Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Sample
2.2. Preparation of Plant Extract
2.3. Green Synthesis of Silver Nanoparticles
2.4. Characterization of Silver Nanoparticles (AgNPs)
2.5. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
2.6. Atomic Force Microscopy (AFM)
2.7. TESCAN Microscopy and SEM EDX
2.8. Zeta-Potential and Zetasizer/Dynamic Light Scattering (DLS)
2.9. Cytotoxicity Assay
2.10. Experimental Design
3. Results
3.1. Synthesis of C. roseus Silver Nanoparticles (AgNPs)
3.2. Characterization of C. AgNPs
3.2.1. Fourier Transform Infrared (FT–IR)
3.2.2. X-ray Diffraction (XRD)
3.2.3. Atomic Force Microscopy (AFM)
3.2.4. Zetasizer and Zetapotential
3.2.5. SEM EDX (Scanning Electron Microscopy with Energy Dispersive X-ray Analysis)
3.2.6. TESCAN Electron Microscope
3.3. Cell Cytotoxicity Assay
3.4. Effect of the Aqueous C. roseus Extract on Water Intake, Food Intake, Rat Weight, Urine Volume, and Urine Sugar
3.5. Glucose Tolerance in Hyperglycemia Model Animals
3.6. TC, TG, LDL-C, and HDL-C
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gouws, C.A.; Georgousopoulou, E.N.; Mellor, D.D.; McKune, A.; Naumovski, N. Effects of the consumption of prickly pear cacti (Opuntia spp.) and its products on blood glucose levels and insulin: A systematic review. Medicina 2019, 55, 138. [Google Scholar] [CrossRef]
- Khattak, S.H.; Begum, S.; Aqeel, M.; Fayyaz, M.; Bangash, S.A.K.; Riaz, M.N.; Saeed, S.; Ahmed, A.; Ali, G.M. Investigating the allelic variation of loci controlling rust resistance genes in wheat (Triticum aestivum L.) land races by SSR marker. Appl. Ecol. Environ. Res. 2020, 18, 8091–8118. [Google Scholar] [CrossRef]
- Ghozali, S.Z.; Vuanghao, L.; Ahmad, N.H. Biosynthesis and characterization of silver nanoparticles using C. roseus leaf extract and its proliferative effects on cancer cell lines. J. Nanomed. Nanotechnol. 2015, 6, 305–311. [Google Scholar]
- Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An Eco-Friendly approach. Resour. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Menon, S.; Rajeshkumar, S.; Kumar, V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour. Technol. 2017, 3, 516–527. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Roy, A.; Sharma, A.; Yadav, S.; Jule, L.T.; Krishnaraj, R. Nanomaterials for remediation of environmental pollutants. Bioinorg. Chem. Appl. 2021, 2021, 1764647. [Google Scholar] [CrossRef]
- Roy, A.; Singh, V.; Sharma, S.; Ali, D.; Azad, A.K.; Kumar, G.; Emran, T.B. Antibacterial and Dye Degradation Activity of Green Synthesized Iron Nanoparticles. J. Nanomater. 2022, 2022, 3636481. [Google Scholar] [CrossRef]
- Mittal, S.; Roy, A. Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes. In Photocatalytic Degradation of Dyes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 287–308. [Google Scholar]
- Dhas, T.S.; Kumar, V.G.; Karthick, V.; Vasanth, K.; Singaravelu, G.; Govindaraju, K. Effect of biosynthesized d gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb. Technol. 2016, 95, 100–106. [Google Scholar] [CrossRef]
- Veiseh, O.; Tang, B.C.; Whitehead, K.A.; Anderson, D.G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57. [Google Scholar] [CrossRef]
- Raj, S.; Trivedi, R.; Soni, V. Biogenic synthesis of silver nanoparticles, characterization and their applications—A review. Surfaces 2021, 5, 67–90. [Google Scholar] [CrossRef]
- Ul-Haq, M.N.; Shah, G.M.; Gul, A.; Foudah, A.I.; Alqarni, M.H.; Yusufoglu, H.S.; Khan, R.A. Biogenic Synthesis of Silver Nanoparticles Using Phagnalon niveum and Its In Vivo Anti-Diabetic Effect against Alloxan-Induced Diabetic Wistar Rats. Nanomaterials 2022, 12, 830. [Google Scholar] [CrossRef]
- Gul, A.R.; Shaheen, F.; Rafique, R.; Bal, J.; Waseem, S.; Park, T.J. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy. Chem. Eng. J. 2021, 407, 127202. [Google Scholar] [CrossRef]
- Wright, E., Jr.; Scism-Bacon, J.L.; Glass, L.C. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. Int. J. Clin. Pract. 2006, 60, 308–314. [Google Scholar] [CrossRef]
- Anderson, M.; Powell, J.; Campbell, K.M.; Taylor, J.R. Optimal management of type 2 diabetes in patients with increased risk of hypoglycemia. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 85. [Google Scholar]
- Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (R.O.S.) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef]
- Ali, S.I.; Qaiser, M.; Abid, R. Flora of Pakistan. No. 210: Asteraceae (II) Inuleae, Plucheeae, Gnaphalieae; MBG Press: Saint Louis, MO, USA, 2003; Volume 210. [Google Scholar]
- Nisar-Ul-Haq, M.; Wazir, S.M.; Ullah, F.; Khan, R.A.; Shah, M.S.; Khatak, A. Phytochemical and biological evaluation of defatted seeds of Jatropha curcas. Sains Malays. 2016, 45, 1435–1442. [Google Scholar]
- Khan, N.A.; Niaz, A.; Zaman, M.I.; Khan, F.A.; Nisar-Ul-Haq, M.; Tariq, M. Sensitive and selective colorimetric detection of Pb2+ by silver nanoparticles synthesized d from Aconitum violaceum plant leaf extract. Mater. Res. Bull. 2018, 102, 330–336. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.-S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized d using the outer peel extract of Ananas comosus (L.). PLoS ONE 2019, 14, e0220950. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.; Hegazy, A.E.; Azab, E.; Khojah, E.; Kapiel, T. Boosting of antioxidants and alkaloids in C. roseus suspension cultures using silver nanoparticles with expression of CrMPK3 and STR Genes. Plants 2021, 10, 2202. [Google Scholar] [CrossRef]
- Kandiah, M.; Chandrasekaran, K.N. Green synthesis of silver nanoparticles using C. roseus flower extracts and the determination of their antioxidant, antimicrobial, and photocatalytic activity. J. Nanotechnol. 2021, 2021, 5512786. [Google Scholar] [CrossRef]
- Rohaizad, A.; Shahabuddin, S.; Shahid, M.M.; Rashid, N.M.; Hir, Z.A.M.; Ramly, M.M.; Aspanut, Z. Green synthesis of silver nanoparticles from C. roseus dried bark extract deposited on graphene oxide for effective adsorption of methylene blue dye. J. Environ. Chem. Eng. 2020, 8, 103955. [Google Scholar] [CrossRef]
- Keshari, A.K.; Srivastava, A.; Chowdhury, S.; Srivastava, R. Green synthesis of silver nanoparticles using C. roseus: Its antioxidant and antibacterial properties. Nanomed. Res. J. 2021, 6, 17–27. [Google Scholar]
- Ki, V.; Rotstein, C. Bacterial Skin and Soft Tissue Infections in Adults: A Review of Their Epidemiology, Pathogenesis, Diagnosis, Treatment and Site of Care. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Shaikh, R.; Zainuddin Syed, I.; Bhende, P. Green synthesis of silver nanoparticles using root extracts of Cassia toral L. and its antimicrobial activities. Asian J. Green Chem. 2019, 3, 70–81. [Google Scholar]
- Bhowmick, S.; Koul, V. Assessment of P.V.A./silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterisation and biological evaluation. Mater. Sci. Eng. C. 2016, 59, 109–119. [Google Scholar] [CrossRef]
- Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Martinez-Gutierrez, F. Anti-biofifilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effffect on human fifibroblasts. Mater. Sci. Eng. C 2016, 60, 317–323. [Google Scholar] [CrossRef]
- Hwang, E.T.; Lee, J.H.; Chae, Y.J.; Kim, Y.S.; Kim, B.C.; Sang, B.I.; Gu, M.B. Analysis of the toxic mode of action of silver nanoparticles using stress-specifific bioluminescent bacteria. Small 2008, 4, 746–750. [Google Scholar] [CrossRef]
- Sedki, M.; Mohamed, M.B.; Fawzy, M.; Abdelrehim, D.A.; Abdel-Mottaleb, M.M. Phytosynthesis of silver-reduced graphene oxide (Ag–R.G.O.) nanocomposite with an enhanced antibacterial effffect using Potamogetonpectinatus extract. RSC Adv. 2015, 5, 17358–17365. [Google Scholar] [CrossRef]
- Femi-Adepoju, A.G.; Dada, A.O.; Otun, K.O.; Adepoju, A.O.; Fatoba, O.P. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): Characterisation and antimicrobial studies. Heliyon 2019, 5, e01543. [Google Scholar] [CrossRef]
- Srour, J.; Berg, E.; Mahltig, B.; Smolik, T.; Wollenberg, A. Evaluation of antimicrobial textiles for atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 384–390. [Google Scholar] [CrossRef]
- Kanchi, S.; Khan, A. Biogenic synthesis of selenium nanoparticles with edible mushroom extract: Evaluation of cytotoxicity on prostate cancer cell lines and their antioxidant, and antibacterial activity. Biointerface Res. Appl. Chem. 2020, 10, 6629–6639. [Google Scholar]
- Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Sundarrajan, M.; Jeelani, A.; Santhanam, V.; Durgadevi, S.; Abirami, S. Effffect of Concentration, pH and Time on the Morphology of Silver Nanoparticles Synthesized d by Green Method using Phyllanthus niruri and Solanum nigrum Leaf Extracts. Int. J. Curr. Res. Rev. 2018, 10, 25–29. [Google Scholar] [CrossRef]
- Al-Shmgani, H.S.A.; Mohammed, W.H.; Sulaiman, G.M.; Saadoon, A.H. Biosynthesis of silver nanoparticles from C. roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1234–1240. [Google Scholar] [CrossRef]
- Udayasoorian, C.; Kumar, R.; Jayabalakrishnan, M. Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata. Dig. J. Nanomater. Biostruct. 2011, 6, 279–283. [Google Scholar]
- Wiley, B.J.; Im, S.H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 2006, 110, 15666–15675. [Google Scholar] [CrossRef]
- Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Muthukumar, M. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 2016, 5, 755–766. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Bhakya, S.; Kumar, T.S.; Rao, M. Biosynthesis, characterisation and antibacterial effffect of plant-mediated silver nanoparticles using Ceropegia thwaitesii—An endemic species. Ind. Crops Prod. 2015, 63, 119–124. [Google Scholar] [CrossRef]
- Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 2013, 3, 217–223. [Google Scholar] [CrossRef]
- Shankar, S.S.; Ahmad, A.; Pasricha, R.; Sastry, M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of difffferent shapes. J. Mater. Chem. 2003, 13, 1822–1826. [Google Scholar] [CrossRef]
- Rehman, M.A.; Saleem, R.; Hasan, S.W.; Inam, S.; Uddin, S.Z.; Saeed, M.; Noor, S.; Riaz, M.N.; Ali, G.M.; Khattak, S.H. Economic assessment of cereal-Legume intercropping system, a way forward for improving productivity and sustaining soil health. Int. J. Biol. Pharm. Allied Sci. 2020, 9, 1078–1089. [Google Scholar]
- Shameli, K.; Ahmad, M.B.; Zargar, M.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Shabanzadeh, P.; Moghaddam, M.G. Synthesis and characterisation of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 2011, 6, 271–284. [Google Scholar] [CrossRef]
- Qaiser, R.; Fayyaz, M.; Muhammad, S.; Sahir, H.K.; Karansher, S.S.; Gaganjot, S.S. Genome-Wide association mapping and population structure for stripe rust in Pakistani wheat germplasm. Pak. J. Bot. 2022, 54, 1405–1416. [Google Scholar] [CrossRef]
- Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterisation, antimicrobial property and toxicity analysis. Biores. Bioprocess. 2014, 1, 3. [Google Scholar] [CrossRef]
- Prathna, T.; Chandrasekaran, N.; Mukherjee, A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: Effect of surface functionalisation and matrix composition. Colloids Surf. A Physicochem. Eng. Asp. 2011, 390, 216–224. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M. Procedure optimisation for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1249–1254. [Google Scholar] [CrossRef]
- Amanzadeh, E.; Esmaeili, A.; Abadi, R.E.N.; Kazemipour, N.; Pahlevanneshan, Z.; Beheshti, S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in L.T.P. Sci. Rep. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Gopinath, K.; Gowri, S.; Arumugam, A. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem. 2013, 3, 68. [Google Scholar] [CrossRef]
- Lv, X.; Guo, W.; Li, L.; Yu, X.; Liu, B. Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. J. Funct. Foods 2019, 57, 48–58. [Google Scholar] [CrossRef]
- Krishna, G.; Srileka, V.; Charya, M.S.; Serea, E.S.A.; Shalan, A.E. Biogenic synthesis and cytotoxic effects of silver nanoparticles mediated by white rot fungi. Heliyon 2021, 7, e06470. [Google Scholar] [CrossRef]
- Harrat, I.N.; Louala, S.; Bensalah, F.; Affane, F.; Chekkal, H.; Lamri-Senhadji, M. Anti-hypertensive, anti-diabetic, hypocholesterolemic and antioxidant properties of prickly pear nopalitos in type 2 diabetic rats fed a high-fat diet. Nutr. Food Sci. 2018, 49, 476–490. [Google Scholar] [CrossRef]
- Lkhagvajav, N.; Yasa, I.; Celik, E.; Koizhaiganova, M.; Sari, O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig. J. Nanomater. Biostruct. 2011, 6, 149–154. [Google Scholar]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 2018, 10, 1196. [Google Scholar] [CrossRef]
- Akarchariya, N.; Sirilun, S.; Julsrigival, J.; Chansakaowa, S. Chemical profiling and antimicrobial activity of essential oil from Curcuma aeruginosa Roxb., Curcuma glans K. Larsen & J. Mood and Curcuma cf. xanthorrhiza Roxb. collected in Thailand. Asian Pac. J. Trop. Biomed. 2017, 7, 881–885. [Google Scholar]
- Gao, H.; Zhang, W.; Wang, B.; Hui, A.; Du, B.; Wang, T.; Bian, H.; Wu, Z. Purification, characterization and anti-fatigue activity of polysaccharide fractions from C. (Abelmoschus esculentus (L.) Moench). Food Funct. 2018, 9, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Y.; Wu, Q.; John, A.; Jiang, Y.; Yang, J.; Liu, H.; Yang, B. Structure characterisation of polysaccharides in vegetable “C.” and evaluation of hypoglycemic activity. Food Chem. 2018, 242, 211–216. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, Y.; Sun, Q.; Yu, L.; Li, M.; Zheng, B.; Wu, X.; Yang, B.; Li, Y.; Huang, C. Extract of C. lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 rats. J. Nutr. Biochem. 2014, 25, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Guo, R.; Guo, W.; Hong, J.; Li, L.; Ni, L.; Sun, J.; Liu, B.; Rao, P.; Lv, X. Monascus yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet. Food Funct. 2019, 10, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016, 6, 399–408. [Google Scholar] [CrossRef] [Green Version]
Origin | Group Frequency | Peak Value | Class |
---|---|---|---|
C=C bending | 895–885 cm−1 | 890 | Alkene |
C=C bending | 1400–1000 cm−1 | 1000 | Alkene |
C-OH | 1420–1330 cm−1 | 1360 | Alcohol |
C-H stretching | 3000–2840 cm−1 | 2850 | Alkane |
C-H stretching | 3000–2840 cm−1 | 3000 | Alkane |
C=O | 3333–3267 cm−1 | 3333 | Carbonyl group |
N-H stretching | 3500–3300 cm−1 | 3500 | Amide |
Serial No. | Compound | Scale (nm) | 3D Axis | µm | Nanoparticle Size |
---|---|---|---|---|---|
1 | Vindoline | 0–60 | X | 2.64 | 45 nm |
Y | 2.64 | ||||
Z | 66.4 |
S. No | Element | Weight % | Atomic % |
---|---|---|---|
1 | AlK | 73.34 | 91.66 |
2 | AgL | 26.66 | 8.34 |
Source of Variation | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|
Treatments | 9359.993 | 7 | 4679.996 | 15.80039 | 0.000109 ** | 3.554557 |
Concentration | 3361.97 | 1 | 3361.97 | 11.1601 | 0.012408 | 5.591448 |
Error | 2108.744 | 7 | 301.2491 | |||
Total | 7606.583 | 15 |
Week | NC 1 | PC 2 | DG 1 | DG 2 | DG 3 |
---|---|---|---|---|---|
1 | − | − | ++ | + | − |
2 | − | − | ++ | − | + |
3 | − | − | ++ | − | − |
4 | − | − | +++ | + | − |
5 | − | − | +++ | + | + |
6 | − | − | +++ | + | − |
7 | − | − | +++ | − | − |
8 | − | − | +++ | − | − |
Group | 30 min (mmol/L) | 60 min (mmol/L) | 120 min (mmol/L) |
---|---|---|---|
NC1 | 4.2 | 3.9 | 3.7 |
PC2 | 6.1 | 8.2 * | 7.3 |
DG1 | 12.7 * | 13.8 ** | 13.1 ** |
DG2 | 7.1 | 9.3 * | 8.2 * |
DG3 | 7.4 | 9.7 * | 8.8 * |
Group | TC (mmol/L) | TG (mmol/L) | LDL-C (mmol/L) | HDL-C (mmol/L) |
---|---|---|---|---|
NC1 | 1.71 | 0.89 | 1.01 | 0.41 |
PC2 | 1.79 * | 0.94 * | 1.11 * | 0.46 |
DG1 | 2.72 ** | 2.21 ** | 1.21 * | 0.31 |
DG2 | 2.52 * | 1.36 * | 0.71 | 0.39 |
DG3 | 2.61 * | 1.49 * | 0.86 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, K.; Khattak, S.H.; Farrukh, A.; Begum, S.; Riaz, M.N.; Muhammad, A.; Kamal, T.; Taj, T.; Khan, I.; Riaz, S.; et al. Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines. Molecules 2022, 27, 6191. https://doi.org/10.3390/molecules27196191
Jamil K, Khattak SH, Farrukh A, Begum S, Riaz MN, Muhammad A, Kamal T, Taj T, Khan I, Riaz S, et al. Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines. Molecules. 2022; 27(19):6191. https://doi.org/10.3390/molecules27196191
Chicago/Turabian StyleJamil, Khansa, Sahir Hameed Khattak, Anum Farrukh, Sania Begum, Muhammad Naeem Riaz, Aish Muhammad, Tahira Kamal, Touqeer Taj, Imran Khan, Sundus Riaz, and et al. 2022. "Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines" Molecules 27, no. 19: 6191. https://doi.org/10.3390/molecules27196191
APA StyleJamil, K., Khattak, S. H., Farrukh, A., Begum, S., Riaz, M. N., Muhammad, A., Kamal, T., Taj, T., Khan, I., Riaz, S., Batool, H., Mandokhail, K., Majeed, S., Khan Bangash, S. A., Mushtaq, A., Bashir, S., Kaleem, I., Pervaiz, F., Rasool, A., ... Ali, G. M. (2022). Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines. Molecules, 27(19), 6191. https://doi.org/10.3390/molecules27196191