. 2010, 10, 184–194. [Google Scholar] [CrossRef]
- Diro, E.; Blesson, S.; Edwards, T.; Ritmeijer, K.; Fikre, H.; Admassu, H.; Kibret, A.; Ellis, S.J.; Bardonneau, C.; Zijlstra, E.E.; et al. A Randomized Trial of AmBisome Monotherapy and AmBisome and Miltefosine Combination to Treat Visceral Leishmaniasis in HIV Co-Infected Patients in Ethiopia. PLoS Negl. Trop. Dis. 2019, 13, e0006988. [Google Scholar] [CrossRef] [PubMed]
- Mondêgo-Oliveira, R.; de Sá Sousa, J.C.; Moragas-Tellis, C.J.; de Souza, P.V.; dos Santos Chagas, M.D.; Behrens, M.D.; de Jesús Hardoim, D.; Taniwaki, N.N.; Chometon, T.Q.; Bertho, A.L.; et al. Vernonia brasiliana (L.) Druce Induces Ultrastructural Changes and Apoptosis-like Death of Leishmania Infantum promastigotes. Biomed. Pharmacother. 2021, 133, 111025. [Google Scholar] [CrossRef] [PubMed]
- Intakhan, N.; Chanmol, W.; Somboon, P.; Bates, M.D.; Yardley, V.; Bates, P.A.; Jariyapan, N. Antileishmanial Activity and Synergistic Effects of Amphotericin b Deoxycholate with Allicin and Andrographolide against Leishmania Martiniquensis in Vitro. Pathogens 2020, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, T.B.; Silva, D.K.C.; da Silva Teixeira, J.; De Lima, J.D.T.; Barbosa-Filho, J.M.; Moreira, D.R.M.; Guimarães, E.T.; Soares, M.B.P. A Betulinic Acid Derivative, BA5, Induces G0/G1 Cell Arrest, Apoptosis Like-Death, and Morphological Alterations in Leishmania sp. Front. Pharmacol. 2022, 13, 846123. [Google Scholar] [CrossRef]
- Nikou, T.; Witt, M.; Stathopoulos, P.; Barsch, A.; Halabalaki, M. Olive Oil Quality and Authenticity Assessment Aspects Employing FIA-MRMS and LC-Orbitrap MS Metabolomic Approaches. Front. Public Health 2020, 8, 558226. [Google Scholar] [CrossRef]
- Determination of Biophenols in Olive Oil by HPLC. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 4 August 2022).
- Koutsoni, O.; Barhoumi, M.; Guizani, I.; Dotsika, E. Leishmania Eukaryotic Initiation Factor (LeIF) Inhibits Parasite Growth in Murine Macrophages. PLoS ONE 2014, 9, e97319. [Google Scholar] [CrossRef]
- Koutsoni, O.; Karampetsou, K.; Dotsika, E. In Vitro Screening of Antileishmanial Activity of Natural Product Compounds: Determination of IC50, CC50 and SI Values. Bio-Protocol 2019, 9, e3410. [Google Scholar] [CrossRef]
- Mallick, S.; Dey, S.; Mandal, S.; Dutta, A.; Mukherjee, D.; Biswas, G.; Chatterjee, S.; Mallick, S.; Lai, T.K.; Acharya, K.; et al. A Novel Triterpene from Astraeus Hygrometricus Induces Reactive Oxygen Species Leading to Death in Leishmania Donovani. Future Microbiol. 2015, 10, 763–789. [Google Scholar] [CrossRef]
- Fivelman, Q.L.; Adagu, I.S.; Warhurst, D.C. Modified Fixed-Ratio Isobologram Method for Studying in Vitro Interactions between Atovaquone and Proguanil or Dihydroartemisinin against Drug-Resistant Strains of Plasmodium Falciparum. Antimicrob. Agents Chemother. 2004, 48, 4097–4102. [Google Scholar] [CrossRef] [Green Version]
Phenolic Compounds | TPF1 | TPF2 | Linearity of Phenolic Compounds Standards | ||
---|---|---|---|---|---|
mg/g of Extract (Mean ± SD, n = 3) | Linear Regression | r2 | Concentration Range (µg/mL) | ||
HT | 7.02 (±0.4) | 5.01 (±0.2) | 0.9997 | 0.5–100 | |
T | 42.07 (±0.2) | 12.03 (±0.1) | 0.9987 | 0.5–100 | |
OLEA | Non determined | 144.12 (±5.4) | 0.9997 | 5–500 | |
OLEO | Non determined | 301.24 (±6.5) | 0.9982 | 5–600 |
Compound | Cytotoxicity (J774A.1 Cells) | L. infantum | L. major | ||||
---|---|---|---|---|---|---|---|
Promastigotes | Amastigotes | Promastigotes | Amastigotes | ||||
CC50 (µg/mL) | IC50 ± SD (µg/mL) | SI | IC50 ± SD (µg/mL) | SI | |||
TPF1 | 270.22 ± 8.14 | 1186.48 ± 45.82 | 207.02 ± 6.57 | 1.3 | 976.03 ± 21.56 | 142.3 ± 28.24 | 1.9 |
TPF2 | 157.6 ± 2.18 | 322.58 ± 18.87 | 104.98 ± 10.02 | 1.5 | 252.58 ± 30.16 | 76.07 ± 14.5 | 2.07 |
HePC | 28.48 ± 3.66 | 2.48 ± 0.23 | 1.57 ± 0.84 | 18.14 | 3.38 ± 0.3 | 2.36 ± 0.17 | 12.06 |
Parasite Form | Combined Drugs | Nature of Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Combination | Concentrations (µg/mL) | IC50 ± SD (µg/mL) | FIC | ∑FIC | FICI | |||||
HePC | TPF1 | HePC | TPF1 | HePC | TPF1 | |||||
Promastigotes L. infantum | A | 20 | 0 | 2.48 ± 0.23 | - | - | - | - | ||
B | 16 | 1760 | 1.31 ± 0.31 | 160.74 ± 1.46 | 0.530 | 0.135 | 0.665 | |||
C | 12 | 3520 | 0.93 ± 0.29 | 312.12 ± 24.21 | 0.374 | 0.263 | 0.637 | 0.62 | Additive | |
D | 8 | 5280 | 0.54 ± 0.17 | 299.95 ± 15.83 | 0.216 | 0.253 | 0.469 | |||
E | 4 | 7040 | 0.35 ± 0.07 | 681.03 ± 39.12 | 0.142 | 0.574 | 0.716 | |||
F | 0 | 8800 | - | 1186.48 ± 45.82 | - | - | - | |||
Promastigotes L. major | A | 28 | 0 | 3.38 ± 0.3 | - | - | - | - | ||
B | 22.4 | 1540 | 2.12 ± 0.04 | 145.95 ± 2.43 | 0.628 | 0.150 | 0.777 | |||
C | 16.8 | 3080 | 1.68 ± 0.03 | 306.58 ± 5.14 | 0.497 | 0.314 | 0.811 | 0.81 | Additive | |
D | 11.2 | 4620 | 1.13 ± 0.02 | 463.93 ± 12.34 | 0.336 | 0.475 | 0.811 | |||
E | 5.6 | 6160 | 0.58 ± 0.02 | 653.53 ± 34.05 | 0.172 | 0.670 | 0.842 | |||
F | 0 | 7700 | - | 976.03 ± 21.56 | - | - | - | |||
Amastigotes L. infantum | A | 12 | 0 | 1.57 ± 0.84 | - | - | - | - | ||
B | 9.6 | 320 | 4.66 ± 0.39 | 155.51 ± 13.48 | 2.966 | 0.751 | 3.718 | |||
C | 7.2 | 640 | 1.70 ± 0.20 | 153.77 ± 20.02 | 1.084 | 0.743 | 1.827 | 2.22 | Antagonistic | |
D | 4.8 | 960 | 1.39 ± 0.36 | 195.27 ± 5.85 | 0.883 | 0.943 | 1.826 | |||
E | 2.4 | 1280 | 0.41 ± 0.11 | 254.96 ± 14.44 | 0.261 | 1.232 | 1.493 | |||
F | 0 | 1600 | - | 207.02 ± 6.57 | - | - | - | |||
Amastigotes L. major | A | 18 | 0 | 2.36 ± 0.17 | - | - | - | - | ||
B | 14.4 | 224 | 6.87 ± 1.33 | 106.36 ± 21.03 | 2.909 | 0.747 | 3.657 | |||
C | 10.8 | 448 | 4.52 ± 0.97 | 188.11 ± 37.90 | 1.916 | 1.322 | 3.238 | 2.48 | Antagonistic | |
D | 7.2 | 672 | 1.48 ± 0.27 | 129.54 ± 13.43 | 0.627 | 0.910 | 1.538 | |||
E | 3.6 | 896 | 0.75 ± 0.17 | 164.39 ± 16.03 | 0.317 | 1.155 | 1.472 | |||
F | 0 | 1120 | - | 142.3 ± 28.24 | - | - | - |
Parasite Form | Combined Drugs | Nature of Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Combination | Concentrations (µg/mL) | IC50 ± SD (µg/mL) | FIC | ∑FIC | FICI | |||||
HePC | TPF2 | HePC | TPF2 | HePC | TPF2 | |||||
Promastigotes L. infantum | A | 20 | 0 | 2.48 ± 0.23 | - | - | - | - | ||
B | 16 | 500 | 1.34 ± 0.37 | 41.9 ± 11.61 | 0.540 | 0.130 | 0.669 | |||
C | 12 | 1000 | 0.57 ± 0.02 | 48.16 ± 2.7 | 0.232 | 0.149 | 0.380 | 0.63 | Additive | |
D | 8 | 1500 | 0.74 ± 0.06 | 135.8 ± 13.78 | 0.297 | 0.429 | 0.726 | |||
E | 4 | 2000 | 0.32 ± 0.13 | 194.2 ± 6.12 | 0.130 | 0.602 | 0.732 | |||
F | 0 | 2500 | - | 322.58 ± 18.87 | - | - | - | |||
Promastigotes L. major | A | 28 | 0 | 3.38 ± 0.3 | - | - | - | - | ||
B | 22.4 | 400 | 1.98 ± 0.70 | 35.41 ± 12.51 | 0.586 | 0.140 | 0.726 | |||
C | 16.8 | 800 | 2.57 ± 0.71 | 62.42 ± 19.50 | 0.760 | 0.247 | 1.007 | 0.65 | Additive | |
D | 11.2 | 1200 | 0.69 ± 0.25 | 73.27 ± 27.02 | 0.203 | 0.290 | 0.493 | |||
E | 5.6 | 1600 | 0.26 ± 0.18 | 73.02 ± 49.90 | 0.076 | 0.289 | 0.365 | |||
F | 0 | 2000 | - | 252.58 ± 30.16 | - | - | - | |||
Amastigotes L. infantum | A | 12 | 0 | 1.57 ± 0.84 | - | - | - | - | ||
B | 9.6 | 160 | 5.87 ± 0.87 | 97.66 ± 14.60 | 3.738 | 0.930 | 4.668 | |||
C | 7.2 | 320 | 2.44 ± 0.29 | 108.85 ± 13.04 | 1.554 | 1.037 | 2.590 | 3.47 | Antagonistic | |
D | 4.8 | 480 | 2.12 ± 0.28 | 212.31 ± 32.95 | 1.350 | 2.022 | 3.372 | |||
E | 2.4 | 640 | 1.03 ± 0.19 | 271.56 ± 43.90 | 0.653 | 2.587 | 3.240 | |||
F | 0 | 800 | - | 104.98 ± 10.02 | - | - | - | |||
Amastigotes L. major | A | 18 | 0 | 2.36 ± 0.17 | - | - | - | - | ||
B | 14.4 | 120 | 7.93 ± 1.50 | 66.21 ± 12.65 | 3.360 | 0.870 | 4.231 | |||
C | 10.8 | 240 | 5.92 ± 1.15 | 131.94 ± 4.07 | 2.509 | 1.734 | 4.244 | 3.93 | Antagonistic | |
D | 7.2 | 360 | 3.84 ± 0.54 | 192.23 ± 26.83 | 1.626 | 2.527 | 4.153 | |||
E | 3.6 | 480 | 1.26 ± 0.53 | 194.64 ± 52.07 | 0.536 | 2.559 | 3.095 | |||
F | 0 | 600 | - | 76.07 ± 14.5 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogou, G.; Koutsoni, O.S.; Stathopoulos, P.; Skaltsounis, L.A.; Halabalaki, M.; Dotsika, E. Direct In Vitro Comparison of the Anti-Leishmanial Activity of Different Olive Oil Total Polyphenolic Fractions and Assessment of Their Combined Effects with Miltefosine. Molecules 2022, 27, 6176. https://doi.org/10.3390/molecules27196176
Gogou G, Koutsoni OS, Stathopoulos P, Skaltsounis LA, Halabalaki M, Dotsika E. Direct In Vitro Comparison of the Anti-Leishmanial Activity of Different Olive Oil Total Polyphenolic Fractions and Assessment of Their Combined Effects with Miltefosine. Molecules. 2022; 27(19):6176. https://doi.org/10.3390/molecules27196176
Chicago/Turabian StyleGogou, Georgia, Olga S. Koutsoni, Panagiotis Stathopoulos, Leandros A. Skaltsounis, Maria Halabalaki, and Eleni Dotsika. 2022. "Direct In Vitro Comparison of the Anti-Leishmanial Activity of Different Olive Oil Total Polyphenolic Fractions and Assessment of Their Combined Effects with Miltefosine" Molecules 27, no. 19: 6176. https://doi.org/10.3390/molecules27196176
APA StyleGogou, G., Koutsoni, O. S., Stathopoulos, P., Skaltsounis, L. A., Halabalaki, M., & Dotsika, E. (2022). Direct In Vitro Comparison of the Anti-Leishmanial Activity of Different Olive Oil Total Polyphenolic Fractions and Assessment of Their Combined Effects with Miltefosine. Molecules, 27(19), 6176. https://doi.org/10.3390/molecules27196176