Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rational Design Strategy
2.2. Chemistry
2.3. Biological Studies
2.3.1. Homology Modeling and Molecular Docking Studies of Most Potent Analogs against h-TNAP
2.3.2. Alkaline Phosphatase Inhibition Potential Studies and Structure–Activity Relationship (SAR)
2.3.3. In Vitro MTT Cell Viability Assay
2.3.4. Observation of Cytotoxic Activity through PI and DAPI Staining
2.3.5. Observation of ROS Production
2.3.6. Cell Cycle Arrest
2.3.7. In Silico Studies of Compound 4d with DNA
2.3.8. Compound 4d-DNA Interaction through Fluorescent Binding
3. Materials and Methods
3.1. Instruments and Reagents
3.2. General Procedure for the Preparation of Dihydropyridines and Pyridines
3.3. Spectral Data of Compounds (4a–4l)
3.3.1. 2,6-Diamino-1-benzyl-4-(4-(methylthio)phenyl)-1,4-dihydropyridine-3,5-dicarbonitrile (4a)
3.3.2. 2,6-Diamino-1-benzyl-4-(4-isopropylphenyl)-1,4-dihydropyridine-3,5-dicarbonitrile (4b)
3.3.3. 2,6-Diamino-1-benzyl-4-(naphthalen-1-yl)-1,4-dihydropyridine-3,5-dicarbonitrile (4c)
3.3.4. 2,6-Diamino-1-benzyl-4-(naphthalen-2-yl)-1,4-dihydropyridine-3,5-dicarbonitrile (4d)
3.3.5. 2,6-Diamino-1-benzyl-4-(2,3,4-trimethoxyphenyl)-1,4-dihydropyridine-3,5-dicarbonitrile (4e)
3.3.6. 2,6-Diamino-1-benzyl-4-(3-hydroxy-2-methoxyphenyl)-1,4-dihydropyridine-3,5-dicarbonitrile (4f)
3.3.7. 4-(2-((6-Amino-3,5-dicyano-4-(4-ethoxyphenyl)pyridine-2yl)amino)ethyl)benzene sulfonamide (4g)
3.3.8. 4-(2-((6-Amino-3,5-dicyano-4-(4-(methylthio)phenyl)pyridin-2-yl)amino)ethyl)benzene sulfonamide (4h)
3.3.9. 4-(2-(6-Amino-3,5-dicyano-4-(4-isopropylphenyl)pyridin-2-yl)amino)ethyl)benzene sulfonamide (4i)
3.3.10. 2-((3-(1H-Imidazol-1-yl)propyl)amino)-6-amino-4-(4-ethoxyphenyl)pyridine-3,5-dicarbonitrile (4j)
3.3.11. 2-((3-(1H-Imidazol-1-yl)propyl)amino)-6-amino-4-(4-(isopropyle)phenyl)pyridine-3,5-dicarbonitrile (4k)
3.4. Alkaline Phosphatase Inhibition Assay
3.5. MTT Cell Viability Assay
3.6. Microscopic Analysis of Cytotoxic and Pro-Apoptotic Effect
3.7. Microscopic Evaluation of ROS Generation
3.8. Cell Cycle Analysis
3.9. Molecular Docking of DNA with Compound 4d
3.10. Fluorescence Emission Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.H.; Shin, K.H.; Moon, S.H.; Jang, J.; Kim, H.S.; Suh, J.S.; Yang, W.I. Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 2017, 6, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Zaher, D.M.; El-Gamal, M.I.; Omar, H.A.; Aljareh, S.N.; Al-Shamma, S.A.; Ali, A.J.; Zaib, S.; Iqbal, J. Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch. Pharm. 2020, 353, e2000011. [Google Scholar] [CrossRef] [PubMed]
- Boechat, G.A.P.; Stinghen, S.T.; Custódio, G.; Pianovski, M.A.D.; de Oliveira Figueiredo, F.R.; Jenkins, J.; Zambetti, G.P.; Ribeiro, R.C.; Figueiredo, B.C. Placental alkaline phosphatase in pediatric adrenocortical cancer. J. Pediatr. Hematol. Oncol. 2011, 33, e149–e153. [Google Scholar] [CrossRef]
- Ravenni, N.; Weber, M.; Neri, D. A human monoclonal antibody specific to placental alkaline phosphatase, a marker of ovarian cancer. mAbs 2014, 6, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Pal, D.; Prasad, R. Alkaline phosphatase: An overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [Google Scholar] [CrossRef]
- Chen, K.; Wang, K.; Kirichian, A.M.; Al Aowad, A.F.; Iyer, L.K.; Adelstein, S.J.; Kassis, A.I. In silico design, synthesis, and biological evaluation of radioiodinated quinazolinone derivatives for alkaline phosphatase–mediated cancer diagnosis and therapy. Mol. Cancer Ther. 2006, 5, 3001–3013. [Google Scholar] [CrossRef]
- Moura, S.L.; Pallarès-Rusiñol, A.; Sappia, L.; Martí, M.; Pividori, M.I. The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design. Biosens. Bioelectron. 2022, 198, 113826. [Google Scholar] [CrossRef]
- Keshaviah, A.; Dellapasqua, S.; Rotmensz, N.; Lindtner, J.; Crivellari, D.; Collins, J.; Colleoni, M.; Thürlimann, B.; Mendiola, C.; Aebi, S. CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: A combined analysis of seven International Breast Cancer Study Group trials. Ann. Oncol. 2007, 18, 701–708. [Google Scholar] [CrossRef]
- Liu, P.; Leung, K.; Kumta, S.; Lee, K.; Fung, K. Bone-specific alkaline phosphatase in plasma as tumour marker for osteosarcoma. Oncology 1996, 53, 275–280. [Google Scholar] [CrossRef]
- Bacci, G.; Picci, P.; Ferrari, S.; Orlandi, M.; Ruggieri, P.; Casadei, R.; Ferraro, A.; Biagini, R.; Battistini, A. Prognostic significance of serum alkaline phosphatase measurements in patients with osteosarcoma treated with adjuvant or neoadjuvant chemotherapy. Cancer 1993, 71, 1224–1230. [Google Scholar] [CrossRef]
- Meyers, P.A.; Heller, G.; Healey, J.; Huvos, A.; Lane, J.; Marcove, R.; Applewhite, A.; Vlamis, V.; Rosen, G. Chemotherapy for nonmetastatic osteogenic sarcoma: The Memorial Sloan-Kettering experience. J. Clin. Oncol. 1992, 10, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Zulauf, N.; Brüggmann, D.; Groneberg, D.; Oremek, G.M. Expressiveness of bone markers in breast cancer with bone metastases. Oncology 2019, 97, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.-W.; Tsai, L.-C.; Lin, Y.-L.; Chen, Y.-H.; Chang, G.-G.; Chang, T.-C. Differential regulation of placental and germ cell alkaline phosphatases by glucocorticoid and sodium butyrate in human gastric carcinoma cell line TMK-1. Arch. Biochem. Biophys. 2001, 388, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.C.; Hung, M.W.; Chen, Y.H.; Su, W.C.; Chang, G.G.; Chang, T.C. Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cells. Eur. J. Biochem. 2000, 267, 1330–1339. [Google Scholar] [CrossRef]
- Kim, J.M.; Kwon, C.H.D.; Joh, J.-W.; Park, J.B.; Ko, J.S.; Lee, J.H.; Kim, S.J.; Park, C.-K. The effect of alkaline phosphatase and intrahepatic metastases in large hepatocellular carcinoma. World J. Surg. Oncol. 2013, 11, 40. [Google Scholar] [CrossRef]
- Desai, A.; Sandhu, S.; Lai, J.-P.; Sandhu, D.S. Hepatocellular carcinoma in non-cirrhotic liver: A comprehensive review. World J. Hepatol. 2019, 11, 1–18. [Google Scholar] [CrossRef]
- al-Rashida, M.; Iqbal, J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med. Res. Rev. 2014, 34, 703–743. [Google Scholar] [CrossRef]
- Yang, R.; Elsaadi, S.; Misund, K.; Abdollahi, P.; Vandsemb, E.N.; Moen, S.H.; Kusnierczyk, A.; Slupphaug, G.; Standal, T.; Waage, A. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. J. Immunother. Cancer 2020, 8, e000610. [Google Scholar] [CrossRef]
- Ray, A.; Song, Y.; Du, T.; Buon, L.; Tai, Y.-T.; Chauhan, D.; Anderson, K.C. Identification and validation of ecto-5′nucleotidase as an immunotherapeutic target in multiple myeloma. Blood Cancer J. 2022, 12, 50. [Google Scholar] [CrossRef]
- Spychala, J.; Lazarowski, E.; Ostapkowicz, A.; Ayscue, L.H.; Jin, A.; Mitchell, B.S. Role of estrogen receptor in the regulation of ecto-5′-nucleotidase and adenosine in breast cancer. Clin. Cancer Res. 2004, 10, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.Z.; Riquelme, M.A.; Gao, X.; Ellies, L.G.; Sun, L.-Z.; Jiang, J.X. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 2015, 34, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, D.; Young, A.; Teng, M.W.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, C.; Palomo, I.; Fuentes, E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci. 2016, 166, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Ghalamfarsa, G.; Kazemi, M.H.; Raoofi Mohseni, S.; Masjedi, A.; Hojjat-Farsangi, M.; Azizi, G.; Yousefi, M.; Jadidi-Niaragh, F. CD73 as a potential opportunity for cancer immunotherapy. Expert Opin. Ther. Targets 2019, 23, 127–142. [Google Scholar] [CrossRef]
- Iqbal, J.; Ejaz, S.A.; Ibrar, A.; Umar, M.I.; Lecka, J.; Sévigny, J.; Saeed, A. Expanding the Alkaline Phosphatase Inhibition, Cytotoxic and Proapoptotic Profile of Biscoumarin-Iminothiazole and Coumarin-Triazolothiadiazine Conjugates. Chem. Sel. 2018, 3, 13377–13386. [Google Scholar] [CrossRef]
- Di Virgilio, F.; Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2017, 36, 293–303. [Google Scholar] [CrossRef]
- Hassan, S.; Ejaz, S.A.; Saeed, A.; Shehzad, M.; Khan, S.U.; Lecka, J.; Sévigny, J.; Shabir, G.; Iqbal, J. 4-Aminopyridine based amide derivatives as dual inhibitors of tissue non-specific alkaline phosphatase and ecto-5′-nucleotidase with potential anticancer activity. Bioorg. Chem. 2018, 76, 237–248. [Google Scholar] [CrossRef]
- Moungjaroen, J.; Nimmannit, U.; Callery, P.S.; Wang, L.; Azad, N.; Lipipun, V.; Chanvorachote, P.; Rojanasakul, Y. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J. Pharmacol. Exp. Ther. 2006, 319, 1062–1069. [Google Scholar] [CrossRef]
- AbdelHaleem, A.; Mansour, A.O.; AbdelKader, M.; Arafa, R.K. Selective VEGFR-2 inhibitors: Synthesis of pyridine derivatives, cytotoxicity and apoptosis induction profiling. Bioorg. Chem. 2020, 103, 104222. [Google Scholar] [CrossRef]
- Shi, J.; Alagoz, O.; Erenay, F.S.; Su, Q. A survey of optimization models on cancer chemotherapy treatment planning. Ann. Oper. Res. 2014, 221, 331–356. [Google Scholar] [CrossRef]
- Matsuyama, R.; Reddy, S.; Smith, T.J. Why do patients choose chemotherapy near the end of life? A review of the perspective of those facing death from cancer. J. Clin. Oncol. 2006, 24, 3490–3496. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.-B.S.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 2009, 8, 806–823. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, E.; Scheffelaar, R.; Orru, R.V. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. 2011, 50, 6234–6246. [Google Scholar] [CrossRef] [PubMed]
- Hulme, C.; Gore, V. “Multi-component reactions: Emerging chemistry in drug discovery” ‘from xylocain to crixivan’. Curr. Med. Chem. 2003, 10, 51–80. [Google Scholar] [CrossRef]
- Kourounakis, A.P.; Xanthopoulos, D.; Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 2020, 40, 709–752. [Google Scholar] [CrossRef]
- Hilton, M.C.; Dolewski, R.D.; McNally, A. Selective functionalization of pyridines via heterocyclic phosphonium salts. J. Am. Chem. Soc. 2016, 138, 13806–13809. [Google Scholar] [CrossRef]
- Ling, Y.; Hao, Z.-Y.; Liang, D.; Zhang, C.-L.; Liu, Y.-F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther. 2021, 15, 4289–4338. [Google Scholar] [CrossRef]
- Axelson, M.; Liu, K.; Jiang, X.; He, K.; Wang, J.; Zhao, H.; Kufrin, D.; Palmby, T.; Dong, Z.; Russell, A.M. US Food and Drug Administration approval: Vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clin. Cancer Res. 2013, 19, 2289–2293. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, J.; Wu, W.; Zhao, Y. Apatinib inhibits paclitaxel resistance of gastric carcinoma cells through VEGFR2 pathway. Am. J. Transl. Res. 2022, 14, 421–431. [Google Scholar]
- Dávila-Miliani, M.C.; Dugarte-Dugarte, A.; Toro, R.A.; Contreras, J.E.; Camargo, H.A.; Henao, J.A.; Delgado, J.M.; Díaz de Delgado, G. Polymorphism in the Anti-Inflammatory Drug Flunixin and Its Relationship with Clonixin. Cryst. Growth Des. 2020, 20, 4657–4666. [Google Scholar] [CrossRef]
- Kaur, A.; Jacobs, M.S.; Raza, S. Characteristics of Sweet’s syndrome associated with novel acute myeloid leukemia targeted drugs—Midostaurin and Enasidenib. Adv. Cell Gene Ther. 2019, 2, e61. [Google Scholar] [CrossRef]
- Notter, J.; Bregenzer, A.; Vernazza, P.; Kahlert, C.R. Nevirapine in HIV maintenance therapy—Can “old drugs” survive in current HIV management? Swiss Med. Wkly. 2019, 149, w20053. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, S.C.; Mercuro, N.J.; Davis, S.L.; Rybak, M.J. Delafloxacin: Place in therapy and review of microbiologic, clinical and pharmacologic properties. Infect. Dis. Ther. 2018, 7, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.; Mouzon, B.; Ferguson, S.; Paris, D.; Browning, M.; Stewart, W.; Mullan, M.; Crawford, F. Nilvadipine suppresses inflammation via inhibition of P-SYK and restores spatial memory deficits in a mouse model of repetitive mild TBI. Acta Neuropathol. Commun. 2020, 8, 166. [Google Scholar] [CrossRef]
- Clough, B.; Tenii, J.; Wee, C.; Gunter, E.; Griffin, T.; Aiyagari, V. Nimodipine in Clinical Practice: A Pharmacological Update. Can. J. Neurosci. Nurs. 2022, 54, 19–22. [Google Scholar] [CrossRef]
- Sorkin, E.; Clissold, S.; Brogden, R. Nifedipine. Drugs 1985, 30, 182–274. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, Z.A.; Shahzad, S.A.; Khan, S.A.; Naqvi, S.A.R.; Bari, A.; Amjad, H.; Umar, M.I. Synthesis, modeling studies and evaluation of E-stilbene hydrazides as potent anticancer agents. J. Mol. Str. 2019, 1197, 271–281. [Google Scholar] [CrossRef]
- Shahzad, S.A.; Sarfraz, A.; Yar, M.; Khan, Z.A.; Naqvi, S.A.R.; Naz, S.; Khan, N.A.; Farooq, U.; Batool, R.; Ali, M. Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs. Bioorg. Chem. 2020, 100, 103876. [Google Scholar] [CrossRef]
- Shahzad, S.A.; Yar, M.; Khan, Z.A.; Shahzadi, L.; Naqvi, S.A.R.; Mahmood, A.; Ullah, S.; Shaikh, A.J.; Sherazi, T.A.; Bale, A.T. Identification of 1, 2, 4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs. Bioorg. Chem. 2019, 85, 209–220. [Google Scholar] [CrossRef]
- Sajid, M.A.; Khan, Z.A.; Shahzad, S.A.; Naqvi, S.A.R.; Usman, M.; Iqbal, A. Recent advances in thymidine phosphorylase inhibitors: Syntheses and prospective medicinal applications. Turk. J. Chem. 2017, 41, 1–28. [Google Scholar] [CrossRef]
- Shahzad, S.A.; Yar, M.; Bajda, M.; Jadoon, B.; Khan, Z.A.; Naqvi, S.A.R.; Shaikh, A.J.; Hayat, K.; Mahmmod, A.; Mahmood, N. Synthesis and biological evaluation of novel oxadiazole derivatives: A new class of thymidine phosphorylase inhibitors as potential anti-tumor agents. Bioorg. Med. Chem. 2014, 22, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, S.A.; Yar, M.; Bajda, M.; Shahzadi, L.; Khan, Z.A.; Naqvi, S.A.R.; Mutahir, S.; Mahmood, N.; Khan, K.M. Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1, 3, 4-oxadiazole-2-thione derivatives. Bioorg. Chem. 2015, 60, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.; Khan, Z.A.; Shahzad, S.A.; Naqvi, S.A.R.; Khan, S.A.; Amjad, H.; Iqbal, A.; Yar, M. Design and syntheses of 7-nitro-2-aryl-4H-benzo [d][1, 3] oxazin-4-ones as potent anticancer and antioxidant agents. J. Mol. Str. 2020, 1214, 128252. [Google Scholar] [CrossRef]
- Channar, P.A.; Afzal, S.; Ejaz, S.A.; Saeed, A.; Larik, F.A.; Mahesar, P.A.; Lecka, J.; Sévigny, J.; Erben, M.F.; Iqbal, J. Exploration of carboxy pyrazole derivatives: Synthesis, alkaline phosphatase, nucleotide pyrophosphatase/phosphodiesterase and nucleoside triphosphate diphosphohydrolase inhibition studies with potential anticancer profile. Eur. J. Med. Chem. 2018, 156, 461–478. [Google Scholar] [CrossRef]
- Supe, L.; Afzal, S.; Mahmood, A.; Ejaz, S.A.; Hein, M.; Iaroshenko, V.O.; Villinger, A.; Lecka, J.; Sévigny, J.; Iqbal, J. Deazapurine Analogues Bearing a 1H-Pyrazolo [3, 4-b] pyridin-3 (2H)-one Core: Synthesis and Biological Activity. Eur. J. Org. Chem. 2018, 20–21, 2629–2644. [Google Scholar] [CrossRef]
- Alafeefy, A.M.; Alqasoumi, S.I.; Ashour, A.E.; Masand, V.; Al-Jaber, N.A.; Hadda, T.B.; Mohamed, M.A. Quinazoline–tyrphostin as a new class of antitumor agents, molecular properties prediction, synthesis and biological testing. Eur. J. Med. Chem. 2012, 53, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Plumb, J.A. Cell sensitivity assays: The MTT assay. In Cancer Cell Culture; Springer: Berlin/Heidelberg, Germany, 2004; pp. 165–169. [Google Scholar] [CrossRef]
- Atale, N.; Gupta, S.; Yadav, U.; Rani, V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J. Microsc. 2014, 255, 7–19. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chuang, Y.-J.; Yu, C.-C.; Yang, J.-S.; Lu, C.-C.; Chiang, J.-H.; Lin, J.-P.; Tang, N.-Y.; Huang, A.-C.; Chung, J.-G. Apigenin induces apoptosis through mitochondrial dysfunction in U-2 OS human osteosarcoma cells and inhibits osteosarcoma xenograft tumor growth in vivo. J. Agric. Food Chem. 2012, 60, 11395–11402. [Google Scholar] [CrossRef]
- Sun, H.; Nikolovska-Coleska, Z.; Lu, J.; Qiu, S.; Yang, C.-Y.; Gao, W.; Meagher, J.; Stuckey, J.; Wang, S. Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. J. Med. Chem. 2006, 49, 7916–7920. [Google Scholar] [CrossRef]
- Yuan, R.; Xu, H.; Liu, X.; Tian, Y.; Li, C.; Chen, X.; Su, S.; Perelshtein, I.; Gedanken, A.; Lin, X. Zinc-doped copper oxide nanocomposites inhibit the growth of human cancer cells through reactive oxygen species-mediated NF-κB activations. ACS Appl. Mater. Interfaces 2016, 8, 31806–31812. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Reiniers, M.J.; van Golen, R.F.; Bonnet, S.; Broekgaarden, M.; van Gulik, T.M.; Egmond, M.R.; Heger, M. Preparation and practical applications of 2′, 7′-dichlorodihydrofluorescein in redox assays. Anal. Chem. 2017, 89, 3853–3857. [Google Scholar] [CrossRef] [PubMed]
- Jose, G.M.; Raghavankutty, M.; Kurup, G.M. Sulfated polysaccharides from Padina tetrastromatica induce apoptosis in HeLa cells through ROS triggered mitochondrial pathway. Process Biochem. 2018, 68, 197–204. [Google Scholar] [CrossRef]
- Rashid, F.; Uddin, N.; Ali, S.; Haider, A.; Tirmizi, S.A.; Diaconescu, P.L.; Iqbal, J. New triorganotin (iv) compounds with aromatic carboxylate ligands: Synthesis and evaluation of the pro-apoptotic mechanism. RSC Adv. 2021, 11, 4499–4514. [Google Scholar] [CrossRef]
- Ding, L.; Cao, J.; Lin, W.; Chen, H.; Xiong, X.; Ao, H.; Yu, M.; Lin, J.; Cui, Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci. 2020, 21, 1960. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019). Bioorg. Med. Chem. Lett. 2019, 29, 126637. [Google Scholar] [CrossRef] [PubMed]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B Biol. 2013, 124, 1–19. [Google Scholar] [CrossRef]
- Khan, I.; Ibrar, A.; Ejaz, S.A.; Khan, S.U.; Shah, S.J.A.; Hameed, S.; Simpson, J.; Lecka, J.; Sévigny, J.; Iqbal, J. Influence of the diversified structural variations at the imine functionality of 4-bromophenylacetic acid derived hydrazones on alkaline phosphatase inhibition: Synthesis and molecular modelling studies. RSC Adv. 2015, 5, 90806–90818. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.-l.; Han, L.; Liu, W.-y.; Zhao, B.-x.; Zhang, S.-l.; Miao, J.-y. Novel ferrocenyl derivatives exert anti-cancer effect in human lung cancer cells in vitro via inducing G1-phase arrest and senescence. Acta Pharmacol. Sin. 2013, 34, 960–968. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Singh, S.P.; Häder, D.-P.; Sinha, R.P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607. [Google Scholar] [CrossRef]
- Saito, Y.; Uchida, N.; Tanaka, S.; Suzuki, N.; Tomizawa-Murasawa, M.; Sone, A.; Najima, Y.; Takagi, S.; Aoki, Y.; Wake, A. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol. 2010, 28, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound No. | R1 | R2 | IC50 + SEM (µM) | Inhibitory Potential |
---|---|---|---|---|
4a | - | 20.9% | ||
4b | - | 28.34% | ||
4c | - | 26.19% | ||
4d | 1.32 ± 0.26 | - | ||
4e | 8.8 ± 0.53 µM | - | ||
4f | 2.25 ± 0.16 | - | ||
4g | 0.49 ± 0.025 | -- | ||
4h | - | 37.58% | ||
4i | - | 31.72% | ||
4j | 1.22 ± 0.12 | - | ||
4k | - | 36.49% |
S. No | Alkaline Phosphatase (h-TNAP) 21.09% | Cervical Cancer (HeLa) Cells | Breast Cancer (MCF-7) Cells | ||
---|---|---|---|---|---|
% Inhibition (at 100 µM) | IC50 Values ± SEM | % Inhibition (at 100 µM) | IC50 Values ± SEM | ||
4a | 21.09% | 7.71 | - | 37.87 | - |
4b | 28.34% | 10.96 | - | 41.81 | - |
4c | 26.19% | 21.30 | - | 23.13 | - |
4d | 1.32 ± 0.26 | 82.66 | 53.47 ± 0.50 | 85.82 | 38.71 ± 2.31 |
4e | 8.8 ± 0.53 | 60.03 | 69.47 ± 0.07 | 5.73 | - |
4f | 2.25 ± 0.16 | 77.27 | 57.03 ± 7.1 | 61.67 | 77.03 ± 8.3 |
4g | 0.49 ± 0.025 | 67.06 | 63.01 ± 4.1 | 53.27 | 98.01 ± 5.7 |
4h | 37.58% | 38.41 | - | 57.16 | 109.91±1.07 |
4i | 31.72% | 39.26 | - | 34.61 | - |
4j | 1.22 ± 0.12 | 77.78 | 57.01 ± 1.5 | 72.40 | 54.02 ± 1.7 |
4k | 36.49% | 63.82 | 65.95 ± 1.97 | 40.07 | - |
Levamisole | 22.65 ± 1.6 | - | - | - | - |
Cisplatin | - | 98.32 | 11.3 ± 0.78 | ||
Doxorubicin | - | 98.86 | 2.81 ± 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.A.; Rashid, F.; Jadoon, M.S.K.; Jalil, S.; Khan, Z.A.; Orfali, R.; Perveen, S.; Al-Taweel, A.; Iqbal, J.; Shahzad, S.A. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules 2022, 27, 6235. https://doi.org/10.3390/molecules27196235
Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R, Perveen S, Al-Taweel A, Iqbal J, Shahzad SA. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules. 2022; 27(19):6235. https://doi.org/10.3390/molecules27196235
Chicago/Turabian StyleKhan, Nazeer Ahmad, Faisal Rashid, Muhammad Siraj Khan Jadoon, Saquib Jalil, Zulfiqar Ali Khan, Raha Orfali, Shagufta Perveen, Areej Al-Taweel, Jamshed Iqbal, and Sohail Anjum Shahzad. 2022. "Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis" Molecules 27, no. 19: 6235. https://doi.org/10.3390/molecules27196235
APA StyleKhan, N. A., Rashid, F., Jadoon, M. S. K., Jalil, S., Khan, Z. A., Orfali, R., Perveen, S., Al-Taweel, A., Iqbal, J., & Shahzad, S. A. (2022). Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules, 27(19), 6235. https://doi.org/10.3390/molecules27196235