Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assessment of the Loss of Sulfonamide and Tetracycline Residues during Meat Cooking
2.2. Thermal Degradation of Sulfamethoxazole during Meat Cooking
2.3. Structural Identification of Sulfamethoxazole Thermal Degradation Products
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Meat Samples
3.3. Meat Spiking
3.4. Cooking Method
3.5. Determination of Antimicrobial Residues in Raw and Cooked Meat
3.5.1. Sample Extraction
3.5.2. Analysis by HPLC-MS/MS
3.6. Identification and Quantification of Sulfamethoxazole Degradation Products Using Radiolabeling
3.6.1. Extraction of 14C-Sulfamethoxazole and Its Degradation Products
3.6.2. Quantification of 14C-Sulfamethoxazole Degradation Products
3.6.3. Structural Characterization of 14C-Sulfamethoxazole Degradation Products
3.7. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kumar, A.; Patyal, A.; Panda, A.K. Sub-therapeutic use of antibiotics in animal feed and their potential impact on environmental and human health: A comprehensive review. J. Anim. Feed Sci. Technol. 2018, 6, 15–25. [Google Scholar]
- Hosain, M.Z.; Kabir, S.L.; Kamal, M.M. Antimicrobial uses for livestock production in developing countries. Vet. World 2021, 14, 210–221. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Fernández-Calviño, D.; Arias-Estévez, M. Tetracycline and sulfonamide antibiotics in soils: Presence, fate and environmental risks. Processes 2020, 8, 1479. [Google Scholar] [CrossRef]
- Sukul, P.; Spiteller, M. Sulfonamides in the environment as veterinary drugs. Rev. Environ. Contam. Toxicol. 2006, 187, 67–101. [Google Scholar] [PubMed]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Canton, L.; Lanusse, C.; Moreno, L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals 2021, 11, 2878. [Google Scholar] [CrossRef] [PubMed]
- Redwan Haque, A.; Sarker, M.; Das, R.; Azad, M.A.K.; Hasan, M.M. A review on antibiotic residue in foodstuffs from animal source: Global health risk and alternatives. Int. J. Environ. Anal. Chem. 2021, 2, 1–18. [Google Scholar] [CrossRef]
- Herago, T.; Ethiochicken, A.G.P.; Hawassa, E.; Agonafir, A.; Chuko, T. Drug Residues in Foods of Animal Origin and Their Impact on Human Health. Food Sci. Qual. Manag. 2021, 108, 13–21. [Google Scholar]
- European Commission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, 15, 1–72. [Google Scholar]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic residues in food: Extraction, analysis, and human health concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Canton, L.; Alvarez, L.; Canton, C.; Ceballos, L.; Farias, C.; Lanusse, C.; Moreno, L. Effect of cooking on the stability of veterinary drug residues in chicken eggs. Food Addit. Contam. Part A 2019, 36, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Shaltout, F.A.E.; Shatter, M.A.E.; Sayed, N.F. Impacts of different types of cooking and freezing on antibiotic residues in chicken meat. J. Food Sci. Nutr. 2019, 5, 045. [Google Scholar]
- Lakew, A.; Megersa, N.; Chandravanshi, B.S. Depletion of Amoxicillin Residue in Edible Tissue of Broiler Chicken by Different Cooking Methods. Int. J. Anal. Chem. 2022, 2022, 7812441. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Moats, W.A. Effect of cooking procedures on oxytetracycline residues in lamb muscle. J. Agric. Food Chem. 1994, 42, 2561–2563. [Google Scholar] [CrossRef]
- Furusawa, N.; Hanabusa, R. Cooking effects on sulfonamide residues in chicken thigh muscle. Food Res. Int. 2002, 35, 37–42. [Google Scholar] [CrossRef]
- Ismail-Fitry, M.R.; Jinap, S.; Jamilah, B.; Saleha, A.A. Effect of deep-frying at different temperature and time on sulfonamide residues in chicken meat-balls. J. Food Drug Anal. 2008, 16, 81–86. [Google Scholar] [CrossRef]
- Abou-Raya, S.H.; Shalaby, A.R.; Salama, N.A.; Emam, W.H.; Mehaya, F.M. Effect of Ordinary Cooking Procedures on Tetracycline Residues in Chicken Meat. J. Food Drug Anal. 2013, 21, 80–86. [Google Scholar]
- Rana, M.S.; Lee, S.Y.; Kang, H.J.; Hur, S.J. Reducing veterinary drug residues in animal products: A review. Food Sci. Anim. Resour. 2019, 39, 687. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Romero-Gonzalez, R.; Faria, M.A.; Cunha, S.C.; Ferreira, I.M.; Garrido-Frenich, A. Stability of antibacterial and coccidiostat drugs on chicken meat burgers upon cooking and in vitro digestion. Food Chem. 2020, 316, 126367. [Google Scholar] [CrossRef] [PubMed]
- Morshdy, A.E.; Hussein, M.A.; Mohamed, M.A.A.; Hamed, E.; El-Murr, A.E.; Darwish, W.S. Tetracycline residues in tilapia and catfish tissue and the effect of different cooking methods on oxytetracycline and doxycycline residues. J. Consum. Prot. Food Saf. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Wali, M.K.; Al Deri, A.H. Effect of thermal processing on antibacterial drug residue of tetracycline and sulfonamide in fresh beef meat and Iraqi processed meat. Int. J. Health Sci. 2022, II, 6849–6856. [Google Scholar] [CrossRef]
- Planche, C.; Ratel, J.; Blinet, P.; Mercier, F.; Angénieux, M.; Chafey, C.; Zinck, J.; Marchond, N.; Chevolleau, S.; Dervilly-Pinel, G.; et al. Effects of pan cooking on micropollutants in meat. Food Chem. 2017, 232, 395–404. [Google Scholar] [CrossRef]
- Gratacós-Cubarsí, M.; Fernandez-García, A.; Picouet, P.; Valero-Pamplona, A.; García-Regueiro, J.A.; Castellari, M. Formation of tetracycline degradation products in chicken and pig meat under different thermal processing conditions. J. Agric. Food Chem. 2007, 55, 4610–4616. [Google Scholar] [CrossRef]
- Rawn, D.F.; Breakell, K.; Verigin, V.; Tittlemier, S.A.; Del Gobbo, L.; Diamond, M.; Vanderlinden, L.; Sit, D. Impacts of cooking technique on polychlorinated biphenyl and polychlorinated dioxins/furan concentrations in fish and fish products with intake estimates. J. Agric. Food Chem. 2013, 61, 989–997. [Google Scholar] [CrossRef]
- Saber, A.N.; Malhat, F.M.; Badawy, H.M.; Barakat, D.A. Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition. Food Chem. 2016, 196, 1108–1116. [Google Scholar] [CrossRef]
- Codex Alimentarius—International Food Standards; FAO; WHO. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods. CX/MRL 2-2018. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf (accessed on 6 August 2022).
- Lees, P.; Toutain, P.L. The role of pharmacokinetics in veterinary drug residues. Drug Test. Anal. 2012, 4, 34–39. [Google Scholar] [CrossRef]
- Duconseille, A.; Astruc, T.; Sasaki, K.; Motoyama, M. Transformation of highly marbled meats under various cooking processes. Meat Sci. 2022, 189, 108810. [Google Scholar]
- Trovó, A.G.; Nogueira, R.F.; Agüera, A.; Fernandez-Alba, A.R.; Sirtori, C.; Malato, S. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 2009, 43, 3922–3931. [Google Scholar] [CrossRef]
- Trovó, A.G.; Nogueira, R.F.; Agüera, A.; Sirtori, C.; Fernández-Alba, A.R. Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment. Chemosphere 2009, 77, 1292–1298. [Google Scholar] [CrossRef]
- Zhou, W.; Moore, D.E. Photochemical decomposition of sulfamethoxazole. Int. J. Pharm. 1994, 110, 55–63. [Google Scholar] [CrossRef]
- Vree, T.B.; Van der Ven, A.J.A.M.; Verwey-van Wissen, C.P.W.G.M.; Kolmer, E.V.E.B.; Swolfs, A.E.M.; Van Galen, P.M.; Amatdjais-Groenen, H. Isolation, identification and determination of sulfamethoxazole and its known metabolites in human plasma and urine by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1994, 658, 327–340. [Google Scholar] [CrossRef]
- Lahou, E.; Wang, X.; De Boeck, E.; Verguldt, E.; Geeraerd, A.; Devlieghere, F.; Uyttendaele, M. Effectiveness of inactivation of foodborne pathogens during simulated home pan frying of steak, hamburger or meat strips. Int. J. Food Microbiol. 2015, 206, 118–129. [Google Scholar] [CrossRef]
- Juhel-Gaugain, M.; Fourmond, M.P.; Delepine, B.; Laurentie, M.; Roudaut, B.; Sanders, P. European proficiency testing of national reference laboratories for the confirmation of sulfonamide residues in muscle and milk. Food Addit. Contam. 2005, 22, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Dubreil-Chéneau, E.; Pirotais, Y.; Verdon, E.; Hurtaud-Pessel, D. Confirmation of 13 sulfonamides in honey by liquid chromatography–tandem mass spectrometry for monitoring plans: Validation according to European Union Decision 2002/657/EC. J. Chromatogr. A 2014, 1339, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Hoff, R.B.; Pizzolato, T.M.; Peralba, M.D.C.R.; Díaz-Cruz, M.S.; Barceló, D. Determination of sulfonamide antibiotics and metabolites in liver, muscle and kidney samples by pressurized liquid extraction or ultrasound-assisted extraction followed by liquid chromatography–quadrupole linear ion trap-tandem mass spectrometry (HPLC–QqLIT-MS/MS). Talanta 2015, 134, 768–778. [Google Scholar]
- Bult, A.; Klasen, H.B. A spectrometric study of the tautomeric forms of some sulfanilamide derivatives in different media. Pharm. Weekbl. 1978, 113, 665–672. [Google Scholar]
- Castillo, A.M.; Patiny, L.; Wist, J. Fast and Accurate Algorithm for the Simulation of NMR spectra of Large Spin Systems. J. Magn. Reson. 2011, 209, 123–130. [Google Scholar] [CrossRef]
- Aires-de-Sousa, J.; Hemmer, M.C.; Gasteiger, J. Prediction of 1H NMR Chemical Shifts Using Neural Networks. Anal. Chem. 2002, 74, 80–90. [Google Scholar] [CrossRef] [PubMed]
Compound | Antimicrobial Cooking Loss (%) | Mean Processing Factor (PF) |
---|---|---|
Sulfaguanidine 2 | 21.7 ± 1.9 | 1.2 |
Sulfacetamide 1 | 3.3 ± 2.4 | 1.4 * |
Sulfadiazine 1 | 3.5 ± 2.4 | 1.4 * |
Sulfamethoxazole 3 | 44.6 ± 1.4 | 0.8 * |
Sulfathiazole 1 | 9.4 ± 2.2 | 1.3 * |
Sulfamerazine 2 | 14.7 ± 2.1 | 1.3 * |
Sulfamethizole 1 | None | 1.6 * |
Sulfamethazine 1 | None | 1.5 * |
Sulfamethoxypyridazine 1 | 1.2 ± 2.4 | 1.5 * |
Sulfamonomethoxine 1 | None | 1.5 * |
Sulfaquinoxaline 1 | None | 1.6 * |
Sulfadoxine 1 | 6.2 ± 2.3 | 1.4 * |
Sulfadimethoxine 1 | 0.3 ± 2.4 | 1.5 * |
Sulfaclozine 1 | None | 1.5 * |
Sulfachloropyridazine 1 | 4.5 ± 2.3 | 1.4 * |
Tetracycline 1 | 5.9 ± 2.3 | 1.4 * |
Doxycycline 1 | 14.6 ± 2.1 | 1.3 * |
Oxytetracycline 2 | 28.9 ± 1.7 | 1.1 |
Chlortetracycline 2 | 37.0 ± 1.5 | 0.9 |
4-epi-Tetracycline 2 | 25.6 ± 1.8 | 1.1 |
4-epi-Chlortetracycline 3 | 43.1 ± 1.4 | 0.8 * |
Raw Meat | Rare Meat | Medium-Cooked Meat | Well-Done Meat | |
---|---|---|---|---|
SMX | 76.1 ± 5.8 a,b | 78.6 ± 1.7 b | 72.0 ± 2.2 a | 59.6 ± 3.9 a |
Peak 1 | n.d. a | n.d. a | 3.0 ± 2.2 b | 4.8 ± 1.9 c |
Peak 2 | n.d. a | n.d. a | n.d. a | 0.6 ± 1.1 a |
Peak 3 | 1.9 ± 3.3 a | 6.2 ± 2.1 a,b | 12.7 ± 4.0 a,b | 17.0 ± 10.3 b |
Peak 4 | n.d. a | n.d. a | 1.2 ± 1.4 a,b | 2.7 ± 2.3 b |
Peak 5 | 8.1 ± 4.4 a,b | 7.9 ± 3.3 b | 6.1 ± 3.4 a | 8.0 ± 3.1 a,b |
Peak 6 | 13.9 ± 4.6 b | 7.3 ± 1.4 a,b | 5.1 ± 3.6 a | 7.6 ± 6.3 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planche, C.; Chevolleau, S.; Noguer-Meireles, M.-H.; Jouanin, I.; Mompelat, S.; Ratel, J.; Verdon, E.; Engel, E.; Debrauwer, L. Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole. Molecules 2022, 27, 6233. https://doi.org/10.3390/molecules27196233
Planche C, Chevolleau S, Noguer-Meireles M-H, Jouanin I, Mompelat S, Ratel J, Verdon E, Engel E, Debrauwer L. Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole. Molecules. 2022; 27(19):6233. https://doi.org/10.3390/molecules27196233
Chicago/Turabian StylePlanche, Christelle, Sylvie Chevolleau, Maria-Hélèna Noguer-Meireles, Isabelle Jouanin, Sophie Mompelat, Jérémy Ratel, Eric Verdon, Erwan Engel, and Laurent Debrauwer. 2022. "Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole" Molecules 27, no. 19: 6233. https://doi.org/10.3390/molecules27196233
APA StylePlanche, C., Chevolleau, S., Noguer-Meireles, M. -H., Jouanin, I., Mompelat, S., Ratel, J., Verdon, E., Engel, E., & Debrauwer, L. (2022). Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole. Molecules, 27(19), 6233. https://doi.org/10.3390/molecules27196233