Next Article in Journal
Electrospun Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Olive Leaf Extract Fiber Mesh as Prospective Bio-Based Scaffold for Wound Healing
Next Article in Special Issue
Bud-Poplar-Extract-Embedded Chitosan Films as Multifunctional Wound Healing Dressing
Previous Article in Journal
Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research
Previous Article in Special Issue
Prenylated Flavonoids in Topical Infections and Wound Healing
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies

1
Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
2
Center of Drug Discovery and Development, Ain Shams University, Cairo 11566, Egypt
3
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
4
University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
*
Author to whom correspondence should be addressed.
Molecules 2022, 27(19), 6207; https://doi.org/10.3390/molecules27196207
Submission received: 16 August 2022 / Revised: 6 September 2022 / Accepted: 12 September 2022 / Published: 21 September 2022
(This article belongs to the Special Issue The Natural Products in Topical Infections and Wound Healing)

Abstract

:
Maintaining healthy skin is important for a healthy body. At present, skin diseases are numerous, representing a major health problem affecting all ages from neonates to the elderly worldwide. Many people may develop diseases that affect the skin, including cancer, herpes, and cellulitis. Long-term conventional treatment creates complicated disorders in vital organs of the body. It also imposes socioeconomic burdens on patients. Natural treatment is cheap and claimed to be safe. The use of plants is as old as mankind. Many medicinal plants and their parts are frequently used to treat these diseases, and they are also suitable raw materials for the production of new synthetic agents. A review of some plant families, viz., Fabaceae, Asteraceae, Lamiaceae, etc., used in the treatment of skin diseases is provided with their most common compounds and in silico studies that summarize the recent data that have been collected in this area.

1. Introduction

Molecular docking is an in silico procedure that is able to predict the mechanism of binding of a suggested ligand to its macromolecular target during the formation of a stable complex. Therefore, docking has become of great importance for the illustration of molecular interactions of natural compounds with different receptors [1,2,3].
The skin, the largest organ of the human body, functions as a physical barrier and an exterior interface of the body with the outer environment. The skin prevents the body from the invasion of external pathogens, as well as mechanical, thermal, and physical injuries from any substance that can be hazardous to humans. Just like any other organ and system of the body, this system is also very complex. The skin, with its derivatives such as nails, sweat glands, oil glands, and hair, makes up the integumentary system [4]. It is an incredible organ that protects the whole body. It consists of three main layers, including the epidermis (outermost layer), which consists of three types of cells, i.e., squamous cells, basal cells, and melanocytes; the second layer of the skin, the dermis, which contains blood and lymph vessels, hair follicles, etc.; and the subcutaneous fat layer. The focus on skin health is because everyone wants clearer, healthier, younger, and fresher skin, as skin-related complications can cause problems related to mental health, as well as low self-esteem [5].
Herbal medicine can be traced back to ancient civilizations. It entails the use of plants for medicinal purposes to cure illnesses and improve overall health [6]. Although herbal plants are low in toxicity and readily available, they play an important role in not only pharmacological research and drug production but also as plant components, being used specifically as therapeutic agents for drug synthesis [7]. The most widely used plant parts in the preparation of traditional medicines are the leaves (62%), either alone or in combination with other plant parts [6,7].
Skin disease refers to problems with the surface layer of the skin. Skin disorders have a serious impact on well-being and are difficult to manage due to their persistence [8]. Several microorganisms trigger skin ailments, including boils, scratching ringworm, skin diseases, leprosy, injury, skin infections, eczema, skin allergy inflammation, scabies, and psoriasis [9].
Scabies, a parasitic infection, has always been the most prevalent skin disorder, but, in some areas, it is entirely absent [10]. Sarcoptes scabiei is the mite that causes scabies. Infection with the scabies worm causes a rash of vesicles, nodules, and papules. The majority of this is due to host hypersensitivity, but the direct impact of worm invasion also plays a significant role [11].
A rash is a red, inflamed patch of skin or a set of discrete spots. Irritation, inflammation and allergies, fundamental conditions, and structural issues may all contribute to these symptoms. Acne, eczema, psoriasis, hives, etc., are causes of rashes [4].
Atopic eczema, a chronic condition that affects people who are genetically organized to overreact towards environmental stimuli, has become an inflammatory disease. It is often seen in people with asthma, allergic rhinitis, and atopy symptoms. Eczema is a common skin problem in children. Severe skin dryness and inflammation, scaly patches, redness, and lichenified plaque with abrasions are the most common dermatitis symptoms [12].
Acne is a contagious disease and one of the most common in humans. Acne leads to seborrhea, papules, comedowns, blackheads, nodules, and scars [13]. Acne is most often found on the face, chest area, and back of people who have a large number of oil glands [14].
Psoriasis is an inflammatory skin problem that causes keratinocytes, excessive proliferation resulting in scaly patches, extreme inflammation, and erythema [15].
The uncontrolled development of cells present in the skin is known as skin cancer. It occurs due to unfixed DNA damage to skin cells, most commonly due to UV from sunlight, causing mutations and even genetic abnormalities. This causes skin cells to grow rapidly, resulting in the formation of malignant tumors [16].
A burn is considered tissue damage due to fire, chemicals, or radiation. Burn wounds are classified as superficial, partial thickness, or full thickness. Swelling, epithelization, wound contraction, and granulation are all part of the healing process after a burn wound [17].
The current review presents the effect of different medicinal plants and FDA-approved formulas on the management of various skin disorders. A molecular docking study was conducted for major components of these medicinal plants on the active sites of granzyme B and human leukocyte elastase (HLE) enzymes, aiming to identify the potential compounds or class of compounds that may be responsible for the ameliorative effects on different skin ailments.

2. Medicinal Plants and Skin Disorders

Medicinal plants reported for the management of skin disorders (Table 1) are classified below according to their uses.

3. Some Reported Mechanism of Action

The use of herbal medicine is becoming popular worldwide. Herbal medicines are preferred over synthetic medicines, as they produce fewer side effects [186,187,188,189]. Additionally, phytochemicals can treat skin ailments by different mechanisms and by displaying various biological activities such as antioxidant, anti-inflammatory, and antiallergic [190,191,192]. Each plant has its own bioactivity, which depends upon the chemical nature and potency of the constituents present in it [193,194]. Some components reduce skin inflammation by inhibiting NF-κB, for example, Zingiber officinale. The squeezed extract of this in rats and mice elevates TNF-α in peritoneal cells, and its long-term use can increase the level of serum corticosterone and thus reduce proinflammatory markers [195]. Drugs such as Rosmarisum officinalis also help in the improvement of abnormal skin conditions. It constitutes rosmarinic acid, which can disturb the system activation inhibition of the C3b attachment. It also acts on the inhibition and reduction of proinflammatory mediators such as TNF-α and IL-1 [196]. Oenothera biennis constitutes β-sitosterol, which modulates NO, TNF-α, IL- 1 β , and TXB2, leading to the suppression of COX-2 gene expression, hence causing anti-inflammatory action [197].

4. FDA-Approved Formulas

The Food and Drug Administration (FDA), as well as in vitro and in vivo study results, has approved bacterial cellulose (BC) and plant cellulose (PC) products to be incorporated into the biomedical field and their applications due to their biocompatibility with human cells and potential activity in wound healing and in the therapeutics field [198].
Moreover, honey, a natural product, is rich in several phenolic compounds, sugars, and enzymes that possess antioxidant, anticarcinogenic, anti-inflammatory, and antimicrobial activity. The main role of honey in the development of the wound healing process appeared to be via the acceleration of dermal repair and epithelialization, angiogenesis promotion, immune response promotion, and the reduction in healing-related infections with pathogenic microorganisms. The FDA approved many formulas containing honey as the main ingredient, among which is L-Mesitran® (manufactured by Triticum Company—UK) Ointment, which consists of 48% medical-grade honey, lanolin, cod liver oil, sunflower oil, calendula, aloe vera, zinc oxide, and vitamins C and E. Additionally, Revamil Gel® (manufactured by Maximed Pharrma—Lebanon) was FDA approved, containing 100% medical-grade honey, together with Therahoney® Gel (manufactured by Medline Industries Inc.—USA), containing 100% Manuka honey [199].

5. Phytoconstituents of Medicinal Plants

Many phytochemical constituents have shown potential bioactivities, to which the biological activities of medicinal plant extracts can be attributed. Table 2 summarizes some of them in the context of treating skin disorders.

6. Computational Studies

6.1. Methodology of Molecular Docking Studies

Based on the aforementioned, human granzyme B in complex with 2-acetamido-2-deoxy-beta-D-glucopyranose [219] was downloaded from PDB (Code: 1IAU), while the crystal structure of highly glycosylated human leukocyte elastase in complex with a thiazolidinedione inhibitor (5-[[4-[[(2~{S})-4-methyl-1-oxidanylidene-1-[(2-propylphenyl)amino]pentan-2-yl]carbamoyl]phenyl]methyl]-2-oxidanylidene-1,3-thiazol-1-ium-4-olate) [220] was also downloaded from PDB (Code: 6F5M). Both enzymes were cleaned for missing amino acids or gaps in their sequences. Hydrogens were added, water molecules were removed if present, and simulation for forcefield CHARMm and partial charge MMFF was applied. A heavy atom was built, and fixation of atom constraints was applied before enzyme minimization. The receptor was identified, and the binding site was highlighted from the complexed ligand, which was later cut off for the comparative docking study. The structures of the selected active constituents were downloaded from PubChem with the .svd extension and opened in the program. A simulation for all selected 23 active constituents was applied with the CHARMm forcefield and partial charge MMFF, and ligand preparation was carried out. The 23 resulting compounds, together with the reference ligand, were allowed to dock against both enzymes using the C-docker protocol.

6.2. Results and Discussion of Computational Studies

Molecular docking is of great importance for illustrating the molecular interactions of natural compounds with different receptors [221]. Although each docking program operates slightly differently, they share common features that involve ligand and receptor, sampling, and scoring. Thus, a molecular docking study was performed using the selected software Discovery Studio 4.1 [222,223,224]. Twenty-three interesting phytoconstituents of the previously detailed plants were selected for in silico docking trials to explore their activity and possible mechanism of binding against two essential enzymes human granzyme B and human leukocyte elastase, where the inhibition of either or both of those enzymes could aid in the treatment of various skin diseases.
The 2D interaction energy of the 23 active constituents compared to the reference ligand 2-acetamido-2-deoxy-beta-D-glucopyranose, together with their C-docker interaction energy, is displayed in Table 3. The ligand displayed –27.55 Kcal/mol, saponin showed –28.10 Kcal/mol, and the rest of the constituents showed –21.42 to –1.05 Kcal/mol. Both S-methyl-L-cysteine and N-acetyl cysteine were unsuccessful in the inhibition of granzyme B. The reference ligand performed its inhibitory action via four H-bonds with essential amino acids in the granzyme B sequence (Ala 93, Asn 98, Tyr 175, and Asp 176) and via van der Waals forces with six other amino acids (Asn 95, Ser 100, Asn 101, Ser 177, Thr 178, and Ile 179). Saponin was the only constituent better than the inhibitor, displaying better interaction energy and binding mode comparable to the ligand, as shown in Figure 1. Cyclamin saponin bounded by two H-bonds with Ser 100 and three H-bonds with Asn 101, Asp 176, and Thr178, while it displayed van der Waals force attractions with Asn 93, Asn 95, Asn 98, and Ile 179.
The results of the docking study against human leukocyte elastase are presented in Table 4. It is shown that the reference complexed thiazolidinedione inhibitor displayed C-docker interaction energy equivalent to −33.57 Kcal/mol, while both constituents saponin and amaranthine displayed −48.50 and −47.62 Kcal/mol, respectively. The rest of the compounds displayed in the range of –28.97−10.60 Kcal/mol. The thiazolidinedione ligand inhibited the elastase via four essential H-bonds (Val 59, Asn 61, Asn 62A, and Val 62) and Pi-Pi bonding with Leu 35, Val 62B, and Ala 64. The van der Waals interaction was with Arg 36, Ala 60, and Ile 88. Comparably, saponin was able to inhibit elastase in the same mode, as shown in Figure 2, with better interaction energy. Cyclamin (saponin) bounded to the strategic binding site via two H-bonds with Ala 60 and two H-bonds with Asn 61 and Arg 63, Pi—Pi- bonds with Leu 35, and van der Waals interaction with Arg 36, Gly 39, His 40, Val 59, Val 62, Asn 62 Chain A, Val 62 Chain B, Ile 88, and Glu 90. On the other hand, amaranthine bounded to the binding site via three H-bonds with Ala 60, Asn 61, and Val 62, attractive charge with Arg 36, and van der Waals forces with Leu 35, Val 59, Asn 62 Chain A, and Val 62 Chain B.
Granzyme B is a serine protease found in the granules of natural killer (NK) cells and cytotoxic T cells. It is involved in inducing inflammation by cytokine release stimulation and also involved in remodeling of the extracellular matrix. Elevated levels of granzyme B are also implicated in various autoimmune diseases, several skin diseases, and type 1 diabetes [225].
On the other hand, human leukocyte elastase (HLE) is a serine proteinase involved in inflammation and tissue degradation. HLE inhibitors are believed to treat a number of diseases, such as emphysema and cystic fibrosis [220].
Natural products can have enzyme inhibitory potential for the management of different disorders [226]. According to the in silico study results, cyclamin, a saponin, is suggested to be a successful constituent for treating most underlying skin diseases owing to its chemical structure that possesses aliphatic rings, richness in oxygen atoms, and the ability to bind effectively with key amino acids of the binding sites of both granzyme B and HLE.

7. Conclusions

Herbs have great potential to treat various kinds of skin problems. Compared to various allopathic drugs, they have a comparatively low cost and can be of great benefit to many patients, especially poor people. Herbs are rich sources of active ingredients and can be a safer and cost-effective method for the management of skin ailments, ranging from rashes to skin cancer. FDA-approved formulas containing natural sources such as honey and biological cellulose are available and aid greatly in the treatment of skin diseases. Different mechanisms are displayed by such phytochemicals, such as inhibition of multiple inflammatory mediators, ranging from NF-κ, TNF-α, IL-1, TXB2, to COX-2. Their mechanism of action was elucidated via molecular modeling studies that were performed on the active sites of two essential proteins: granzyme B, which is a serine protease found in the granules of natural killer cells (NK cells) and cytotoxic T cells; and human leukocyte elastase (HLE), which is a serine proteinase involved in inflammation and tissue degradation. Molecular docking studies have confirmed that phytoconstituents of natural origin have potential beneficial effects on various skin disorders, especially those containing saponin. Owing to the aliphatic chains and structure rich in oxygen atoms, cyclamin saponin was able to display a comparable and stable complex with both enzymes. C-docker interaction energy expressed by saponin was −28.10 Kcal/mol for granzyme B and −48.50 Kcal/mol for HLE. Saponin bounded to granzyme B similarly to complexed reference via two H-bonds with Ser 100 and three H-bonds with Asn 101, Asp 176, and Thr178. It displayed van der Waals force attraction with Asn 93, Asn 95, Asn 98, and Ile 179, while it bounded to the strategic binding site of HLE via two H-bonds with Ala 60 and two H-bonds with Asn 61 and Arg 63, Pi—Pi- bonds with Leu 35, and van der Waals interaction with Arg 36, Gly 39, His 40, Val 59, Val 62, Asn 62 Chain A, Val 62 Chain B, Ile 88, and Glu 90.

Author Contributions

Conceptualization, A.N.B.S. and A.K.; methodology, I.M.F. and N.M.M.; data analysis, N.M.M., I.M.F. and A.N.B.S.; writing—original draft preparation, D.B., P.T.S., N.M.M. and I.M.F.; writing—review and editing, A.N.B.S., A.K. and N.M.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

All data are provided in this review article.

Conflicts of Interest

The authors have no conflicts of interest to declare.

List of Abbreviations

DNADeoxyribonucleic acid
UVUltraviolet radiation
NF-κBNuclear factor-kappa enhancer binding protein
TNF-αTumor necrosis factor alpha
C3bComplement component 3
NONitric oxides
IL- 1 β Interleukin 1 beta
TXB2Thromboxane B2
COX-2Cyclooxygenase-2
FDAFood and Drug Administration
BCBacterial cellulose
PCPlant cellulose
NKNatural killer
HLEHuman leukocyte elastase

References

  1. Parvaiz, M.; Bhatti, K.H.; Nawaz, K.; Hussain, Z.; Khan, R.M.; Hussain, A. Ethno-botanical studies of medicinal plants of Dinga, District Gujrat, Punjab, Pakistan. World Appl. Sci. J. 2013, 26, 826–833. [Google Scholar]
  2. Mostafa, N.M.; Ashour, M.L.; Eldahshan, O.A.; Singab, A.N.B. Cytotoxic Activity and Molecular Docking of A Novel Biflavonoid Isolated from Jacaranda acutifolia (Bignoniaceae). Nat. Prod. Res. 2015, 30, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
  3. Ashmawy, A.M.; Mostafa, N.M.; Eldahshan, O.A. GC/MS Analysis and Molecular Profiling of Lemon Volatile Oil against Breast Cancer. J. Essent. Oil Bear. Plants 2019, 22, 903–916. [Google Scholar] [CrossRef]
  4. Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn Rev. 2014, 8, 52. [Google Scholar] [CrossRef]
  5. Madison, K.C. Barrier function of the skin: “la raison d’etre” of the epidermis. JID 2003, 121, 231–241. [Google Scholar] [CrossRef]
  6. Day, R.O.; Snowden, L. Where to find information about drugs. Aust. Prescr. 2016, 3, 88. [Google Scholar]
  7. Verma, S. Medicinal plants used in cure of skin diseases. Adv. Appl. Sci. Res. 2016, 7, 65–67. [Google Scholar]
  8. Malik, K.; Ahmad, M.; Zafar, M.; Ullah, R.; Mahmood, H.M.; Parveen, B.; Rashid, N.; Sultana, S.; Shah, S.N. An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. BMC Complement. Altern. Med. 2019, 19, 1–38. [Google Scholar] [CrossRef]
  9. Gonzalez-Aspajo, G.; Belkhelfa, H.; Haddioui-Hbabi, L.; Bourdy, G.; Deharo, E. Sacha Inchi Oil (Plukenetiavolubilis L), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. J. Ethnopharmacol. 2015, 171, 330–334. [Google Scholar]
  10. Hay, R.; Bendeck, S.E.; Chen, S.; Estrada, R.; Haddix, A.; McLeod, T.; Mahé, A. Skin Diseases. In Disease Control Priorities in Developing Countries, 2nd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
  11. Chandler, D.J.; Fuller, L.C. A review of scabies: An infestation more than skin deep. Dermatology 2019, 235, 79–90. [Google Scholar] [CrossRef]
  12. Zari, S.T.; Zari, T.A. A review of four common medicinal plants used to treat eczema. J. Med. Plant. Res. 2015, 9, 702–711. [Google Scholar]
  13. Nasri, H.; Bahmani, M.; Shahinfard, N.; Nafchi, A.M.; Saberianpour, S.; Kopaei, M.R. Medicinal plants for the treatment of acne vulgaris: A review of recent evidences. Jundishapur J. Microbiol. 2015, 8, e25580. [Google Scholar] [CrossRef] [PubMed]
  14. Bettoli, V.; Zauli, S.; Virgili, A. Is hormonal treatment still an option in acne today. Br. J. Dermatol. 2015, 172, 37–46. [Google Scholar]
  15. Herman, A.; Herman, A.P. Topically used herbal products for the treatment of psoriasis–mechanism of action, drug delivery, clinical studies. Planta Medica. 2016, 82, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
  16. Chauhan, P. Skin cancer and role of herbal medicines. Asian J. Pharm. Pharmacol. 2018, 4, 404–412. [Google Scholar] [CrossRef]
  17. Bahramsoltani, R.; Farzaei, M.H.; Rahimi, R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: An integrative review. Arch. Dermatol. Res. 2014, 306, 601–617. [Google Scholar] [CrossRef] [PubMed]
  18. Hunt, M.J.; Barnetson, R.S. A comparative study of gluconolactone versus benzoyl peroxide in the treatment of acne. Aust. J. Dermatol. 1992, 33, 131–134. [Google Scholar] [CrossRef]
  19. Sajan, L. Phytochemicals, Traditional Uses. “Processing of Aconitum Species in Nepal. Nepal J. Sci. Tech. 2011, 12, 171–178. [Google Scholar]
  20. Sindhia, V.R.; Bairwa, R. Plant review: Butea monosperma. Int. J. Pharm. Clin. 2010, 2, 90–94. [Google Scholar]
  21. Orisakwe, O.E.; Afonne, O.J.; Chude, M.A.; Obi, E.; Dioka, C.E. Sub-chronic toxicity studies of the aqueous extract of Boerhaviadiffusa leaves. J. HEALTH Sci. 2003, 49, 444–447. [Google Scholar] [CrossRef]
  22. Lalla, J.K.; Nandedkar, S.Y.; Paranjape, M.H.; Talreja, N.B. Clinical trials of ayurvedic formulations in the treatment of acne vulgaris. J Ethnopharmacol. 2001, 78, 99–102. [Google Scholar] [CrossRef]
  23. Brown, A.C.; Hairfield, M.; Richards, D.G.; McMillin, D.L.; Mein, E.A.; Nelson, C.D. Medical nutrition therapy as a potential complementary treatment for psoriasis-five case reports. Alt. Med. Rev. 2004, 9, 297–307. [Google Scholar]
  24. Kokilavani, P.; Suriyakalaa, U.; Elumalai, P.; Abirami, B.; Ramachandran, R.; Sankarganesh, A.; Achiraman, S. Antioxidant mediated ameliorative steroidogenesis by Commelinabenghalensis L. and Cissus quadrangularis L. against quinalphos induced male reproductive toxicity. Pestic. Biochem. Physiol. 2014, 109, 18–33. [Google Scholar] [CrossRef]
  25. Chang, K.S.; Shin, E.H.; Park, C.; Ahn, Y.J. Contact and fumigant toxicity of Cyperus rotundus steam distillate constituents and related compounds to insecticide-susceptible and-resistant Blattella germanica. J. Med. Entomol. 2012, 49, 631–639. [Google Scholar] [CrossRef] [PubMed]
  26. Singhal, M.; Kansara, N. Cassia tora Linn cream inhibits ultraviolet-B-induced psoriasis in rats. Int. Sch. Res. Notices. 2012, 2012, 346510. [Google Scholar] [CrossRef]
  27. Bernstein, J.E.; Parish, L.C.; Rapaport, M.; Rosenbaum, M.M.; Roenigk, H.H., Jr. Effects of topically applied capsaicin on moderate and severe psoriasis vulgaris. J. Am. Acad. Dermatol. 1986, 15, 504–507. [Google Scholar] [CrossRef]
  28. Yadav, H.; Yadav, M.; Jain, S.; Bhardwaj, A.; Singh, V.; Parkash, O.; Marotta, F. Antimicrobial property of a herbal preparation containing Dalbergia sissoo and Datura stramonium with cow urine against pathogenic bacteria. Int. J. Immunopathol. Pharm. 2008, 21, 1013–1020. [Google Scholar] [CrossRef]
  29. Hardel, D.K.; Laxmidhar, S. A review on phytochemical and pharmacological of Eucalyptus globulus: A multipurpose tree. Int J. Res. Ayurveda Pharm. 2011, 2, 1527–1530. [Google Scholar]
  30. Chanda, S.; Baravalia, Y. Screening of some plant extracts against some skin diseases caused by oxidative stress and microorganisms. Afr. J. Biotechnol. 2010, 9, 3210–3217. [Google Scholar]
  31. Joshi, A.R.; Joshi, K. Ethnomedicinal plants used against skin diseases in some villages of Kali Gandaki, Bagmati and TadiLikhu watersheds of Nepal. Ethnobot. Leafl. 2007, 2007, 27. [Google Scholar]
  32. Zheng, C.; Hu, C.; Ma, X.; Peng, C.; Zhang, H.; Qin, L. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chem. 2012, 132, 433–438. [Google Scholar] [CrossRef] [PubMed]
  33. Zheng, X.; Wang, W.; Piao, H.; Xu, W.; Shi, H.; Zhao, C. The genus Gnaphalium L.(Compositae): Phytochemical and pharmacological characteristics. Molecules 2013, 18, 8298–8318. [Google Scholar] [CrossRef] [Green Version]
  34. Craig, A.M.; Karchesy, J.J.; Blythe, L.L.; del Pilar González-Hernández, M.; Swan, L.R. Toxicity studies on western juniper oil (Juniperus occidentalis) and Port-Orford-cedar oil (Chamaecyparislawsoniana) extracts utilizing local lymph node and acute dermal irritation assays. Tox. Lett. 2004, 154, 217–224. [Google Scholar] [CrossRef] [PubMed]
  35. Ravichandran, G.; Bharadwaj, V.S.; Kolhapure, S.A. Evaluation of efficacy & safety of Acne-N-Pimple cream in acne vulgaris. Antiseptic 2004, 101, 249. [Google Scholar]
  36. Balakrishnan, S.; Subramanian, M. A Review on Marsilea Quadrifolia L.—A Medicinally Important Plant. J.Compr. Phar. 2016, 3, 38–44. [Google Scholar] [CrossRef]
  37. Bernstein, S.; Donsky, H.; Gulliver, W.; Hamilton, D.; Nobel, S.; Norman, R. Treatment of mild to moderate psoriasis with Relieva, a Mahonia aquifolium extract—a double-blind, placebo-controlled study. Am. J. Ther. 2006, 13, 121–126. [Google Scholar] [CrossRef]
  38. Valiejo-Roman, C.M.; Terentieva, E.I.; Pimenov, M.G.; Kljuykov, E.V.; Samigullin, T.H.; Tilney, P.M. Broad Polyphyly in Pleurospermum s. l. (Umbelliferae-Apioideae) as Inferred from rDNA ITS & Chloroplast Sequences. Am. Soc. Plant. Taxon. 2012, 37, 573–581. [Google Scholar]
  39. Parihar, P.; Parihar, L.; Bohra, A. Antibacterial activity of extracts of Pinus roxburghiiSarg. Bangladesh J. Bot. 2006, 35, 85–86. [Google Scholar]
  40. Maimoona, A.; Naeem, I.; Saddiqe, Z.; Jameel, K. A review on biological, nutraceutical & clinical aspects of French maritime pine bark extract. J. Ethnopharmacol. 2011, 133, 261–277. [Google Scholar]
  41. Lin, Z.X.; Jiao, B.W.; Che, C.T.; Zuo, Z.; Mok, C.F.; Zhao, M.; Ho, W.K.; Tse, W.P.; Lam, K.Y.; Fan, R.Q.; et al. Ethyl acetate fraction of the root of Rubia cordifolia L. inhibits keratinocyte proliferation in vitro & promotes keratinocyte differentiation in vivo: Potential application for psoriasis treatment. Phytother. Res. 2010, 24, 1056–1064. [Google Scholar]
  42. Lomash, V.; Parihar, S.K.; Jain, N.K.; Katiyar, A.K. Efect of Solanum nigrum & Ricinus communis extracts on histamine & carrageenan-induced infammation in the chicken skin. Cell Mol. Biol. 2010, 9, 56. [Google Scholar]
  43. Zhao, Y.; Liu, F.; Lou, H.X. Studies on the chemical constituents of Solanum nigrum. J. Chin. Med. Mater. 2010, 33, 555–556. [Google Scholar]
  44. Ashour, M.L.; Ayoub, N.A.; Singab, A.N.B.; Al Azizi, M.M. Simmondsia chinensis (Jojoba): A comprehensive pharmacognostic study. J. Pharmacogn. Phytochem. 2013, 2, 25–38. [Google Scholar]
  45. Nisar, M.; Khan, I.; Ahmad, B.; Ali, I.; Ahmad, W.; Choudhary, M.I. Antifungal & antibacterial activities of Taxus wallichiana Zucc. J. Enzym. Inhib. Med. Chem. 2008, 23, 256–260. [Google Scholar]
  46. Varma, S.B.; Giri, S.P. Study of wound healing activity of Tectona grandis Linn. leaf extract on rats. Anc. Sci. Life 2013, 32, 241–244. [Google Scholar] [PubMed]
  47. Goswami, D.V.; Nirmal, S.A. An Overview of Tectona grandis: Chemistry & Pharmacological Profile. Phcog. Rev. 2009, 3, 181–185. [Google Scholar]
  48. Shrivastav, S.; Sindhu, R.; Kumar, S.; Kumar, P. Anti-psoriatic & phytochemical evaluation of Thespesia populnea bark extracts. Int. J. Pharm. Pharm. Sci. 2009, 1, 176–185. [Google Scholar]
  49. Raj, B.A.; Muruganantham, N.; Praveen, T.K.; Raghu, P.S. Screening of Wrightia tinctoria leaves for anti psoriatic activity. Hygeia J. Drug Med. 2012, 4, 73–78. [Google Scholar]
  50. Rout, S.D.; Panda, T.; Mishra, N. Ethno-medicinal plants used to cure different diseases by tribals of Mayurbhanj district of North Orissa. Stud. Ethno-Med. 2009, 3, 27–32. [Google Scholar] [CrossRef]
  51. Michelle Garay, M.; Judith Nebus, M.; MenasKizoulis, B. Antiinflammatory activities of colloidal oatmeal (Avena sativa) contribute to the effectiveness of oats in treatment of itch associated with dry, irritated skin. J. Drugs Dermatol. 2015, 14, 43–48. [Google Scholar]
  52. Ashkani-Esfahani, S.; Imanieh, M.H.; Khoshneviszadeh, M.; Meshksar, A.; Noorafshan, A.; Geramizadeh, B.; Ebrahimi, S.; Handjani, F.; Tanideh, N. The healing effect of arnebiaeuchroma in second degree burn wounds in rat as an animal model. Iran. Red Crescent Med. J. 2012, 14, 70. [Google Scholar] [PubMed]
  53. Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Rev. Bras. Farmacogn. 2012, 22, 397–403. [Google Scholar] [CrossRef]
  54. Hafezi, F.; Rad, H.E.; Naghibzadeh, B.; Nouhi, A.; Naghibzadeh, G. Actinidia deliciosa (kiwifruit), a new drug for enzymatic debridement of acute burn wounds. Burns 2010, 36, 352–355. [Google Scholar] [CrossRef] [PubMed]
  55. Dey, A.; De, J.N. Aristolochia indica L.: A review. Asian J. Plant. Sci. 2011, 10, 108–116. [Google Scholar] [CrossRef]
  56. Chandra Joshi, B.; Sundriyal, A. Healing acne with medicinal plants: An overview. Inventi J. (P) Ltd. 2017, 2, 1–3. [Google Scholar]
  57. Olsen, D.L.; Raub, W.; Bradley, C.; Johnson, M.; Macias, J.L.; Love, V.; Markoe, A. The effect of aloe vera gel/mild soap versus mild soap alone in preventing skin reactions in patients undergoing radiation therapy. Oncol. Nurs. Forum. 2001, 28, 3. [Google Scholar]
  58. Aertgeerts, P.; Albring, M.; Klaschka, F.; Nasemann, T.; Patzelt-Wenczler, R.; Rauhut, K.; Weigl, B. Comparative testing of Kamillosan cream & steroidal (0.25% hydrocortisone, 0.75% fluocortin butyl ester) & non-steroidal (5% bufexamac) dermatologic agents in maintenance therapy of eczematous diseases. Z. Fur Hautkrankh. 1985, 60, 270–277. [Google Scholar]
  59. PatzeltWenczler, R.; Ponce Pöschl, E. Proof of efficacy of Kamillosan(R)cream in atopic eczema. Eur. J. Med. Res. 2000, 5, 171–175. [Google Scholar]
  60. Cibin, T.R.; Devi, D.G.; Abraham, A. Chemoprevention of two stage skin cancer in vivo by Saracaasoca. Integr. Cancer Ther. 2012, 11, 279–286. [Google Scholar] [CrossRef]
  61. Dermarderosian, A. The Review of Natural Products; Kluver: Berlin, Germany, 2001. [Google Scholar]
  62. Sengul, M.; Ercisli, S. Antioxidant, Antimicrobial Activity & Total Phenolic Content within the Aerial Parts of Artemisia absinthum, Artemisia santonicum & Saponaria officinalis. Iran. J. Pharm. Res. 2011, 10, 49–56. [Google Scholar]
  63. Tajik, H.; Jalali, F.S.; Javadi, S.; Shahbazi, Y.; Amini, M. Clinical and microbiological evaluations of efficacy of combination of natural honey and yarrow on repair process of experimental burn wound. J. Anim. Vet. Adv. 2009, 8, 907–911. [Google Scholar]
  64. Barua, C.C.; Talukdar, A.; Begum, S.A.; Buragohain, B.; Roy, J.D.; Pathak, D.C.; Sarma, D.K.; Gupta, A.K.; Bora, R.S. Effect of Alternanthera brasiliana (L) Kuntze on healing of dermal burn wound. Indian J. Exp. Biol. 2012, 56–60. [Google Scholar]
  65. Şener, G.; Şatýroğlu, H.; Şehirli, A.Ö.; Kaçmaz, A. Protective effect of aqueous garlic extract against oxidative organ damage in a rat model of thermal injury. Life Sci. 2003, 73, 81–91. [Google Scholar] [CrossRef]
  66. Lv, R.L.; Wu, B.Y.; Chen, X.D.; Jiang, Q. The effects of aloe extract on nitric oxide and endothelin levels in deep-partial thickness burn wound tissue in rat. Zhonghua shao shang za zhi= Zhonghuashaoshangzazhi. Chin. J. Burns 2006, 22, 362–365. [Google Scholar]
  67. Jain, N.; Jain, R.; Jain, V.; Jain, S. A review on: Abelmoschus esculentus. Pharmacia 2012, 1, 84–89. [Google Scholar]
  68. Mubashir, S.; Shah, W.A. Phytochemical and pharmacological review profile of Adiantum venustum. Int. J. Pharmtech Res. 2011, 3, 827–830. [Google Scholar]
  69. Brahmachari, G.; Gorai, D.; Roy, R. Argemone mexicana: Chemical and pharmacological aspects. Rev. Bras. Farmacogn. 2013, 23, 559–567. [Google Scholar] [CrossRef]
  70. Ogurtan, Z.; Hatipoglu, F.; Ceylan, C. The effect of Alkanna tinctoria Tausch on burn wound healing in rabbits. Berl. Munch. Tierarztl. Wochenschr. BERL. 2002, 109, 481–485. [Google Scholar]
  71. Isbir, T.; Yaylim, I.; Aydin, M.; Oztürk, O.; Koyuncu, H.; Zeybek, U.; Ağaçhan, B.; Yilmaz, H. The effects of Brassica oleraceae var capitata on epidermal glutathione and lipid peroxides in DMBA-initiated-TPA-promoted mice. Anticancer Res. 2000, 20, 219–224. [Google Scholar]
  72. Arham, S.; Muhammad, S.; Yasir, A.; Liaqat, A.; Rao, S.A.; Ghulam, M.; Sobia, A.W. Berberis lyciumRoyle: A review of its traditional uses, phytochemistry and pharmacology. Afr. J. Pharm. Pharmacol. 2012, 6, 2346–2353. [Google Scholar]
  73. Islam, M.; Azhar, I.; Usmanghani, K.; Gill, M.A.; Ahmad, A. Bioactivity evaluation of Bergenia ciliata. Pak. J. Pharm. Sci. 2002, 15, 15–33. [Google Scholar] [PubMed]
  74. Dharmender, R.; Madhavi, T.; Reena, A.; Sheetal, A. Simultaneous Quantification of Bergenin,(+)-Catechin, Gallicin and Gallic acid; and quantification of β-Sitosterol using HPTLC from Bergenia ciliata (Haw.) Sternb. Forma ligulata Yeo (Pasanbheda). Pharm. Anal. Acta 1. 2010, 104, 2153–2435. [Google Scholar] [CrossRef]
  75. Bashir, S.; Gilani, A.H. Antiurolithic effect of Bergenia ligulata rhizome: An explanation of the underlying mechanisms. J. Ethnopharmacol. 2009, 122, 106–116. [Google Scholar] [CrossRef] [PubMed]
  76. Ananth, K.V.; Asad, M.; Kumar, N.P.; Asdaq, S.M.; Rao, G.S. Evaluation of wound healing potential of Bauhinia purpurea leaf extracts in rats. Indian J. Pharm. Sci. 2010, 72, 122. [Google Scholar] [PubMed]
  77. Rose, B.N.; Prasad, N.K. Preliminary phytochemical and pharmacognostical evaluation of Carissa spinarum leaves. Asian J. Pharm. Tech. 2013, 3, 30–33. [Google Scholar]
  78. Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia. 2010, 81, 413–419. [Google Scholar] [CrossRef]
  79. Pokharkar Raghunath, D.; Funde Prasad, E.; Pingale Shirish, S. Aqueous extract of Capparis decidua in acute toxicity effects of the rat by use of toothache reliever activity. Pharmacologyonline 2007, 3, 511–517. [Google Scholar]
  80. Suresh, K. Antimicrobial and Phytochemical Investigation of the Leaves of Carica papaya L., Cynodondactylon (L.) Pers., Euphorbia hirta L., Melia azedarach L. and Psidium guajava L. Ethnobot. Leafl. 2008, 2008, 157. [Google Scholar]
  81. Dande, P.A.; Khan, A.N. Evaluation of wound healing potential of Cynodondactylon. Asian J. Pharm. Clin. Res. 2012, 5, 161–164. [Google Scholar]
  82. Srivastava, P.; Durgaprasad, S. Burn wound healing property of Cocos nucifera: An appraisal. Indian J. Pharmacol. 2008, 40, 144. [Google Scholar]
  83. Saleem, U.; Hussain, K.; Ahmad, M.; Irfan Bukhari, N.; Malik, A.; Ahmad, B. Physicochemical and phytochemical analysis of Euphorbia helioscopia (L.). Pak. J. Pharm. Sci. 2014, 27, 577–585. [Google Scholar] [PubMed]
  84. Lu, Z.Q.; Guan, S.H.; Li, X.N.; Chen, G.T.; Zhang, J.Q.; Huang, H.L.; Liu, X.; Guo, D.A. Cytotoxic diterpenoids from Euphorbia helioscopia. J. Nat. Prod. 2008, 71, 873–876. [Google Scholar] [CrossRef] [PubMed]
  85. Kareparamban, J.A.; Nikam, P.H.; Jadhav, A.P.; Kadam, V.J. Ferulafoetida “Hing”: A review. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 775. [Google Scholar]
  86. Patel, R.; Gautam, P. Medicinal potency of Ficus benghalensis: A review. Int. J. Med. Chem. Anal. 2014, 4, 53–58. [Google Scholar]
  87. Geshnizjany, N.; Ramezanian, A.; Khosh-Khui, M. Postharvest life of cut gerbera (Gerbera jamesonii) as affected by nano-silver particles and calcium chloride. Int. J. Hortic. Sci. Technol. 2014, 1, 171–180. [Google Scholar]
  88. Al-Snafi, A.E. Chemical constituents and medical importance of Galium aparine—A review. Indo Am. J. Pharm. Sci. 2018, 5, 1739–1744. [Google Scholar]
  89. Arukwe, U.; Amadi, B.A.; Duru, M.K.; Agomuo, E.N.; Adindu, E.A.; Odika, P.C.; Lele, K.C.; Egejuru, L.; Anudike, J. Chemical composition of Persea americana leaf, fruit and seed. Ijrras 2012, 11, 346–349. [Google Scholar]
  90. Najafizadeh, P.; Hashemian, F.; Mansouri, P.; Farshi, S.; Surmaghi, M.S.; Chalangari, R. The evaluation of the clinical effect of topical St Johns wort (Hypericum perforatum L.) in plaque type psoriasis vulgaris: A pilot study. Aust. J. Dermatol. 2012, 53, 131–135. [Google Scholar] [CrossRef]
  91. Zeb, A.; Sadiq, A.; Ullah, F.; Ahmad, S.; Ayaz, M. Phytochemical and toxicological investigations of crude methanolic extracts, subsequent fractions and crude saponins of Isodonrugosus. Bio. Res. 2014, 47, 57. [Google Scholar] [CrossRef]
  92. Parekh, J.; Chanda, S. In-vitro antimicrobial activities of extracts of Launaea procumbens roxb.(Labiateae), Vitis vinifera L. (Vitaceae) & Cyperus rotundus l. (Cyperaceae). Afr. J. Biomed. Res. 2006, 9, 89–93. [Google Scholar]
  93. Jagessar, R.; Mohamed, A.; Gomes, G. An evaluation of the antibacterial & antifungal activity of leaf extracts of Momordica charantia against Candida albicans, Staphylococcus aureus & Escherichia coli. Nat. Sci. 2008, 6, 1–14. [Google Scholar]
  94. Kumar, A.; Gupta, R.; Mishra, R.K.; Shukla, A.C.; Dikshit, A. Pharmaco-phylogenetic investigation of Micromeriabiflora Benth & Citrus reticulata Blanco. Natl. Acad. Sci. Lett. 2012, 35, 253–257. [Google Scholar]
  95. Merfort, I.; Wray, V.; Barakat, H.; Hussein, S.; Nawwar, M.; Willuhn, G. Flavonoltriglycosides from seeds of Nigella sativa. Phytochemistry 1997, 46, 359–363. [Google Scholar] [CrossRef]
  96. Ramadan, M.F. Nutritional value, functional properties & nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar]
  97. Ravn, H.; Brimer, L. Structure & antibacterial activity of plantamajoside, a caffeic acid sugar ester from Plantago major subs major. Phytochemistry 1988, 27, 3433–3437. [Google Scholar]
  98. Garg, R.; Patel, R.K.; Jhanwar, S.; Priya, P.; Bhattacharjee, A.; Yadav, G.; Bhatia, S.; Chattopadhyay, D.; Tyagi, A.K.; Jain, M. Gene discovery & tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing & web resource development. Plant. Physiol. 2011, 156, 1661–1678. [Google Scholar]
  99. Liu, J.; Xiong, Z.; Li, T.; Huang, H. Bioaccumulation & ecophysiological responses to copper stress in two populations of Rumex dentatus L. from cu contaminated & non-contaminated sites. Environ. Exp. Bot. 2004, 52, 43–51. [Google Scholar]
  100. Ahmad, V.; Ali, Z.; Zahid, M.; Alam, N.; Saba, N.; Khan, T.; Qaisar, M.; Nisar, M. Phytochemical study of Salvia moorcroftiana. Fitoterapia 2000, 71, 84–85. [Google Scholar] [CrossRef]
  101. Ahmadiani, A.; Javan, M.; Semnanian, S.; Barat, E.; Kamalinejad, M. Antiinflammatory & antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. J. Ethnopharmacol. 2001, 75, 283–286. [Google Scholar]
  102. Yadav, U.C.; Baquer, N.Z. Pharmacological effects of Trigonella foenumgraecum L. in health & disease. Pharm Biol. 2014, 52, 243–254. [Google Scholar]
  103. Lodhi, S.; Pawar, R.S.; Jain, A.P.; Jain, A.; Singhai, A.K. Effect of Tephrosia purpurea (L.) pers. On partial thickness & full thickness burn wounds in rats. J. Complement. Integr. Med. 2010, 1. [Google Scholar] [CrossRef]
  104. Singh, R.; Dar, S.; Sharma, P. Antibacterial activity & toxicological evaluation of semi purified hexane extract of Urtica dioica leaves. Res. J. Med. Plants. 2012, 6, 123–135. [Google Scholar]
  105. Hadizadeh, I.; Peivastegan, B.; Kolahi, M. Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) & konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi. Pakistan. J. Biol. Sci. 2009, 12, 58. [Google Scholar]
  106. Süntar, I.; Tatlı, I.I.; Akkol, E.K.; Keleş, H.; Kahraman, Ç.; Akdemir, Z. An ethnopharmacological study on Verbascum species: From conventional wound healing use to scientific verification. J. Ethnopharmacol. 2010, 132, 408–413. [Google Scholar] [CrossRef] [PubMed]
  107. Kimura, Y.; Sumiyoshi, M.; Sakanaka, M. Effects of Astilbe thunbergii rhizomes on wound healing: Part 1. Isolation of promotional effectors from Astilbe thunbergii rhizomes on burn wound healing. J. Ethnopharmacol. 2007, 109, 72–77. [Google Scholar] [CrossRef]
  108. Ren, Z.Y.; Wu, Q.X.; Shi, Y.P. Flavonoids and triterpenoids from Anaphalismargaritacea. Chem. Nat. Compd. 2009, 45, 728–730. [Google Scholar] [CrossRef]
  109. Jan, H.; Khan, M.A.; Usman, H.; Shah, M.; Ansir, R.; Faisal, S.; Ullah, N.; Rahman, L. The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Adv. 2020, 10, 19219–19231. [Google Scholar] [CrossRef]
  110. Kumar, V.; Tyagi, D. Antifungal activity evaluation of different extracts of Bergenia stracheyi. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 69–78. [Google Scholar]
  111. Fonseca, Y.M.; Catini, C.D.; Vicentini, F.T.; Nomizo, A.; Gerlach, R.F.; Fonseca, M.J. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J. Ethnopharmacol. 2010, 127, 596–601. [Google Scholar] [CrossRef]
  112. Akinci, I.E.; Akinci, S. Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr. J. Biotechnol. 2010, 9, 4589–4594. [Google Scholar]
  113. Mukhopadhyay, S.; Banerjee, S.K.; Atal, C.K.; Lin, L.J.; Cordell, G.A. Alkaloids of Corydalis govaniana. J. Nat. Prod. 1987, 50, 270–272. [Google Scholar] [CrossRef]
  114. Gomes, F.S.; Spínola, C.D.; Ribeiro, H.A.; Lopes, M.T.; Cassali, G.D.; Salas, C.E. Wound-healing activity of a proteolytic fraction from Caricacandamarcensis on experimentally induced burn. Burns 2010, 36, 277–283. [Google Scholar] [CrossRef] [PubMed]
  115. Zagórska-Dziok, M.; Ziemlewska, A.; Bujak, T.; Nizioł-Łukaszewska, Z.; Hordyjewicz-Baran, Z. Cosmetic and dermatological properties of selected ayurvedic plant extracts. Molecules 2021, 26, 614. [Google Scholar] [CrossRef]
  116. Bijauliya, R.K.; Kannojia, P.; Mishra, P.; Pathak, G.K. Isolation and Structure Elucidation of Quercetin like Structure from Dalbergia sissoo (Fabaceae). J. drug deliv. Ther. 2020, 10, 6–11. [Google Scholar] [CrossRef]
  117. Pirzada, A.J.; Shaikh, W.; Usmanghani, K.; Mohiuddin, E. Antifungal activity of Dodonaeaviscosa Jacq extract on pathogenic fungi isolated from super ficial skin infection. Pak. J. Pharm. Sci. 2010, 23, 337–340. [Google Scholar] [PubMed]
  118. Getie, M.; Gebre-Mariam, T.; Rietz, R.; Höhne, C.; Huschka, C.; Schmidtke, M.; Abate, A.; Neubert, R.H. Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaeaviscosa, Rumex nervosus and Rumex abyssinicus. Fitoterapia 2003, 74, 139–143. [Google Scholar] [CrossRef]
  119. Ishtiaq, M.; Mumtaz, A.S.; Hussain, T.; Ghani, A. Medicinal plant diversity in the flora of Leepa Valley, Muzaffarabad (AJK), Pakistan. Afr. J. Biotechnol. 2012, 11, 3087–3098. [Google Scholar]
  120. Blumenthal, M. Therapeutic Guide to Herbal Medicines; American Botanical Council: Austin, TX, USA, 1998. [Google Scholar]
  121. Sakarcan, A.; Sehirli, Ö.; Velioglu-Övünç, A.; Ercan, F.; Erkanlı, G.; Gedik, N.; Şener, G. Ginkgo biloba extract improves oxidative organ damage in a rat model of thermal trauma. J. Burn Care Res. 2005, 26, 515–524. [Google Scholar] [CrossRef]
  122. Upadhyay, N.K.; Kumar, R.; Siddiqui, M.S.; Gupta, A. Mechanism of wound-healing activity of Hippophaerhamnoides L. leaf extract in experimental burns. Evid. Based Complem. 2011, 2011, 659705. [Google Scholar]
  123. Upadhyay, N.; Kumar, R.; Mandotra, S.K.; Meena, R.N.; Siddiqui, M.S.; Sawhney, R.C.; Gupta, A. Safety and healing efficacy of Sea buckthorn (Hippophaerhamnoides L.) seed oil on burn wounds in rats. Food Chem. Toxicol. 2009, 47, 1146–1153. [Google Scholar] [CrossRef]
  124. Mushtaq, M.; Anwer, N.; Waqar, M.A.; Latif, S.; Shahid, S.A.; Azam, A. Antioxidant, Antimicrobial Potential and Phytochemical Attributes of Impatiens edgeworthii. Asian J. Chem. 2013, 25, 9800–9804. [Google Scholar] [CrossRef]
  125. Ojewole, J.A. Antiinflammatory, analgesic & hypoglycemic effects of Mangifera indica Linn.(Anacardiaceae) stem bark aqueous extract. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 547–554. [Google Scholar] [PubMed]
  126. Sultana, A.; Nakanishi, A.; Roy, B.; Mizunoya, W.; Tatsumi, R.; Ito, T.; Tabata, S.; Rashid, H.; Katayama, S.; Ikeuchi, Y. Quality improvement of frozen & chilled beef biceps femoris with the application of salt-bicarbonate solution. Asian Australas. J. Anim. Sci. 2008, 21, 903. [Google Scholar]
  127. Jarrahi, M. An experimental study of the effects of Matricaria chamomilla extract on cutaneous burn wound healing in albino rats. Nat. Prod. Res. 2008, 22, 422–427. [Google Scholar] [CrossRef]
  128. Patel, Y.S.; Patel, R.; Mahato, A.K.R.; Joshi, P. Status & diversity of ethnomedicinal plants of Dhinadhar Hill, Kachchh District, Gujarat. Int. Jof. Plant. Animal Environ. Sci. 2013, 3, 265–273. [Google Scholar]
  129. Leung, A.Y. Foster’s Encyclopedia of Common Natural Ingredients used in Foods, Drugs & Cosmetics, 2nd ed.; Wiley Interscience Publication; John Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
  130. Quisumbing, E. Medicinal Plants of the Phillipines; Katha Publishing Company; JMC Press: Quezon City, Phillipines, 1978. [Google Scholar]
  131. Lim, Y.Y.; Kim, H.M.; Park, W.S.; Kim, J.H.; Shin, H.J.; Kim, M.N.; Kim, B.J. Anti inflammatory & anti pruritic effects of Portulaca oleracea L. extract using in vitro & in vivo inflammation model: LPS treated raw264.7 cells, keratinocytes, NC/Nga mice & hairless SKH 1 mice. Korean J. Asthma Allergy Clin. Immunol. 2011, 31, 199–206. [Google Scholar]
  132. Cruiokshank, I.; Perrin, D.R. Studies on Prytoalexins III. The isolation, assay, & general properties of a Phytoalexin from Pisum Sativum L. Aust. J. Biol. Sci. 1961, 14, 336–348. [Google Scholar]
  133. Masood, M.; Afify, L.H.; Al-Naffouri, T.Y. Efficient coordinated recovery of sparse channels in massive MIMO. IEEE Trans. Signal. Process. 2015, 63, 104–118. [Google Scholar] [CrossRef]
  134. Ydyrys, A.; Mukhitdinov, N.; Abibulla, A.; Tynybekov, B.; Akhmetova, A.; Karime, A. The States of Coenpopulations of endemic, relict & rare species of plant Limonium michelsonii & their protection. World Appl. Sci. J. 2013, 26, 934–940. [Google Scholar]
  135. Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol & β-Sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 2012, 1, 239–242. [Google Scholar]
  136. Rane, M.H.; Sahu, N.K.; Ajgoankar, S.S.; Teli, N.C.; Verma, D.R. A Holistic Approach on Review of Solanum virginianum. L. RRJPPS 2014, 3, 1–4. [Google Scholar]
  137. Kiran, K.; Asad, M. Wound healing activity of Sesamum indicum L. seed & oil in rats. Indian J. Exp. Biol. 2008, 46, 777–782. [Google Scholar] [PubMed]
  138. Toklu, H.Z.; Tunalı-Akbay, T.; Erkanlı, G.; Yüksel, M.; Ercan, F.; Şener, G. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury. Burns 2007, 33, 908–916. [Google Scholar] [CrossRef]
  139. Iqbal, H. Comparative efficacy of Aloe vera & Tamarixaphylla against Cutaneous leishmaniasis. Int. J. Basic Med. Sci. Pharm. (IJBMSP) 2012, 2, 42–45. [Google Scholar]
  140. Babu, S.G.; Bairy, K.L. Effect of Tridax procumbens on burn wound healing. Indian Drugs 2003, 40, 488–491. [Google Scholar]
  141. Ibrar, M.; Muhammad, N.; Khan, A. Chemical composition & biological screening of essential oils of Zanthoxylum armatum DC leaves. J. Clin. Toxicol. 2013, 2013, 1–6. [Google Scholar]
  142. Rabiei, Z.; Rafieian-Kopaei, M.; Mokhtari, S.; Shahrani, M. Effect of dietary ethanolic extract of Lavandula officinalis on serum lipids profile in rats. Iran. J. Pharm. Res. 2014, 13, 1295. [Google Scholar]
  143. Rahimian, G.; Rabiei, Z.; Tahmasebi, B.; Rafieian-Kopaei, M.; Ganji, F.; Rahimian, R.; Sharifi, A. Comparing the combined effect of garlic and mint extract with metronidazole in helicobacter pylori treatment. Iran. J. Pharm. Sci. 2013, 9, 63–70. [Google Scholar]
  144. Jana, S.; Shekhawat, G.S. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn Rev. 2010, 4, 179. [Google Scholar]
  145. Piazza, S.; Fumagalli, M.; Khalilpour, S.; Martinelli, G.; Magnavacca, A.; Dell’Agli, M.; Sangiovanni, E. A review of the potential benefits of plants producing berries in skin disorders. Antioxidants 2020, 9, 542. [Google Scholar] [CrossRef]
  146. Delmonte, S.; Brusati, C.; Parodi, A.; Rebora, A. Leukemia-related Sweet’s syndrome elicited by pathergy to arnica. Dermatology 1998, 197, 195–196. [Google Scholar] [PubMed]
  147. Lyss, G.; Schmidt, T.J.; Merfort, I.; Pahl, H.L. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-κB. Biol. Chem. 1997, 378, 951–962. [Google Scholar] [CrossRef] [PubMed]
  148. Agrawal, R.C.; Pandey, S. Evaluation of anticarcinogenic and antimutagenic potential of Bauhinia variegata extract in Swiss albino mice. Asian Pac. J. Cancer Prev. 2009, 10, 913–916. [Google Scholar]
  149. Kapadia, G.J.; Tokuda, H.; Konoshima, T.; Nishino, H. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Lett. 1996, 100, 211–214. [Google Scholar] [CrossRef]
  150. Saradhi, P.P.; Mohanty, P. Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem. Biophys. Res. Commun. BIOCHEM 1991, 181, 1238–1244. [Google Scholar]
  151. Zaidi, S.; Usmani, S.; Singh, B.R.; Musarrat, J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 2006, 64, 991–997. [Google Scholar] [CrossRef] [PubMed]
  152. Francis, J.K. Wildland shrubs of the United States and its territories: Thamnic descriptions, Volume 1. IITF-GTR-26. San Juan, PR: US Department of Agriculture, Forest Service, International Institute of Tropical Forestry; Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. Gen. Tech. Rep. 2004, 830, 26. [Google Scholar]
  153. Solanki, R. Treatment of skin diseases through medicinal plants in different regions of the world. Int. J. Biomed. Res. 2011, 2, 73. [Google Scholar] [CrossRef]
  154. Sonika, G.; Manubala, R.; Deepak, J. Comparative studies on anti-inflammatory activity of Coriandrum sativum, Datura stramonium and Azadirachta indica. Asian J. Exp. Biol. Sci. 2010, 1, 151–154. [Google Scholar]
  155. Patel, D.; Desai, S.; Devkar, R.; Ramachandran, A.V. Acute and sub-chronic toxicological evaluation of hydro-methanolic extract of Coriandrum sativum L. seeds. Excli J. 2012, 11, 566. [Google Scholar]
  156. de Lima, J.M.; de Freitas, F.J.; Amorim, R.N.; Câmara, A.C.; Batista, J.S.; Soto-Blanco, B. Clinical and pathological effects of Calotropis procera exposure in sheep and rats. Toxicon 2011, 57, 183–185. [Google Scholar] [CrossRef] [PubMed]
  157. Chandra, S.; Rawat, D.S. Medicinal plants of the family Caryophyllaceae: A review of ethno-medicinal uses and pharmacological properties. Integr. Med. Res. 2015, 4, 123–131. [Google Scholar] [CrossRef] [PubMed]
  158. Gabriele, B.; Fazio, A.; Dugo, P.; Costa, R.; Mondello, L. Essential oil composition of Citrus medica L. Cv. Diamante (Diamante citron) determined after using different extraction methods. J. Sep. Sci. 2009, 32, 99–108. [Google Scholar] [CrossRef] [PubMed]
  159. El-Alfy, T.S.; Hetta, M.H.; Yassin, N.Z.; Rahman, R.F.; Kadry, E.M. Estrogenic activity of Citrus medica L. leaves growing in Egypt. J. Appl. Pharm. Sci. 2012, 2, 180–185. [Google Scholar] [CrossRef]
  160. Zewde, D.K.; Jembere, B. Evaluation of orange peel Citrus Sinensis (L) as a source of repellent, toxicant and protectant against Zabrotessubfasciatus (Coleoptera: Bruchidae). Momona Ethiop. J. Sci. 2010, 2. [Google Scholar] [CrossRef]
  161. Nisar, A.; Mamat, A.S.; Hatim, M.I.; Aslam, M.S.; Syarhabil, M. An updated review on Catharanthus roseus: Phytochemical and pharmacological analysis. Indian J. Pharm Sci. 2016, 3, 631–653. [Google Scholar]
  162. Arshad, A.S.; Bibi, G. Ethnomedicinal uses of plant resources in Gilgit-Baltistan of Pakistan. J. Med. Plant. Res. 2012, 6, 4540–4549. [Google Scholar] [CrossRef]
  163. Kekuda, T.P.; Shree, V.D.; Noorain, G.S.; Sahana, B.K.; Raghavendra, H.L. Ethnobotanical uses, phytochemistry and pharmacological activities of Clerodendrum Infortunatum L. (Lamiaceae): A review. J. Drug Deliv. Ther. 2019, 9, 547–559. [Google Scholar] [CrossRef]
  164. Dos Santos, J.G., Jr.; Blanco, M.M.; Do Monte, F.H.; Russi, M.; Lanziotti, V.M.; Leal, L.K.; Cunha, G.M. Sedative and anticonvulsant effects of hydroalcoholic extract of Equisetum arvense. Fitoterapia 2005, 76, 508–513. [Google Scholar] [CrossRef]
  165. Kim, H.M.; Cho, S.H. Lavender oil inhibits immediate-type allergic reaction in mice and rats. J. Pharm. Pharmacol. 1999, 51, 221–226. [Google Scholar] [CrossRef]
  166. Yucel, I.; Guzin, G. Topical henna for capecitabine induced hand–foot syndrome. IND 2008, 26, 189–192. [Google Scholar] [CrossRef] [PubMed]
  167. Rizwan, M.; Rodriguez Blanco, I.; Harbottle, A.; Birch Machin, M.A.; Watson, R.E.; Rhodes, L.E. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: A randomized controlled trial. Br. J. Dermatol. 2011, 164, 154–162. [Google Scholar] [CrossRef] [PubMed]
  168. Maxia, A.; Sanna, C.; Salve, B.; Kasture, A.; Kasture, S. Inhibition of histamine mediated responses by Mirabilis jalapa: Confirming traditional claims made about antiallergic & antiasthmatic activity. Nat. Prod. Res. 2010, 24, 1681–1686. [Google Scholar] [PubMed]
  169. Ahmed, M.F.; Rao, A.S.; Ahemad, S.R.; Ibrahim, M. Phytochemical studies & antioxidant activity of Melia azedarach Linn leaves by DPPH scavenging assay. Int. J. Pharm. Appl. 2012, 3, 271–276. [Google Scholar]
  170. Abbhi, V.; Joseph, L.; George, M. Phytochemical analysis of fruit extract of Myrsineafricana. Int. J. Pharm. Sci. 2011, 3, 427–430. [Google Scholar]
  171. Gharipour, M.; Ramezani, M.A.; Sadeghi, M.; Khosravi, A.; Masjedi, M.; Khosravi-Boroujeni, H.; Rafieian-Kopaei, M.; Sarrafzadegan, N. Sex based levels of C-reactive protein & white blood cell count in subjects with metabolic syndrome: Isfahan Healthy Heart Program. J. Res. Med. Sci. 2013, 18, 467–472. [Google Scholar]
  172. Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds & antimicrobial activity of olive (Olea europaea L. cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar]
  173. Orafidiya, L.O.; Agbani, E.O.; Oyedele, A.O.; Babalola, O.O.; Onayemi, O. Preliminary clinical tests on topical preparations of Ocimum gratissimum Linn. Leaf essential oil of the treatment of acne vulgaris. Clin. Drug Investig. 2002, 22, 313–319. [Google Scholar] [CrossRef]
  174. Singh, S.; Majumdar, D.K. Evaluation of anti-inflammatory activity of fatty acids of Ocimum sanctum fixed oil. Indian J. Exp. Biol. 1997, 35, 380–383. [Google Scholar]
  175. Heo, M.Y.; Kim, S.H.; Yang, H.E.; Lee, S.H.; Jo, B.K.; Kim, H.P. Protection against ultraviolet B & C induced DNA damage & skin carcinogenesis by the flowers of Prunus persica extract. Mutat. Res. 2001, 496, 47–59. [Google Scholar]
  176. Kubo, I.; Muroi, H.; Kubo, A. Naturally occurring antiacne agents. J. Nat. Prod. 1994, 57, 9–17. [Google Scholar] [CrossRef] [PubMed]
  177. Manjunatha, B.K. Antibacterial activity of Pterocarpus santalinus. Indian J. Pharm. Sci. 2006, 68, 115–116. [Google Scholar] [CrossRef]
  178. Martin, R.; Pierrard, C.; Lejeune, F.; Hilaire, P.; Breton, L.; Bernerd, F. Photoprotective effect of a water soluble extract of Rosmarinus officinalis L. against UV induced matrix metalloproteinase 1 in human dermal fibroblasts & reconstructed skin. Eur. J. Dermatol. 2008, 18, 128–135. [Google Scholar]
  179. Naz, R.; Bano, A. Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial & fungal strains. Asian Pac. J. Trop. Biomed. 2012, 2, 944–947. [Google Scholar] [PubMed]
  180. Heinerman, J. Heinerman’s Encyclopedia of Healing Herbs & Spices; Parker Publishing Company: New York, NY, USA, 1996. [Google Scholar]
  181. Shahidi Bonjar, G.; Aghighi, S.; Karimi Nik, A. Antibacterial & antifungal survey in plants used in indigenous herbal-medicine of south east regions of Iran. J. Biol. Sci. 2004, 4, 405–412. [Google Scholar]
  182. Hilmon, J.B. Autecology of Saw Palmetto (Serenoa repens [Bartr.] Small). Ph.D. Thesis, Duke Univ., Durham, UK, 1968. [Google Scholar]
  183. Schütz, K.; Carle, R.; Schieber, A. Taraxacum—a review on its phytochemical & pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar]
  184. Chen, S.; Dong, L.; Quan, H. A review of the ethnobotanical value, phytochemistry, pharmacology, toxicity & quality control of Tussilago farfara L. (coltsfoot). J. Ethnopharmacol. 2021, 267, 113478. [Google Scholar]
  185. Liu, X.C.; Zhou, L.; Liu, Z.L. Identification of insecticidal constituents from the essential oil of Valerianajatamansi Jones against Liposcelis bostrychophila. Badonnel J. Chem. 2013, 2013, 853912. [Google Scholar]
  186. Abdallah, S.H.; Mostafa, N.M.; Mohamed, M.A.E.H.; Nada, A.S.; Singab, A.N.B. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats. Nat. Prod. Res. 2021, 1–7. [Google Scholar] [CrossRef]
  187. Mostafa, N.M.; Edmond, M.P.; El-Shazly, M.; Fahmy, H.A.; Sherif, N.H.; Singab, A.N. Phytoconstituents and renoprotective effect of Polyalthia longifolia leaves extract on radiation-induced nephritis in rats via TGF-β/Smad pathway. Nat. Prod. Res. 2021, 1–6. [Google Scholar] [CrossRef]
  188. Elhawary, E.A.; Mostafa, N.M.; Labib, R.M.; Singab, A.N. Metabolomic Profiles of Essential Oils from Selected Rosa Varieties and Their Antimicrobial Activities. Plants 2021, 10, 1721. [Google Scholar] [CrossRef]
  189. El-Nashar, H.A.; Mostafa, N.M.; El-Shazly, M.; Eldahshan, O.A. The Role of Plant-Derived Compounds in Managing Diabetes Mellitus: A review of literature 2014 to 2019. Curr. Med. Chem. 2020, 28, 4694–4730. [Google Scholar] [CrossRef] [PubMed]
  190. Edmond, M.P.; Mostafa, N.M.; El-Shazly, M.; Singab, A.N. Two Clerodane Diterpenes Isolated from Polyalthia longifolia Leaves: Comparative Structural Features, Anti-Histaminic and Anti-Helicobacter pylori Activities. Nat. Prod. Res. 2021, 35, 5282–5286. [Google Scholar] [CrossRef] [PubMed]
  191. El-Nashar, H.A.S.; Mostafa, N.M.; El-Badry, M.A.; Eldahshan, O.A.; Singab, A.N.B. Chemical Composition, Antimicrobial and Cytotoxic Activities of Essential Oils from Schinus polygamus (Cav.) Cabrera Leaf and Bark Grown in Egypt. Nat. Prod. Res. 2021, 35, 5369–5372. [Google Scholar] [CrossRef] [PubMed]
  192. Al-Madhagy, S.A.; Mostafa, N.M.; Youssef, F.S.; Awad, G.E.; Eldahshan, O.A.; Singab, A.N. Metabolic Profiling of a Polyphenolic-Rich Fraction of Coccinia grandis Leaves Using LC-ESI-MS/MS and In Vivo Validation of Its Antimicrobial and Wound Healing Activities. Food Funct. 2019, 10, 6267–6275. [Google Scholar] [CrossRef] [PubMed]
  193. Singab, A.N.; Mostafa, N.M.; Eldahshan, O.A.; Ashour, M.L.; Wink, M. Profile of Volatile Components of Hydrodistilled and Extracted Leaves of Jacaranda acutifolia and Their Antimicrobial Activity against Foodborne Pathogens. Nat. Prod. Commun. 2014, 9, 1007–1010. [Google Scholar] [CrossRef] [PubMed]
  194. Sarker, U.; Rabbani, M.G.; Oba, S.; Eldehna, W.M.; Al-Rashood, S.T.; Mostafa, N.M.; Eldahshan, O.A. Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules 2022, 27, 2899. [Google Scholar] [CrossRef] [PubMed]
  195. Ueda, H.; Ippoushi, K.; Takeuchi, A. Repeated oral administration of a squeezed ginger (Zingiber officinale) extract augmented the serum corticosterone level and had anti-inflammatory properties. Biosci Biotechnol. Biochem. 2010, 74, 2248–2252. [Google Scholar] [CrossRef]
  196. Lee, J.; Jung, E.; Kim, Y.; Lee, J.; Park, J.; Hong, S.; Hyun, C.G.; Park, D.; Kim, Y.S. Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3. Br. J. Pharmacol. 2006, 148, 366–375. [Google Scholar] [CrossRef]
  197. Montserrat-de la Paz, S.; Fernández-Arche, A.; Angel-Martín, M.; García-Giménez, M.D. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators. Phytomedicine 2012, 19, 1072–1076. [Google Scholar] [CrossRef]
  198. Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states. Int. J. Biol. Macromol. 2019, 137, 247–252. [Google Scholar] [CrossRef] [PubMed]
  199. Scepankova, H.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E.; Dias, M.S.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Role of honey in advanced wound care. Molecules 2021, 26, 4784. [Google Scholar] [CrossRef] [PubMed]
  200. Ragasa, C.Y.; Lorena, G.S.; Mandia, E.H.; Raga, D.D.; Shen, C.C. Chemical constituents of Abrusprecatorius. Amer. J. Essent. Oils. Nat. Prod. 2013, 1, 7–10. [Google Scholar]
  201. Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol. 2011, 58(2), 203–209. [Google Scholar] [CrossRef]
  202. Ndhlala, A.R.; Ghebrehiwot, H.M.; Ncube, B.; Aremu, A.O.; Gruz, J.; Šubrtová, M.; Doležal, K.; du Plooy, C.P.; Abdelgadir, H.A.; Van Staden, J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa. Front. Pharmacol. 2015, 6, 274. [Google Scholar] [CrossRef]
  203. Karavelioğlu, B.; Hoca, M. Potential effects of onion (Allium cepa L.) and its phytomolecules on non-communicable chronic diseases: A review. J. Hortic. Sci. Biotechnol. 2022, 97, 24–33. [Google Scholar] [CrossRef]
  204. Hossain, M.M.; Hossain, N.; Sultana, F.; Islam, S.M.N.; Islam, M.S.; Bhuiyan, M.K.A. Integrated management of Fusarium wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f. sp. ciceris with microbial antagonist, botanical extract sp. ciceris with microbial antagonist, botanical extract. Afr. J. Biotechnol. 2013, 12 (29), 4699–4706. [Google Scholar]
  205. Abd El-Ghany, A.E.; Dora, G.; Abdallah, R.H.; Hassan, W.; El-Salam, E.A. Phytochemical and biological study of Albizia lebbeck stem bark. J. Chem. Pharma. Res. 2015, 7, 29–43. [Google Scholar]
  206. Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
  207. Quispe, C.; Villalobos, M.; Bórquez, J.; Simirgiotis, M. Chemical composition and antioxidant activity of aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J. Chem. 2018, 2018, 6123850. [Google Scholar] [CrossRef]
  208. Deladino, L.; Alvarez, I.; De Ancos, B.; Sánchez-Moreno, C.; Molina-García, A.D.; Teixeira, A.S. Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella. Food Res. Int. 2017, 97, 240–249. [Google Scholar] [CrossRef] [PubMed]
  209. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
  210. Singh, R.; De, S.; Belkheir, A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview. Crit. Rev. Food Sci. Nutr. 2013, 53, 126–144. [Google Scholar] [CrossRef]
  211. Wang, R.; Yin, R.; Zhou, W.; Xu, D.; Li, S. Shikonin and its derivatives: A patent review. Expert Opin. Ther. Pat. 2012, 22, 977–997. [Google Scholar] [CrossRef]
  212. Santos, M.C.; Farias, L.S.; Merlugo, L.; de Oliveira, T.V.; Barbosa, F.S.; Fuentefria, A.M.; Henriques, A.T.; Garcia, C.V.; Mendez, A.S. UPLC-MS for identification of quercetin derivatives in Cuphea glutinosa Cham. & Schltdl(Lythraceae) and evaluation of antifungal potential. Curr. Pharm. Anal. 2018, 14, 586–594. [Google Scholar]
  213. Ram, C.; Joshi, P.; Prasad, K. Chemical composition of the essential oil of Anaphalismargaritacea from munsyari, pithoragarh, India. World J. Pharm. Res. 2017, 6, 551–557. [Google Scholar]
  214. Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
  215. Pan, C.; Chen, Y.G.; Ma, X.Y.; Jiang, J.H.; He, F.; Zhang, Y. Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: A review. Trop. J. Pharm. Res. 2011, 10, 681–692. [Google Scholar] [CrossRef]
  216. Jan, M.; Scarfò, I.; Larson, R.C.; Walker, A.; Schmidts, A.; Guirguis, A.A.; Gasser, J.A.; Słabicki, M.; Bouffard, A.A.; Castano, A.P.; et al. Reversible ON-and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl. Med. 2021, 13, eabb6295. [Google Scholar] [CrossRef]
  217. Clauser, M.; Aiello, N.; Scartezzini, F.; Innocenti, G.; Dall’Acqua, S. Differences in the chemical composition of Arnica montana flowers from wild populations of north Italy. Nat. Prod. Commun. 2014, 9, 1934578X1400900102. [Google Scholar] [CrossRef]
  218. Wermuth, C.G. The practice of medicinal chemistry. Academic Press: Cambridge, MA, USA, 2011. In The practice of medicinal chemistry; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
  219. Hochscherf, J.; Pietsch, M.; Tieu, W.; Kuan, K.; Abell, A.D.; Gütschow, M.; Niefind, K. Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2′ site binding inhibitor. Acta Crystallogr. Sect. F: Struct. Biol. Commun. 2018, 74, 480–489. [Google Scholar] [CrossRef]
  220. Afonina, I.S.; Cullen, S.P.; Martin, S.J. Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B. Immunol. Rev. 2010, 235, 105–116. [Google Scholar] [CrossRef] [PubMed]
  221. Moussa, A.Y.; Mostafa, N.M.; Singab, A.N.B. Pulchranin A: First Report of Isolation From an Endophytic Fungus and Its Inhibitory Activity on Cyclin Dependent Kinases. Nat. Prod. Res. 2020, 34, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
  222. Mostafa, N.M. Antibacterial Activity of Ginger (Zingiber officinale) Leaves Essential Oil Nanoemulsion against the Cariogenic Streptococcus mutans. J. Appl. Pharm. Sci. 2018, 2, 34–41. [Google Scholar]
  223. Mostafa, N.M. β-Amyrin Rich Bombax ceiba Leaf Extract with Potential Neuroprotective Activity against Scopolamine-Induced Memory Impairment in Rats. Rec. Nat. Prod. 2018, 12, 480–492. [Google Scholar] [CrossRef]
  224. Mostafa, N.M.; Mostafa, A.M.; Ashour, M.L.; Elhady, S.S. Neuroprotective Effects of Black Pepper Cold-Pressed Oil on Scopolamine-Induced Oxidative Stress and Memory Impairment in Rats. Antioxidants 2021, 10, 1993. [Google Scholar] [CrossRef]
  225. Khan, M.; Damalas, C.A. Farmers’ knowledge about common pests and pesticide safety in conventional cotton production in Pakistan. Crop. Prot. 2015, 77, 45–51. [Google Scholar] [CrossRef]
  226. Sharifi-Rada, J.; Quispe, C.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A.; Imran, M.; Moussa, A.Y.; Mostafa, N.M.; El-Shazly, M.; et al. Resveratrol’ biotechnological applications: Enlightening its antimicrobial and antioxidant properties. J. Herb. Med. 2022, 32, 100550. [Google Scholar] [CrossRef]
Figure 1. Three-dimensional (3D) interaction diagram of cyclamin (saponin) against human granzyme B (1IAU).
Figure 1. Three-dimensional (3D) interaction diagram of cyclamin (saponin) against human granzyme B (1IAU).
Molecules 27 06207 g001
Figure 2. Three-dimensional (3D) interaction diagram of cyclamin (saponin) against human leukocyte elastase (6F5M).
Figure 2. Three-dimensional (3D) interaction diagram of cyclamin (saponin) against human leukocyte elastase (6F5M).
Molecules 27 06207 g002
Table 1. Botanical sources and medicinal plants used to treat different skin disorders.
Table 1. Botanical sources and medicinal plants used to treat different skin disorders.
No.Botanical Source (Latin Name, Common Name, Family)UsesReferences
AMedicinal Plants Used to Treat Skin infections
1Achyranthes asperaUsed to treat boils and scabies[18]
Prickly chaff flower
Family Amaranthaceae
2Aconitum chasmanthumUsed to treat mumps and measles[19]
Gaping monkshood
Family Ranunculaceae
3Butea monospermaUsed to treat skin diseases such as inflammation[20]
Flame of forest
Family Fabaceae
4Boerhavia diffusaUsed to treat abscesses[21]
Tar vine, wine flower
Family Nyctaginaceae
5Curcuma longaUsed to treat skin inflammation[22]
Turmeric
Family Zingiberaceae
6Crocus sativusUsed to treat psoriasis[23]
saffron
Family Iridaceae
7Commelina benghalensisUsed to treat wound infection[24]
Tropical spiderwort
Family Commelinaceae
8Cyperus difformisUsed to treat skin infections[25]
Family Cyperaceae
9Cassia toraUsed to treat psoriasis[26]
Stinking cassia
Family Caesalpiniaceae
10Capsicum frutescensUsed to treat psoriasis[27]
Chilli
Family Solanaceae
11Dalbergia sissooUsed to treat abscesses[28]
North Indian rosewood
Family Fabaceae
12Eucalyptus globulusUsed to treat acne, fungal infections, and heal wounds[29]
Eucalyptus
Family Myrtaceae
13Euphorbia wallichiiUsed to treat skin infections and warts[30]
Wallich spurge
Family Euphorbiaceae
14Ficus caricaUsed to treat itching, pimples, and scabies[31]
Fig
Family Moraceae
15Fagopyrum tataricumUsed to treat erysipelas[32]
Tartary buckwheat
Family Polygonaceae
16Gnaphalium affineUsed to treat weeping pruritus of skin[33]
Cotton weed
Family Asteraceae
17Juniperus excelsaUsed to treat skin infections[34]
Eastern savin
Family Cupressaceae
18Lens culinarisUsed to treat skin infections and acne[35]
Lentil
Family Fabaceae
19Marsilea quadrifoliaUsed to treat abscesses[36]
Water clover
Family Marsileaceae
20Mahonia aquifoliumUsed to treat psoriasis[37]
Oregon grape
Family Berberidaceae
21Pleurospermum brunonisUsed to treat skin infections[38]
Brown’s paper cup flower
Family Apiaceae
22Pinus roxburghiiUsed to treat pruritus, inflammation, and other skin diseases[39]
Chir pine
Family Pinaceae
23Pinus wallichianaUsed to treat wound infection[40]
Bhutan pine
Family Pinaceae
24Rubia cordifoliaUsed to treat psoriasis[41]
Common madder
Family Rubiaceae
25Solanum nigrumUsed to treat pimples, pustules, ringworms, eczema, syphilitic ulcers, and leukoderma[42,43]
Black nightshade
Family Solanaceae
26Simmondsia chinensisUsed to treat acne and psoriasis[44]
Jojoba
Family Buxaceae
27Taxus wallichianaUsed to treat psoriasis and ringworm[45]
Himalayan yew
Family Taxaceae
28Tectona grandisUsed to treat pruritus and heal wounds[46,47]
Teak
Family Lamiaceae
29Thespesia populneUsed to treat psoriasis[48]
Indian tulip tree
Family Malvaceae
30Wrightia tinctoriaUsed to treat psoriasis[49]
Sweet indrajao
Family Apocynaceae
BMedicinal Plants Used to Treat Eczema
31Abrus precatoriousUsed to treat eczema[50]
Rosary pea
Family Fabaceae
32Avena sativaUsed to treat eczema, wounds, inflammation, itching, burns, and irritation[51]
Oat
Family Poaceae
33Arnebia euchromaUsed to treat burns, eczema, and dermatitis[52,53]
Pink arnebia
Family Boraginaceae
34Actinidia deliciosaUsed to treat inflammation and eczema[54]
Kiwi fruit
Family Actinidiaceae
35Aristolochia indicaUsed to treat eczema and wounds[55]
Indian birthwort
Family Aristolochiaceae
36Betula albaUsed to treat eczema, psoriasis, and acne[56]
Paper birch
Family Betulaceae
37Cannabis sativusUsed to treat sores, eczema, dermatitis, psoriasis, seborrheic, and lichen planus[57]
Charas, ganja
Family Cannabaceae
38Matricaria chamomillaUsed to treat eczema and skin inflammation[58,59]
Chamomile
Family Asteraceae
39Sarco asocaUsed to treat skin diseases, inflammation, eczema, and scabies[60]
Ashoka
Family Caesalpiniaceae
40Saponaria officinalisUsed to treat eczema, acne, boils, and psoriasis[61,62]
soapworts
Family Caryophyllaceae
41Vitex negundoUsed to treat skin diseases such as eczema, acne, pimples, ringworms, etc.[35]
Nirgundi
Family Verbenaceae
CMedicinal Plants Used for Wound healing
42Achillea millefoliumUsed to treat burn wounds[63]
Common Yarrow
Family Asteraceae
43Albizia lebbeckUsed for wound healing, leucoderma, itching, and inflammation[64]
Siris
Family Fabaceae
44Allium sativumUsed to treat psoriasis, scars, and heal wounds[65]
Garlic
Family Alliaceae
45Aloe barbadensisUsed to treat skin injuries[66]
Aloe vera
Family Aloeaceae
46Alternanthera brasilianaUsed to heal inflammation wounds[64]
Brazilian joyweed
Family Amaranthaceae
47Abelmoschus esculentusUsed to cure pimples and wounds[67]
Okra
Family Malvaceae
48Adiantum venustum DUsed to heal wounds[68]
Himalayan maidenhair
Family Pteridaceae
49Argemone MexicanaUsed to treat wounds[69]
Mexican poppy
Family Papaveraceae
50Alkanna tinctoriaUsed to treat itching, skin wounds, and rashes[70]
Alkanet
Family Boraginaceae
51Brassica oleraceaUsed to treat dermatitis and wounds[71]
Red cabbage
Family Brassicaceae
52Berberis lyciumUsed to heal wounds[72]
Indian lycium
Family Berberidaceae
53Bergenia ciliataUsed to heal wounds[73,74]
Winter begonia
Family Saxifragaceae
54Bergenia ligulataUsed to heal wounds and treat boils[75]
Asmabhedaka
Family Saxifragaceae
55Bauhinia purpureaUsed to heal wounds and treat inflammation[76]
Orchid tree
Family Fabaceae
56Carissa spinarumUsed to heal wounds and treat boils[77]
Bush plum
Family Apocynaceae
57Cannabis sativaUsed to treat dandruff and heal wounds[78]
Marijuana, hemp
Family Cannabaceae
58Capparis deciduaUsed to heal wounds[79]
Bare caper
Family Capparaceae
59Cynodon dactylonUsed to heal wounds and skin problems[80,81]
Bermuda grass
Family Poaceae
60Cocos nuciferaUsed to treat skin wounds[82]
Coconut
Family Arecaceae
61Euphorbia helioscopiaUsed to heal wounds[83,84]
Sun spurge
Family Euphorbiaceae
62Ferula foetidaUsed to heal wounds[85]
Asafoetida, Hing
Family Apiaceae
63Ficus benghalensisUsed to treat skin injuries[86]
Banyan tree
Family Moraceae
64Gerbera gossypinaUsed to heal wounds[87]
Hairy gerbera daisy
Family Asteraceae
65Galium aparineUsed to treat wounds as an antiseptic[88]
Goosegrass
Family Rubiaceae
66Hackelia americanaUsed to treat wounds, tumors, and inflammation[89]
Nodding stickseed
Family Boraginaceae
67Hypericum perforatumUsed to treat wounds, abrasions, inflammatory skin disease, and burns[90]
Perforatejohn’s wort
Family Hypericaceae
68Isodon rugosusUsed to heal wounds[91]
Wrinkled leaf isodon
Family Lamiaceae
69Launaea nudicaulisUsed to heal wounds[92]
Bhatal
Family Asteraceae
70Momordica charantiaUsed to heal wounds[93]
Bitter gourd
Family Cucurbitaceae
71Micromeria bifloraUsed to heal wounds and treat skin infections[94]
Lemon savory
Family Lamiaceae
72Nigella sativaUsed to heal wounds[95,96]
Black cumin
Family Ranunculaceae
73Plantago majorUsed to treat wounds[97]
Great plantain
Family Plantaginaceae
74Plantago lanceolataUsed to heal wounds[98]
Ribwort plantain
Family Plantaginaceae
75Rumex dissectusUsed to stop wound bleeding[99]
Arrowleaf dock
Family Polygonaceae
76Salvia moorcroftianaUsed to treat skin itching and wound healing[100]
Kashmir salvia
Family Lamiaceae
77Trigonella foenum-graecumUsed to heal wounds[101,102]
Fenugreek
Family Fabaceae
78Tephrosia purpureaUsed to heal wounds[103]
Wild indigo
Family Fabaceae
79Urtica dioicaUsed to heal wounds[104,105]
Stinging nettle
Family Urticaceae
80Verbascum ThapsusUsed to treat pimples, heal wounds, and treat other skin problems[106]
Common mullein
Family Scrophulariaceae
DMedicinal Plants Used to Treat Skin Burns
81Astilbe thunbergiiUsed to treat burns[107]
Astilbe
Family Saxifragaceae
82Anaphalis margaritaceaUsed to treat sunburn[108]
Pearly everlasting
Family Asteraceae
83Aquilegia pubifloraUsed to heal wounds and treat skin burns[109]
Himalayan columbine
Family Ranunculaceae
84Amygdalus communisUsed to treat burn wounds[53]
Almonds
Family Rosaceae
85Bergenia stracheyiUsed to treat sunstroke and heal wounds[110]
Himalayan Bergenia
Family Saxifragaceae
86Calendula officinalisUsed to treat burns and bruises[111]
Marigold
Family Asteraceae
87Cucumis meloUsed to treat skin burns[112]
Muskmelon
Family Cucurbitaceae
88Corydalis govanianaUsed to treat skin burns[113]
Govan’s corydalis
Family Papaveraceae
89Carica candamarcensisUsed to treat burn wounds[114]
Mountain papaya
Family Caricaceae
90Clitoria ternateaUsed to treat boils, acne, and skin outbreaks[115]
Butterfly pea
Family Fabaceae
91Datura stramoniumUsed to treat boils[116]
Jimsonweed, thornapple
Family Solanaceae
92Dodonaea viscosaUsed to treat skin burns and heal wounds, acne, pimples, rashes, itching, and pustules[117,118,119]
Hop bush
Family Sapindaceae
93Echinacea angustifoliaUsed to treat psoriasis, burns, acne, ulcers, and skin wounds[120]
Purple coneflower
Family Asteraceae
94Ginkgo bilobaUsed to treat skin burns[121]
Maidenhair tree
Family Ginkgoaceae
95Hippophae rhamnoidesUsed to treat rashes and skin burns[122,123]
Sea buckthorn
Family Elaeagnaceae
96Impatiens edgeworthiiUsed to treat skin burns[124]
Edgeworth Balsam
Family Balsaminaceae
97Mangifera indicaProtect skin from sun damage[125]
Mango
Family Anacardiaceae
98Malus pumilaUsed to treat boils[126]
Apple
Family Rosaceae
99Malva sylvestrisUsed to treat burn wounds[53]
High mallow
Family Malvaceae
100Matricaria chamomillaUsed to treat burn wounds[127]
Chamomile
Family Asteraceae
101Onosma hispidaUsed to treat skin burns[128]
Bristly onosma
Family Boraginaceae
102Portulaca oleraceaUsed to treat burns, skin eruptions, rashes, skin inflammation, eczema, abscesses, and pruritus[129,130,131]
Purslane, little hogweed
Family Portulacaceae
103Pisum sativumUsed to treat skin burns[132]
Garden pea
Family Fabaceae
104Picrorhiza kurroaUsed to treat burning sensation[133]
Kutki
Family Plantaginaceae
105Rumex dentatusUsed to treat boils[134]
Toothed dock
Family Polygonaceae
106Rubus abchaziensisUsed to treat boils and wounds[135]
Akhray
Family Rosaceae
107Solanum virginianumUsed to treat swelling of skin[136]
Thorny nightshade
Family Solanaceae
108Scrophularia desertiUsed to treat burn wounds[53]
Desert figwort
Family Scrophulariaceae
109Sesamum indicumUsed to treat burn wounds[137]
Sesame
Family Pedaliaceae
110Silybum marianumUsed to treat burn wounds and improve skin health[138]
Blessed thistle
Family Asteraceae
111Tamarix aphyllaUsed to treat skin burns and wounds[139]
Athel
Family Tamaricaceae
112Tridax procumbensUsed to treat burn wounds[140]
Coatbuttons, tridax daisy
Family Asteraceae
113Zanthoxylum armatumUsed to treat skin burns[141]
Winged prickly ash
Family Rutaceae
EMedicinal Plants Used to Treat Miscellaneous Disorders
114Allium cepaUsed to treat skin lesions[142]
Garden onion
Family Alliaceae
115Azadirachta indicaUsed to treat acne and protect skin from UV rays[143]
Neem
Family Meliaceae
116Anethum graveolensUsed to treat pimples[144]
Dill
Family Apiaceae
117Androsace rotundifolia lehm.Used to treat skin problems[145]
Rock jasmine
Family Primulaceae
118Arnica montanaUsed as anti-inflammatory to treat boils and acne eruptions[146,147]
Mountain arnica
Family Asteraceae
119Bauhinia variegataUsed to treat skin disease and skin ulcers[148]
Kachnar, orchid tree
Family Fabaceae
120Beta vulgarisUsed to treat tumors[149]
Beetroot
Family Brassicaceae
121Brassica junceaUsed against skin eruptions and ulcers[150,151]
Mustard
Family Brassicaceae
122Berberis aquifoliumUsed to treat acne scars[152]
Oregon grape
Family Berberidaceae
123Camellia sinensisUsed to treat skin tumors and cancer[153]
Green Tea
Family Theaceae
124Coriandrum sativumUsed to treat pimples[154,155]
Dhaniya
Family Apiaceae
125Calotropis proceraUsed to treat inflammation[156]
Giant milkweed
Family Apocynaceae
126Cerastium fontanumUsed to treat skin diseases; also acts as anti-inflammatory[157]
Mouse ear chickweed
Family Caryophyllaceae
127Citrus medicaUsed to treat skin irritation[158,159]
Citron
Family Rutaceae
128Citrus sinensisUsed to treat pimples[160]
orange
Family Rutaceae
129Catharanthus roseusUsed to cure pimples[161]
Periwinkle
Family Apocynaceae
130Carthamus tinctoriusUsed to treat eruptive skin problems[162]
safflower
Family Asteraceae
131Clerodendrum viscosumUsed as antiseptic skin wash[163]
Hill glory bower
Family Verbenaceae
132Equisetum arvenseUsed to treat skin allergy[164]
Field horsetail
Family Equisetaceae
133Lavendula officinalisUsed to prevent and heal acne[165]
Lavender
Family Labiatae
134Lawsonia inermisUsed to treat inflammation and tumors[166]
Henna
Family Lythraceae
135Lycopersicon esculentumUsed to treat acne and sunburn[167]
Tomato
Family Solanaceae
136Ledum groenlandicum oedarUsed to treat itching, acne, and redness[61]
Labrador tea
Family Ericaceae
137Mirabilis jalapaUsed to treat allergic skin disorders[168]
Four o’clock
Family Nyctaginaceae
138Melia azedarachUsed to treat pimples and inflammation[169]
Persian lilac
Family Meliaceae
139Myrsine AfricanaUsed to treat skin disorders[170]
Cape myrtle
Family Myrsinaceae
140Melaleuca alternifoliaUsed to treat acne[171]
Tea tree
Family Myrtaceae
141Olea europaeaUsed as skin cleanser[172]
Olive tree
Family Oleaceae
142Ocimum sanctumUsed to treat acne and inflammation[173,174]
Tulsi
Family Lamiaceae
143Plumbago zeylanicaUsed to treat skin diseases such as sores, acne, and dermatitis[31]
Doctor bush
Family Plumbaginaceae
144Prunus persicaUsed to treat skin disorders[175]
Peach
Family Rosaceae
145Piper nigrumUsed to treat acne[176]
Black pepper
Family Piperaceae
146Pterocarpus santalinusUsed to treat skin inflammation and acne[177]
Red sandalwood
Family Fabaceae
147Rosmarinus officinalisUsed to block skin tumor cells[178]
Rosemary
Family Lamiaceae
148Ricinus communisUsed in children for skin diseases[179]
Castor oil plant
Family Euphorbiaceae
149Rheum officinaleUsed to treat acne[180]
Rhubarb
Family Polygonaceae
150Salix babylonicaUsed as skin cleanser[181]
Weeping willow
Family Salicaceae
151Serenoa repensUsed to treat acne and inflammation[182]
Saw palmetto
Family Arecaceae
152Thymus vulgarisUsed to treat cellulitis[153]
Thyme
Family a
153Taraxacum officinaleUsed to treat pimples[183]
Common dandelion
Family Asteraceae
154Tussilago farfaraUsed to treat sores and inflammation of skin[184]
coltsfoot
Family Asteraceae
155Valeriana jatamansiUsed to treat pimples[185]
Jatamansi
Family Caprifoliaceae
Table 2. Selected reported phytoconstituents of herbal plants used to treat skin diseases.
Table 2. Selected reported phytoconstituents of herbal plants used to treat skin diseases.
Serial No.Botanical NameSome Phytoconstituents and/or Classes ofCompoundsSelected StructuresRef.
1.Abrus precatoriousStigmasterol, β-sitosterol, and abrusogeninAbrusogenin
Molecules 27 06207 i001
[200]
2.Achillea millefoliumChlorogenic acid, apigenin-7-glucoside, and luteolin-7-glucosideChlorogenic acid
Molecules 27 06207 i002
[201]
3.Achyranthes asperaRutin, chlorogenic acid, and genisteinGenistein
Molecules 27 06207 i003
[202]
4.Allium cepaQuercetin, S-methyl-L-cysteine, cycloalliin, N-acetylcysteine, S-propyl-L-cysteine sulfoxide, and dimethyl trisulfideCycloalliin
N-acetyl cysteine
Molecules 27 06207 i004
S-methyl-L-cysteine
Molecules 27 06207 i005
[203]
5.Azadirachta indicaNimbin, nimbanene, ascorbic acid, n-hexacosanol, nimbolide, 17-hydroxy azadiradione, 6-desacetyl nimbinene, and nimbandiolNimbin
Molecules 27 06207 i006
[204]
6.Albizia lebbeckLupeol, lupenone, luteolin, rutin, sapiol, friedelin, stigmasterol, β-sitosterol, stigmasterol-3-glucoside, β-sitosterol-3-glucoside, alkaloids as 3,3-dimethyl-4-(1-aminoethyl)-azetidin-2-one, 2-amino-4-hydroxy pteridine-6-carboxylic acid, and 2,4 bis(hydroxylamino)-5-nitropyrimidineLupeol
Molecules 27 06207 i007
[205]
7.Allium sativumAlliin, allicin, S-allyl cysteine, diallyl sulfide, diallyl trisulfide, diallyl disulfide, and ajoeneAlliin
Molecules 27 06207 i008
[206]
8.Aloe barbadensisAloesin, cinnamic acid, isoaloresin D, caffeic acid, chlorogenic acid, aloin A and B, emodin, isovitexin, and orientinAloin
Molecules 27 06207 i009
[207]
9.Alternanthea brasilianaAmaranthine, iso amaranthine, betanin, isobetanin, hydroxybenzoic acid, hydroxycinnamic acid, kaempferol glucoside, rhamnoside, and dirhamnosyl-glucosideAmaranthine
Molecules 27 06207 i010
[208]
10.AnethumgraveolensLimonene, carvone, α-phellandrene, β-phellandrene, and p-cymeneLimonene
Molecules 27 06207 i011
[209]
11.Avena sativaProteins, lipids, polysaccharides, β-glycan, dietary fibers, avenanthramides, gramine alkaloid, flavonolignans, flavonoids, saponins, and sterolsAvenanthramide A
Molecules 27 06207 i012
[210]
12.Arnebia euchromaShikonin, methyllasiodiplodin, euchroquinols A-C, and 9,17-epoxy arnebinolShikonin,
Molecules 27 06207 i013
[211]
13.Astilbe thunbergiiEucryphin, astilbin, and bergininEucryphin
Molecules 27 06207 i014
[107]
14.Actinidia deliciosaRutin, quercitrin, quercetin, chrysin, and syringic acidQuercetin
Molecules 27 06207 i015
[212]
15.Anaphalis margaritaceaVolatile oil contains E-caryophyllene, and its oxide, δ-cadinene, γ-cadinene, cubenol, ledol, and α-pineneE-caryophyllene
Molecules 27 06207 i016
[213]
16.Abelmoschus esculentusQuercetin-3-glucoside, diglucoside, catechins, and hydroxyl cinnamic acid derivatives Quercetin-3-glucoside
Molecules 27 06207 i017
[214]
17.Adiantum venustum DonNorlupane, noroleanane, lupane triterpenoids, adiantone, and 21-hydroxyadiantone (Norhopane)triterpenesAdiantone
Molecules 27 06207 i018
[215]
18.Saponaria officinalisSaponinsCyclamin
Molecules 27 06207 i019
[62]
19.Aquilegia pubifloraOrientin, coumaric acid, sinapic acid, chlorogenic acid, ferulic acid, vitexin, isoorientin, and isovitexinOrientin
Molecules 27 06207 i020
[216]
20.Argemone mexicanaBerberine, oxyberberine, arginine, higenamine, pancorine, sanguinarine, β-amyrin, trans-phytol, luteolin, quercetin, quercitrin, and rutinBerberine
Molecules 27 06207 i021
[69]
21.ArnicamontanaSesquiterpene lactones, phenolic acids, flavonoids, helenalin, acetyl helenalin, metacryl helenalin, chlorogenic acid, 3,5-dicaffeoylquinic acid, 4,5- dicaffeoylquinic acid, quercetin-3-glucoside, quercetin-3-glucuronide, kaempferol-3-glucoside, and kaempferol-3-glucuronideSolaniol
Molecules 27 06207 i022
[217]
22.AlkannatinctoriaAlkaloid, bufadienolides, carbohydrate, flavonoids, saponins, and tanninsBufadienolide
Molecules 27 06207 i023
[218]
Table 3. Results of molecular modeling study of 24 active constituents against human granzyme B (1IAU) compared to reference complexed ligand.
Table 3. Results of molecular modeling study of 24 active constituents against human granzyme B (1IAU) compared to reference complexed ligand.
Serial No.Compound(C-Docker Interaction Energy)2D Interaction Diagram *Type of Binding
1Ligand (reference)−27.55Molecules 27 06207 i024H-bond: Ala 93, Asn 98, Asp 176, Tyr 175
Van der Waals: Asn 95, Ser 100, Asn 101, Ser 177, Thr 178, Ile 179
2Cyclamin (saponin)−28.10Molecules 27 06207 i025H-bond: Ser 100 (×2), Asn 101, Asp 176, Thr 178
Van der Waals: Asn 93, Asn 95, Asn 98, Ile 179
3Amaranthine−21.42Molecules 27 06207 i026H-bond: Asn 95, Asn 98, His 173 (×2)
Pi-Pi: Tyr 174
Van der Waals:Lys 97
4Alliin−18.53Molecules 27 06207 i027H-bond: Ser 100 (×2)
Pi-Pi: Asp 176
Van der Waals: Asn 95, Asn 98, Asn 101, Ile 179
Unfavorable: Asp 176
5Quercetin-3-glucoside−17.59Molecules 27 06207 i028H-bond: Asn 95, Asp 176, Thr 178
Van der Waals: Asn 98, Ile 179
6Aloin−17.35Molecules 27 06207 i029H-bond: Ser 100, Asp 176 (×2)
Van der Waals: Asn 95, Asn 98, Asn 101, Thr 178, Ile 179
7Berberine−15.12Molecules 27 06207 i030Pi-Pi: Asp 176
Van der Waals: Asn 95, Asn 98, Ser 100, Ile 179
8Chlorogenic acid−14.09Molecules 27 06207 i031H-bond: Asp 176, Thr 178 (×2)
Van der Waals: Ile 179
9Avenanthramide A−14.03Molecules 27 06207 i032H-bond: Asn 95, Asn 98, Asp 176
Van der Waals: Ser 100, Ile 179
10Adiantone−12.76Molecules 27 06207 i033H-bond: Asn 101
Pi-Alkyl: Ile 179
Van der Waals: Ala 93, Asn 95, Asn 98, Ser 100, Asp 176
11Orientin−11.89Molecules 27 06207 i034H-bond: Asn 98, Ser 100, Asp 176
Van der Waals: Asn 95, Ile 179
12Eucryphin−11.34Molecules 27 06207 i035H-bond: Ala 93, Ser 100
Van der Waals: Tyr 94, Asn 95, Asn 98, Ser 100, Asn 101
13Lupeol−11.15Molecules 27 06207 i036Van der Waals: Ala 93, Asn 95, Asn 98, Ser 100, Asn 101, Asp 176, Ile 179
14Quercetin−11.02Molecules 27 06207 i037H-bond: Asn 98, Ser 100, Asp 176
Van der Waals: Ile 179
15Abrusogenin−10.47Molecules 27 06207 i038H-bond:Asn 95, Asn 98
16Shikonin−10.25Molecules 27 06207 i039H-bond: Asn 95, Asn 101
Van der Waals: Ala 93, Asn 98, Ser 100
17Bufadienolide−10.05Molecules 27 06207 i040Pi-Alkyl: Ile 179
Van der Waals: Ala 93, Asn 98, Ser 100, Asn 101, Asp 176, Thr 178
18Nimbin−8.77Molecules 27 06207 i041H-bond: Ser 100 (×2), Asp 176 (×2)
Van der Waals: Asn 95, Asn 98, Thr 178, Ile 179
19Genistein−7.64Molecules 27 06207 i042H-bond: Asn 98, Ser 100
Van der Waals: Asn 95, Asp 176, Ile 179
20Solaniol−7.28Molecules 27 06207 i043H-bond: Asn 98
Van der Waals: Asn 95, Ser 100, Asn 101, Asp 176, Ile 179
21E-caryophyllene−3.25Molecules 27 06207 i044Van der Waals: Asn 98, Ser 100, Asn 101, Asp 176, Ile 179
22Limonene−2.48Molecules 27 06207 i045Van der Waals: Asn 98, Ser 100, Asp 176, Ile 179
23S-methyl-L-cysteine−1.79No interaction
24N-acetyl cysteine−1.05No interaction
* Color reference: green dotted line indicates H-bond; faint green dotted line indicates van der Waals interaction; orange dotted line indicates Pi-Pi bond; red dotted line indicates unfavorable interaction; purple dotted line indicates Pi-alkyl bond.
Table 4. Results of molecular modeling study of 23 active constituents against human leukocyte elastase (6F5M) compared to reference complexed ligand.
Table 4. Results of molecular modeling study of 23 active constituents against human leukocyte elastase (6F5M) compared to reference complexed ligand.
Serial No.Compound(C-Docker Interaction Energy)2D Interaction Diagram *Type of Binding
1Ligand (reference)−33.57Molecules 27 06207 i046H-bond: Val 59, Asn 61, Asn 62A, Val 62
Pi-Pi bond: Leu 35, Val 62B, Ala 64
Van der Waals: Arg 36, Ala 60, Ile 88
2Cyclamin (Saponin)−48.50Molecules 27 06207 i047H-bond: Ala 60(×2), Asn 61, Arg 63
Pi-Pi bond: Leu 35
Van der Waals: Arg 36, Gly 39, His 40, Val 59, Val 62, Asn 62A, Val 62B, Ile 88, Glu 90
3Amaranthine−47.62Molecules 27 06207 i048H-bond: Ala 60, Asn 61, Val 62
Attractive charge: Arg 36(×2)
Van der Waals: Leu 35, Val 59, Asn 62A, Val 62B
4Chlorogenic acid−28.97Molecules 27 06207 i049H-bond: Asn 61, Asn 62A, Glu 90
Pi-sigma: Ala 60
Van der Waals: Val 59, Val 62, Val 62B, Ile 88, Tyr 94
5Quercetin-3-glucoside −27.94Molecules 27 06207 i050H-bond: Asn 61, Asn 62A
Pi-lone pair: Asn 61
Pi-Pi: Val 62
Van der Waals: Leu 35, Val 62B
6Orientin−26.43Molecules 27 06207 i051H-bond: Val 59, Asn 61(×2), Asn 62A, Val 62
Pi-Pi: Val 62
Pi-alkyl: Val 62B
Van der Waals: Leu 35, Ala 60
7Abrusogenin−26.39Molecules 27 06207 i052H-bond: Asn 62A, Val 62B
Pi-alkyl: Val 62B
Van der waal: Leu 35, Arg 36, Ala 60, Asn 61
8Alloin−24.93Molecules 27 06207 i053H-bond: Asn 61, Val 62, Asn 62A(×2)
Pi-amide: Val 62
Van der Waals: Leu 35, Val 59, Ala 60, Val 62B
9Avenanthramide A−24.18Molecules 27 06207 i054H-bond: Val 62B
Van der Waals: Val 59, Ala 60, Asn 61, Val 62, Asn 62A, Arg 63, Ile 88
10Nimbin−22.68Molecules 27 06207 i055H-bond: Val 62, Asn 62A(×2), Val 62B
Pi-Alkyl: Val 62B
Van der Waals: Val 59, Ala 60, Asn 61, Arg 63
11Eucryphin−22.47Molecules 27 06207 i056H-bond: Ala 60, Asn 62A
Pi-lone pair: Asn 61
Pi-alkyl: Val 62
Van der Waals: Leu 35, Val 62B
12Quercetin−20.25Molecules 27 06207 i057H-bond: Ala 60, Asn 61, Asn 62A
Pi-amide: Val 62
Van der Waals: Val 62B, Ile 88
13Shikonin−19.80Molecules 27 06207 i058H-bond: Val 59, Asn 61, Val 62B
Pi-sigma: Asn 62A
Pi-amide: Val 62
Van der Waals: Ala 60, Ile 88
14Bufadienolide−18.71Molecules 27 06207 i059H-bond: Arg 36
Pi-alkyl: Leu 35(×2), Val 62
Van der Waals: Asn 61, Asn 62A
15Genistein−18.31Molecules 27 06207 i060H-bond: Asn 62A
Pi-lone pair: Asn 61
Pi-amide: Val 62
Pi-alkyl: Val 62B
Van der Waals: Val 59, Ala 60
16Lupeol−18.19Molecules 27 06207 i061H-bond: Ala 60
Van der waal: Leu 35, Asn 61, Val 62, Asn 62A, Val 62B
17Adiantone−17.99Molecules 27 06207 i062H-bond: Arg 36
Pi-alkyl: Ala 64
Van der Waals: Leu 35, Asn 61, Val 62, Asn 62A
18Solaniol−17.44Molecules 27 06207 i063H-bond: Asn 61, Asn 62A, Val 62
Van der Waals: Ala 60, Val 62B
19N-acetyl cysteine−17.25Molecules 27 06207 i064H-bond: Asn 61, Asn 62A (×3)
Van der Waals: Val 59, Ala 60, Val 62, Val 62B
20Berberine−16.59Molecules 27 06207 i065H-bond: Val 59, Asn 61, Val 62B
Van der Waals: Ala 60, Val 62, Asn 62A
21Alliin−15.63Molecules 27 06207 i066H-bond: Asn 61, Val 62, Asn 62A
Van der Waals: Val 59, Ala 60, Val 62B
22S-methyl-L-cysteine−14.29Molecules 27 06207 i067H-bond: Asn 61, Asn 62A, Val 62
23E-caryophyllene−11.78Molecules 27 06207 i068Van der Waals: Val 59, Ala 60, Asn 61, Val 62, Asn 62A, Val 62B
24Limonene−10.60Molecules 27 06207 i069Pi-alkyl: Leu 35
Van der Waals: Asn 61, Val 62, Asn 62A, Ala 64
* Color reference: green dotted line indicates H-bond; faint green dotted line; indicates van der Waals interaction; lemon green dotted line indicates Pi-lone interaction; orange dotted line indicates attractive charge; dark purple dotted line indicates Pi-sigma bond; medium purple dotted line indicates Pi-amide bond; light purple dotted line indicates Pi-alkyl bond; pink dotted line indicates Pi-Pi bond.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Singab, A.N.B.; Mostafa, N.M.; Fawzy, I.M.; Bhatia, D.; Suryawanshi, P.T.; Kabra, A. Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies. Molecules 2022, 27, 6207. https://doi.org/10.3390/molecules27196207

AMA Style

Singab ANB, Mostafa NM, Fawzy IM, Bhatia D, Suryawanshi PT, Kabra A. Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies. Molecules. 2022; 27(19):6207. https://doi.org/10.3390/molecules27196207

Chicago/Turabian Style

Singab, Abdel Nasser B., Nada M. Mostafa, Iten M. Fawzy, Deepika Bhatia, Pooja Tanaji Suryawanshi, and Atul Kabra. 2022. "Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies" Molecules 27, no. 19: 6207. https://doi.org/10.3390/molecules27196207

APA Style

Singab, A. N. B., Mostafa, N. M., Fawzy, I. M., Bhatia, D., Suryawanshi, P. T., & Kabra, A. (2022). Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies. Molecules, 27(19), 6207. https://doi.org/10.3390/molecules27196207

Article Metrics

Back to TopTop