Targeting Hydroxybenzoic Acids to Mitochondria as a Strategy to Delay Skin Ageing: An In Vitro Approach
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Stability of MitoBENs
2.3. Effects of Natural Antioxidants, MitoBENs and Other Type of Mitochondria-Targeted Antioxidants on NHDF Cell Mass, Metabolic Viability and ATP Levels
2.4. Genotoxic Effects of MitoBENs on NHDF Cells
2.5. Mitochondrial Toxicity Profiles of MitoBENs on NHDF Cells
2.6. Antioxidant Protection by MitoBENs on NHDF Cells
2.7. Transcriptional Effects of MB2 on 3D EpidermFT Skin Model
2.7.1. Effects on Viability of 3D Skin Model
2.7.2. Effects on Transcripts Related to Mitochondrial Remodeling, Inflammation, and Senescence
2.8. Mutagenic Effect of MB2
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Chemistry
4.2.1. General Conditions
4.2.2. Synthesis of MitoBENs, MitoQ and SkQ1
4.2.3. Determination of MitoBENs Stability
Analytical Conditions
Assay Conditions
4.3. Cell culture Conditions and Treatments with Parental Antioxidants, and Mitochondria-Targeted Antioxidants
4.3.1. Determination of Cellular Metabolic Activity and Cell Mass
4.3.2. Evaluation of Intracellular ATP Levels
4.3.3. Measurement of DNA Damage
4.3.4. Determination of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR)
4.3.5. Evaluation of the Protective Capacity of MB2 and MB4 against Oxidative Stress Inducers
4.4. Viability and Gene Expression Assays Using the 3D Epiderm FT Skin Model
4.4.1. Determination the Viability of 3D Skin Model
4.4.2. Determination of Gene Expression
4.5. Evaluation of the Mutagenic Potential
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Antimycin A |
ANOVA | Analysis of Variance |
ATP | Adenosine Triphosphate |
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | Dimethyl Sulfoxide |
EDTA | Ethylenediaminetetraacetic Acid Disodium Salt Dihydrate |
ECAR | Extracellular Acidification Rate |
FBS | Fetal Bovine Serum |
FCCP | Carbonyl Cyanide 4-(Trifluoromethoxy)phenylhydrazone |
HEPES | 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic Acid |
NHDF | Normal Human Dermal Fibroblasts |
OCR | Oxygen Consumption Rate |
OS | Oxidative Stress |
OXPHOS | Oxidative Phosphorylation |
PPh3 | Triphenylphosphine |
ROS | Reactive Oxygen Species |
ROT | Rotenone |
SRB | Sulforhodamine B |
TMRM | Tetramethylrhodamine Methyl Ester Perchlorate |
TPP+ | Triphenylphosphonium Cation |
References
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Letsiou, S. Tracing skin aging process: A mini- review of in vitro approaches. Biogerontology 2021, 22, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Sreedhar, A.; Aguilera-Aguirre, L.; Singh, K.K. Mitochondria in skin health, aging, and disease. Cell Death Dis. 2020, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-W.; Kwon, S.-H.; Choi, J.-Y.; Na, J.-I.; Huh, C.-H.; Choi, H.-R.; Park, K.-C. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Dreesen, O. Faces of cellular senescence in skin aging. Mech. Ageing Dev. 2021, 198, 111525. [Google Scholar] [CrossRef] [PubMed]
- Birch-Machin, M.A.; Bowman, A. Oxidative stress and ageing. Br. J. Dermatol. 2016, 175 (Suppl. S2), 26–29. [Google Scholar] [CrossRef]
- Pai, V.V.; Shukla, P.; Kikkeri, N.N. Antioxidants in dermatology. Indian Dermatol. Online J. 2014, 5, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Thiele, J.J.; Dreher, F.; Packer, L. Antioxidant defense systems in skin. J. Toxicol. Cutan. Ocul. Toxicol. 2002, 21, 119–160. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- Chang, T.-M.; Yang, T.-Y.; Huang, H.-C. Nicotinamide mononucleotide and coenzyme q10 protects fibroblast senescence induced by particulate matter preconditioned mast cells. Int. J. Mol. Sci. 2022, 23, 7539. [Google Scholar] [CrossRef]
- Guo, J.-A.; Yu, P.-J.; Yang, D.-Q.; Chen, W. The antisenescence effect of exosomes from human adipose-derived stem cells on skin fibroblasts. Biomed Res. Int. 2022, 2022, 1034316. [Google Scholar] [CrossRef] [PubMed]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed]
- Hornebeck, W. Down-regulation of tissue inhibitor of matrix metalloprotease-1 (timp-1) in aged human skin contributes to matrix degradation and impaired cell growth and survival. Pathol. Biol. 2003, 51, 569–573. [Google Scholar] [CrossRef]
- Kohen, R.; Gati, I. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology 2000, 148, 149–157. [Google Scholar] [CrossRef]
- Stojiljković, D.; Pavlović, D.; Arsić, I. Oxidative stress, skin aging and antioxidant therapy/oksidacioni stres, starenje kože i antioksidaciona terapija. Acta Fac. Med. Naissensis 2014, 31, 207–217. [Google Scholar] [CrossRef]
- Scherer Santos, J.; Diniz Tavares, G.; Nogueira Barradas, T. Vitamin E and Derivatives in Skin Health Promotion. In Vitamin E in Health and Disease-Interactions, Diseases and Health Aspects; IntechOpen: London, UK, 2021. [Google Scholar]
- Pinnell, S.R.; Yang, H.; Omar, M.; Monteiro-Riviere, N.; DeBuys, H.V.; Walker, L.C.; Wang, Y.; Levine, M. Topical L-ascorbic acid: Percutaneous absorption studies. Dermatol. Surg. 2001, 27, 137–142. [Google Scholar] [CrossRef]
- Knott, A.; Achterberg, V.; Smuda, C.; Mielke, H.; Sperling, G.; Dunckelmann, K.; Vogelsang, A.; Krüger, A.; Schwengler, H.; Behtash, M.; et al. Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors 2015, 41, 383–390. [Google Scholar] [CrossRef]
- Gugleva, V.; Ivanova, N.; Sotirova, Y.; Andonova, V. Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies. Pharmaceuticals 2021, 14, 837. [Google Scholar] [CrossRef]
- Krutmann, J.; Schroeder, P. Role of mitochondria in photoaging of human skin: The defective powerhouse model. j. investig. dermatol. Symp. Proc. 2009, 14, 44–49. [Google Scholar] [CrossRef]
- Balcázar, M.; Cañizares, S.; Borja, T.; Pontón, P.; Bisiou, S.; Carabasse, E.; Bacilieri, A.; Canavese, C.; Diaz, R.F.; Cabrera, F.; et al. Bases for treating skin aging with artificial mitochondrial transfer/transplant (AMT/T). Front Bioeng Biotechnol 2020, 8, 919. [Google Scholar] [CrossRef]
- Boveris, A.; Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 1973, 134, 707–716. [Google Scholar] [PubMed]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kelso, G.F.; Porteous, C.M.; Coulter, C.V.; Hughes, G.; Porteous, W.K.; Ledgerwood, E.C.; Smith, R.A.; Murphy, M.P. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J. Biol. Chem. 2001, 276, 4588–4596. [Google Scholar] [CrossRef] [PubMed]
- Antonenko, Y.N.; Avetisyan, A.V.; Bakeeva, L.E.; Chernyak, B.V.; Chertkov, V.A.; Domnina, L.V.; Ivanova, O.Y.; Izyumov, D.S.; Khailova, L.S.; Klishin, S.S.; et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. cationic plastoquinone derivatives: Synthesis and in vitro studies. Biochemistry 2008, 73, 1273–1287. [Google Scholar] [CrossRef]
- Teixeira, J.; Cagide, F.; Benfeito, S.; Soares, P.; Garrido, J.; Baldeiras, I.; Ribeiro, J.A.; Pereira, C.M.; Silva, A.F.; Andrade, P.B.; et al. Development of a mitochondriotropic antioxidant based on caffeic acid: Proof of concept on cellular and mitochondrial oxidative stress models. J. Med. Chem. 2017, 60, 7084–7098. [Google Scholar] [CrossRef]
- Teixeira, J.; Soares, P.; Benfeito, S.; Gaspar, A.; Garrido, J.; Murphy, M.P.; Borges, F. Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radic. Res. 2012, 46, 600–611. [Google Scholar] [CrossRef]
- Teixeira, J.; Oliveira, C.; Amorim, R.; Cagide, F.; Garrido, J.; Ribeiro, J.A.; Pereira, C.M.; Silva, A.F.; Andrade, P.B.; Oliveira, P.J.; et al. Development of hydroxybenzoic-based platforms as a solution to deliver dietary antioxidants to mitochondria. Sci. Rep. 2017, 7, 6842. [Google Scholar] [CrossRef]
- Murphy, M.P.; Smith, R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656. [Google Scholar] [CrossRef]
- Skulachev, M.V.; Antonenko, Y.N.; Anisimov, V.N.; Chernyak, B.V.; Cherepanov, D.A.; Chistyakov, V.A.; Egorov, M.V.; Kolosova, N.G.; Korshunova, G.A.; Lyamzaev, K.G.; et al. Mitochondrial-targeted plastoquinone derivatives effect on senescence and acute age-related pathologies. Curr. Drug Targets 2011, 12, 800–826. [Google Scholar] [CrossRef]
- Trnka, J.; Blaikie, F.H.; Smith, R.A.J.; Murphy, M.P. A Mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic. Biol. Med. 2008, 44, 1406–1419. [Google Scholar] [CrossRef]
- Isaev, N.K.; Stelmashook, E.V.; Genrikhs, E.E.; Korshunova, G.A.; Sumbatyan, N.V.; Kapkaeva, M.R.; Skulachev, V.P. Neuroprotective properties of mitochondria-targeted antioxidants of the skq-type. Rev. Neurosci. 2016, 27, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Videira, A.J.C.; Veloso, C.D.; Benfeito, S.; Soares, P.; Martins, J.D.; Gonçalves, B.; Duarte, J.F.S.; Santos, A.M.S.; Oliveira, P.J.; et al. Cytotoxicity and mitochondrial effects of phenolic and quinone-based mitochondria-targeted and untargeted antioxidants on human neuronal and hepatic cell lines: A comparative analysis. Biomolecules 2021, 11, 1605. [Google Scholar] [CrossRef] [PubMed]
- Doughan, A.K.; Dikalov, S.I. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid. Redox Signal. 2007, 9, 1825–1836. [Google Scholar] [CrossRef]
- Cagide, F.; Oliveira, C.; Teixeira, J.; Oliveira, P.J.; Borges, F. Bridging the gap between nature and antioxidant setbacks: Delivering gallic acid to mitochondria. Methods Mol. Biol. 2021, 2275, 161–172. [Google Scholar] [PubMed]
- Teixeira, J.; Basit, F.; Willems, P.H.G.M.; Wagenaars, J.A.; van de Westerlo, E.; Amorim, R.; Cagide, F.; Benfeito, S.; Oliveira, C.; Borges, F.; et al. Mitochondria-targeted phenolic antioxidants induce ros-protective pathways in primary human skin fibroblasts. Free Radic. Biol. Med. 2021, 163, 314–324. [Google Scholar] [CrossRef]
- Sulaimon, L.A.; Afolabi, L.O.; Adisa, R.A.; Ayankojo, A.G.; Afolabi, M.O.; Adewolu, A.M.; Wan, X. Pharmacological significance of mitoq in ameliorating mitochondria-related diseases. Adv. Redox Res. 2022, 5, 100037. [Google Scholar] [CrossRef]
- Demyanenko, I.A.; Popova, E.N.; Zakharova, V.V.; Ilyinskaya, O.P.; Vasilieva, T.V.; Romashchenko, V.P.; Fedorov, A.V.; Manskikh, V.N.; Skulachev, M.V.; Zinovkin, R.A.; et al. Mitochondria-targeted antioxidant skq1 improves impaired dermal wound healing in old mice. Aging 2015, 7, 475–485. [Google Scholar] [CrossRef]
- Oliveira, C.; Cagide, F.; Teixeira, J.; Amorim, R.; Sequeira, L.; Mesiti, F.; Silva, T.; Garrido, J.; Remião, F.; Vilar, S.; et al. Hydroxybenzoic acid derivatives as dual-target ligands: Mitochondriotropic antioxidants and cholinesterase inhibitors. Front Chem 2018, 6, 126. [Google Scholar] [CrossRef]
- Yabré, M.; Ferey, L.; Somé, I.T.; Gaudin, K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules 2018, 23, 1065. [Google Scholar] [CrossRef]
- Yunis, R.; Albrecht, H.; Kalanetra, K.M.; Wu, S.; Rocke, D.M. Genomic characterization of a three-dimensional skin model following exposure to ionizing radiation. J. Radiat. Res. 2012, 53, 860–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Michniak-Kohn, B.B. Tissue engineered human skin equivalents. Pharmaceutics 2012, 4, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Varesi, A.; Chirumbolo, S.; Campagnoli, L.I.M.; Pierella, E.; Piccini, G.B.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants 2022, 11, 1224. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 2008, 1777, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Benfeito, S.; Amorim, R.; Teixeira, J.; Oliveira, P.J.; Remião, F.; Borges, F. Desrisking the cytotoxicity of a mitochondriotropic antioxidant based on caffeic acid by a pegylated strategy. Bioconjug. Chem. 2018, 29, 2723–2733. [Google Scholar] [CrossRef]
- Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Chua, B.L. Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried piper betle extracts. Molecules 2018, 23, 484. [Google Scholar] [CrossRef]
- Qu, W.; Breksa, A.P., III; Pan, Z.; Ma, H.; McHugh, T.H. storage stability of sterilized liquid extracts from pomegranate peel. J. Food Sci. 2012, 77, C765–C772. [Google Scholar] [CrossRef]
- Benfeito, S.; Oliveira, C.; Fernandes, C.; Cagide, F.; Teixeira, J.; Amorim, R.; Garrido, J.; Martins, C.; Sarmento, B.; Silva, R.; et al. Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. Eur. J. Med. Chem. 2019, 167, 525–545. [Google Scholar] [CrossRef]
- Speit, G.; Hartmann, A. The comet assay: A sensitive genotoxicity test for the detection of dna damage and repair. Methods Mol. Biol. 2006, 314, 275–286. [Google Scholar]
- Milić, M.; Ceppi, M.; Bruzzone, M.; Azqueta, A.; Brunborg, G.; Godschalk, R.; Koppen, G.; Langie, S.; Møller, P.; Teixeira, J.P.; et al. The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. Mutat. Res.-Rev. Mut. Res. 2021, 787, 108371. [Google Scholar] [CrossRef]
- Wood, J.P.; Smith, A.J.O.; Bowman, K.J.; Thomas, A.L.; Jones, G.D.D. Comet assay measures of DNA damage as biomarkers of irinotecan response in colorectal cancer in Vitro and in Vivo. Cancer Med. 2015, 4, 1309–1321. [Google Scholar] [CrossRef]
- Mendonça, L.M.; dos Santos, G.C.; dos Santos, R.A.; Takahashi, C.S.; Bianchi, M.D.L.P.; Antunes, L.M.G. Evaluation of curcumin and cisplatin-induced DNA damage in PC12 cells by the alkaline comet assay. Hum. Exp. Toxicol. 2010, 29, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.S.G.; Oliveira, H.; Moreiras, A.; Fernandes, J.C.; Bronze-da-Rocha, E.; Figueiredo, A.; Custódio, J.B.A.; Rocha-Pereira, P.; Santos-Silva, A. Cytotoxic and genotoxic effects of acitretin, alone or in combination with psoralen-ultraviolet a or narrow-band ultraviolet b-therapy in psoriatic patients. Mutat. Res. 2013, 753, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, B.; Fumagalli, D.; Brohee, S.; Hatse, S.; Govaere, O.; Floris, G.; Van den Eynde, K.; Bareche, Y.; Schöffski, P.; Smeets, A.; et al. The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Res. 2017, 19, 78. [Google Scholar] [CrossRef] [PubMed]
- Pujimulyani, D.; Suryani, C.L.; Setyowati, A.; Handayani, R.A.S.; Arumwardana, S.; Widowati, W.; Maruf, A. Cosmeceutical Potentials of Val. Extract in Human BJ Fibroblasts against MMP1, MMP3, and MMP13. Heliyon 2020, 6, e04921. [Google Scholar] [CrossRef]
- Malkov, M.I.; Lee, C.T.; Taylor, C.T. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells 2021, 10, 2340. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Cruzat, V.F.; Newsholme, P.; Cheng, J.; Chen, Y.; Lu, Y. Regulation of SIRT1 in Aging: Roles in Mitochondrial Function and Biogenesis. Mech. Ageing Dev. 2016, 155, 10–21. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; López de Silanes, I.; Carling, D.; Gorospe, M. Increased AMP:ATP Ratio and AMP-Activated Protein Kinase Activity during Cellular Senescence Linked to Reduced HuR Function. J. Biol. Chem. 2003, 278, 27016–27023. [Google Scholar] [CrossRef]
- SCCS members; Other experts The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation, 11th Revision, 30–31 March 2021, SCCS/1628/21. Regul. Toxicol. Pharmacol. 2021, 127, 105052. [CrossRef]
- James, A.M.; Cochemé, H.M.; Smith, R.A.J.; Murphy, M. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. J. Biol. Chem. 2005, 280, 21295–21312. [Google Scholar] [CrossRef]
- Korshunova, G.A.; Shishkina, A.V.; Skulachev, M.V. Design, synthesis, and some aspects of the biological activity of mitochondria-targeted antioxidants. Biochemistry 2017, 82, 760–777. [Google Scholar] [CrossRef]
- Silva, F.S.G.; Starostina, I.G.; Ivanova, V.V.; Rizvanov, A.A.; Oliveira, P.J.; Pereira, S.P. Determination of Metabolic Viability and Cell Mass Using a Tandem Resazurin/Sulforhodamine B Assay. Curr. Protoc. Toxicol. 2016, 68, 2–24. [Google Scholar] [CrossRef]
- Collins, A.R. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Townsend, M.H.; Felsted, A.M.; Ence, Z.E.; Piccolo, S.R.; Robison, R.A.; O’Neill, K.L. Falling from Grace: HPRT Is Not Suitable as an Endogenous Control for Cancer-Related Studies. Mol Cell Oncol 2019, 6, 1575691. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Lv, X. Selection of Reference Genes for Expression Analysis in Mouse Models of Acute Alcoholic Liver Injury. Int. J. Mol. Med. 2018, 41, 3527–3536. [Google Scholar] [CrossRef]
- Jiang, T.; Dai, S.; Yi, Y.; Liu, Y.; Zhang, S.; Luo, M.; Wang, H.; Xu, D. The Combination of Hprt and Gapdh Is the Best Compound Reference Genes in the Fetal Rat Hippocampus. Dev. Neurobiol. 2020, 80, 229–238. [Google Scholar] [CrossRef]
- García-Pérez, O.; Melgar-Vilaplana, L.; Córdoba-Lanús, E.; Fernández-de-Misa, R. Gene Expression Studies in Formalin-Fixed Paraffin-Embedded Samples of Cutaneous Cancer: The Need for Reference Genes. Curr. Issues Mol. Biol. 2021, 43, 2167–2176. [Google Scholar] [CrossRef]
- OECD. Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD: Paris, France, 2009; ISBN 9789264242678. [Google Scholar]
Name of Transcripts | Functional Involvement |
---|---|
Collagen Type I Alpha 1 Chain (COL1A1) | Senescence |
Collagen Type III Alpha 1 Chain (COL3A1) | Senescence |
Elastin (ELN) | Senescence |
Matrix Metallopeptidase 1/3/9 (MMP1/3/9) | Senescence |
Metallopeptidase Inhibitor 1 (TIMP1) | Senescence |
Galactosidase Beta 1 (GLB1) | Senescence |
Transcription factor A, mitochondrial (TFAM) | Mitochondrial function/biogenesis |
Citrate synthase (CS) | Mitochondrial function |
Nuclear Respiratory Factor 1 (NRF1) | Mitochondrial function/biogenesis |
Cytochrome C (CYCS) | Mitochondrial function |
GA Binding Protein Transcription Factor Subunit Alpha (GABPA) | Mitochondrial function |
Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 (PRKAA1) | Mitochondrial function |
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) | Mitochondrial function/biogenesis |
PTEN-induced kinase 1 (PINK1) | Mitochondrial function |
Sirtuin 1/2/3 (SIRT1/2/3) | Mitochondrial function |
NAD(P)H Quinone Dehydrogenase 1 (NQO1) | Antioxidant defenses |
Heme Oxygenase 1 (HMOX-1) | Antioxidant defenses |
Superoxide Dismutase 1 (SOD1) | Antioxidant defenses |
Superoxide Dismutase 2 (SOD2) | Antioxidant defenses |
Glutathione Synthetase (GSS) | Antioxidant defenses |
Nuclear Factor, Erythroid 2 Like 2 (NFE2L2) | Antioxidant defenses |
Tumor Necrosis Factor (TNF) | Inflammation |
Interleukin 1 Beta (IL1B) | Inflammation |
(Interleukin 6 (/IL6) | Inflammation |
C-X-C Motif Chemokine Ligand 8 (CXCL8) | Inflammation |
Nuclear Factor Kappa B Subunit 1 (NFKB1) | Inflammation |
Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A) | Inflammation |
Peroxisome Proliferator Activated Receptor Gamma (PPARG) | Inflammation |
BCL2 Associated X, Apoptosis Regulator (BAX) | Autophagy, senescence and cell death |
Tumor protein p53 (TP53) | Autophagy, senescence and cell death |
B cell leukemia/lymphoma 2 (BCL2) | Autophagy, senescence and cell death |
Beclin 1 (BECN1) | Autophagy, senescence and cell death |
Cyclin-dependent kinase inhibitor 1 (CDKN1A) | Autophagy, senescence and cell death |
Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) | Autophagy, senescence and cell death |
Lysosomal Associated Membrane Protein 2 (LAMP2) | Autophagy, senescence and cell death |
Sequestosome 1 (SQSTM1) | Autophagy, senescence and cell death |
Parkin RBR E3 Ubiquitin Protein Ligase (PARK2) | Autophagy, senescence and cell death |
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) | Autophagy, senescence and cell death |
Mechanistic Target Of Rapamycin Kinase (MTOR) | Autophagy, senescence and cell death |
Lamin B1 (LMNB1) | Autophagy, senescence and cell death |
Pumilio RNA Binding Family Member 1 (PUM1) |
Gene | Design RefSeq | Fwd Primer | Rev Primer |
---|---|---|---|
CDKN1A | NM_001291549.N | TGGAGACTCTCAGGGTCGAAAA | CGGCGTTTGGAGTGGTAGAA |
CDKN2A | NM_001195132.N | CACCGCTTCTGCCTTTTCA | CCCACATGAATGTGCGCTTA |
COL1A1 | NM_000088.3 | CCCAAAGGATCTCCTGGTGAA | GCCAGGGCTTCCAGTCA |
COL3A1 | NM_000090.N | CTCCTGGAAAGAATGGTGAAAC | GTCCTGTGTCTCCTTTGTCA |
CS | NM_004077.N | GGCCCAATGTAGATGCTCAC | CCCAAACAGGACCGTGTAGTA |
ELN | NM_001278939.N | CTGCTAAGGCAGCTGCAAA | CGTAAGTAGGAATGCCTCCAAC |
TBP | FLDM-001376.1 | CGAATATAATCCCAAGCGGTTTGC | AGCTGGAAAACCCAACTTCTGT |
BCL2 | FLDM-006133.1 | CCCGCGACTCCTGATTCATT | AGTCTACTTCCTCTGTGATGTTGT |
PUM1 | FLDM-007129.1 | GCAAAGATGGACCAAAAGGA | ATTGGCTGGGAAACTGAATG |
TP53 | FLDM-011174.1 | GGAGCACTAAGCGAGCACTG | GGAACATCTCGAAGCGCTCA |
PARK2 | FLDM-011496.1 | GTGTTTGTCAGGTTCAACTCCA | GAAAATCACACGCAACTGGTC |
GABPA | FLDM-011683.1 | GGAACAGAACAGGAAACAATG | CTCATAGTTCATCGTAGGCTTA |
TFAM | FLDM-014938.1 | GTTTCTCCGAAGCATGTG | GGTAAATACACAAAACTGAAGG |
SOD1 | FLDM-017721.1 | CGAGCAGAAGGAAAGTAATG | GGATAGAGGATTAAAGTGAGGA |
NRF1 | FLDM-018128.1 | TTGAGTCTAATCCATCTATCCG | TACTTACGCACCACATTCTC |
HPRT1 | FLDM-018246.1 | CCCTGGCGTCGTGATTAGTG | CGAGCAAGACGTTCAGTCCT |
HIF1A | FLDM-018811.1 | CAACATGGAAGGTATTGCACTG | ACCAAGCAGGTCATAGGTGG |
YWHAZ | FLDM-021001.1 | TGTAGGAGCCCGTAGGTCATC | GTGAAGCATTGGGGATCAAGA |
PPARGC1A | FLDM-034408.1 | GCGAAGAGTATTTGTCAACAG | TTGGTTTGGCTTGTAAGTGT |
SIRT3 | FLDM-039625.1 | CGTCACTCACTACTTTCTCC | GATGCCCGACACTCTCTC |
SIRT1 | FLDM-042031.1 | GTAGGCGGCTTGATGGTAAT | GGGTTCTTCTAAACTTGGACTCT |
SQSTM1 | FLDM-043352.1 | AGAATCAGCTTCTGGTCCATCG | TTCTTTTCCCTCCGTGCTCC |
PRKAA1 | FLDM-044393.1 | TCCGTAGTATTGATGATGAAAT | TTAGGTCAACAGGAGAAGAG |
PINK1 | FLDM-045703.1 | TGTGGAACATCTCGGCAGGT | GGCTAGTTGCTTGGGACCTC |
LAMP2 | FLDM-048658.1 | CTGCCGTTCTCACACTGCTC | ATGCTGAAAACGGAGCCATTAAC |
BAX | FLDM-051166.1 | AGCTGACATGTTTTCTGACGGCAA | CACAGGGCCTTGAGCACCAG |
MAP1LC3A | FLDM-058668.1 | CAGCAAAATCCCGGTGAT | CTTGACCAACTCGCTCAT |
CYCS | FLDM-062546.1 | CGTTGAAAAGGGAGGCAAGC | TCCCCAGATGATGCCTTTGTTC |
SOD2 | FLDM-062627.1 | GAAGTTCAATGGTGGTGGTCAT | TTCCAGCAACTCCCCTTTGG |
HMOX1 | FLDM-068154.1 | CTGCTGACCCATGACACCAA | GGGCAGAATCTTGCACTTTGT |
BECN1 | FLDM-069595.1 | ATCCAGGAACTCACAGCTCCA | TGCCTCCCCAATCAGAGTGA |
NQO1 | FLDM-071287.1 | CTGGAGTCGGACCTCTATGC | GGGTCCTTCAGTTTACCTGTGAT |
MTOR | FLDM-080915.1 | TCCGAGAGATGAGTCAAGAGG | CACCTTCCACTCCTATGAGGC |
NFE2L2 | FLDM-090829.1 | AACTACTCCCAGGTTGCCCA | AGCAATGAAGACTGGGCTCTC |
GLB1 | NM_001317040.N | GGTGGGACCAATTTTGCCTA | AGTGGGGCATCATAGTCGTA |
GSS | NM_001322495.N | AAAAGGGGTCTCTGGACCAA | GTAGCCATCCCGGAAGTAAAC |
IL1B | NM_000576.N | GACCTGAGCACCTTCTTTCC | CGTGCACATAAGCCTCGTTA |
IL6 | NM_000600.3 | AGAGCTGTGCAGATGAGTACAA | GTTGGGTCAGGGGTGGTTA |
CXCL8 | NM_000584.2 | ACACTGCGCCAACACAGAAA | CAGTTTTCCTTGGGGTCCAGAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, C.; Cagide, F.; Simões, J.; Pita, C.; Pereira, E.; Videira, A.J.C.; Soares, P.; Duarte, J.F.S.; Santos, A.M.S.; Oliveira, P.J.; et al. Targeting Hydroxybenzoic Acids to Mitochondria as a Strategy to Delay Skin Ageing: An In Vitro Approach. Molecules 2022, 27, 6183. https://doi.org/10.3390/molecules27196183
Fernandes C, Cagide F, Simões J, Pita C, Pereira E, Videira AJC, Soares P, Duarte JFS, Santos AMS, Oliveira PJ, et al. Targeting Hydroxybenzoic Acids to Mitochondria as a Strategy to Delay Skin Ageing: An In Vitro Approach. Molecules. 2022; 27(19):6183. https://doi.org/10.3390/molecules27196183
Chicago/Turabian StyleFernandes, Carlos, Fernando Cagide, Jorge Simões, Carlos Pita, Eurico Pereira, Afonso J. C. Videira, Pedro Soares, José F. S. Duarte, António M. S. Santos, Paulo J. Oliveira, and et al. 2022. "Targeting Hydroxybenzoic Acids to Mitochondria as a Strategy to Delay Skin Ageing: An In Vitro Approach" Molecules 27, no. 19: 6183. https://doi.org/10.3390/molecules27196183
APA StyleFernandes, C., Cagide, F., Simões, J., Pita, C., Pereira, E., Videira, A. J. C., Soares, P., Duarte, J. F. S., Santos, A. M. S., Oliveira, P. J., Borges, F., & Silva, F. S. G. (2022). Targeting Hydroxybenzoic Acids to Mitochondria as a Strategy to Delay Skin Ageing: An In Vitro Approach. Molecules, 27(19), 6183. https://doi.org/10.3390/molecules27196183