Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Experimental Set-Up
3. Methods
4. Results and Discussion
4.1. Infrared Spectra Integrated Area
4.2. OH-Stretching Integrated Area
4.3. Spectral Distance Analysis of Normalized Spectra
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Balsom, P.D.; Söderlund, K.; Ekblom, B. Creatine in humans with special reference to creatine supplementation. Sports Med. 1994, 18, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Snow, R.J.; Murphy, R.M. Creatine and the creatine transporter: A review. Mol. Cell. Biochem. 2001, 224, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Rawson, E.S.; Dolan, E.; Saunders, B.; Williams, M.E.; Gualano, B. Creatine supplementation in sport, exercise and health. In Dietary Supplementation in Sport and Exercise; Routledge: London, UK, 2019; pp. 141–164. [Google Scholar]
- Kramer, H.; Rosas, S.E.; Matsushita, K. Beef Tea, Vitality, Creatinine, and the Estimated GFR. Am. J. Kid. Dis. 2016, 67, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.R. Quackery and cookery: Justus von Liebig’s extract of meat and the theory of nutrition in the Victorian age. Bull. His. Med. 1992, 66, 404–418. [Google Scholar]
- Wang, C.C.; Lin, S.C.; Hsu, S.C.; Yang, M.T.; Chan, K.H. Effects of Creatine Supplementation on Muscle Strength and Optimal Individual Post-Activation Potentiation Time of the Upper Body in Canoeists. Nutrients 2017, 27, 1169. [Google Scholar] [CrossRef]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 1. [Google Scholar] [CrossRef]
- Kreider, R.B.; Melton, C.; Rasmussen, C.J.; Greenwood, M.; Lancaster, S.; Cantler, E.C.; Milnor, P.; Almada, A.L. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol. Cell. Biochem. 2003, 244, 95–104. [Google Scholar] [CrossRef]
- Harris, R.C.; Söderlund, K.; Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992, 83, 367–374. [Google Scholar] [CrossRef]
- Bertin, M.; Pomponi, S.M.; Kokuhuta, C.; Iwasaki, N.; Suzuki, T.; Ellington, W.R. Origin of the genes for the isoforms of creatine kinase. Gene 2007, 392, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Mizuta, C.; Uda, K.; Ishida, K.; Mizuta, K.; Sona, S.; Compaan, D.M.; Ellington, R.W. Evolution and divergence of the genes for cytoplasmic, mitochondrial, and flagellar creatine kinases. J. Mol. Evol. 2004, 59, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K.; Harris, R.C. The creatine kinase reaction: A simple reaction with functional complexity. Amino Acids 2011, 40, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Harris, R. Creatine in health, medicine and sport: An introduction to a meeting held at Downing College, University of Cambridge. 2010. Amino Acids 2011, 40, 1267–1270. [Google Scholar] [CrossRef]
- Hultman, E.; Soderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle creatine loading in men. J. Appl. Phys. 1996, 81, 232–237. [Google Scholar] [CrossRef]
- Kreider, R.B.; Jung, Y.P. Creatine supplementation in exercise, sport, and medicine. J. Exerc. Nutr. Biochem. 2011, 15, 53–69. [Google Scholar] [CrossRef]
- Andres, R.H.; Ducray, A.D.; Schlattner, U.; Wallimann, T.; Widmer, H.R. Functions and effects of creatine in the central nervous system. Brain Res. Bull. 2008, 76, 329–343. [Google Scholar] [CrossRef]
- Racette, S.B. Creatine supplementation and athletic performance. J. Orthop. Sports Phys. Ther. 2003, 33, 615–621. [Google Scholar] [CrossRef]
- Juhn, M.S.; Tarnopolsky, M. Oral creatine supplementation and athletic performance: A critical review. Clin. J. Sport Med. 1998, 8, 286–297. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791. [Google Scholar] [CrossRef]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Brit. Med. Bull. 2007, 81, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Wax, B.; Kerksick, C.M.; Jagim, A.R.; Mayo, J.J.; Lyons, B.C.; Kreider, R.B. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.F.; Kemp, G.J.; Radda, G.K. The creatine kinase equilibrium, free [ADP] and myosin ATPase in vascular smooth muscle cross-bridges. J. Theor. Biol. 1995, 173, 207–211. [Google Scholar] [CrossRef]
- Ronner, P.; Friel, E.; Czerniawski, K.; Fränkle, S. Luminometric assays of ATP, phosphocreatine, and creatine for estimation of free ADP and free AMP. Anal. Biochem. 1999, 275, 208–216. [Google Scholar] [CrossRef]
- O’brien, J. Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems. J. Food Sci. 1996, 61, 679–682. [Google Scholar] [CrossRef]
- Babić, J.; Šubarić, D.; Milicevic, B.; Ačkar, D.; Kopjar, M.; Tiban, N.N. Influence of trehalose, glucose, fructose, and sucrose on gelatinisation and retrogradation of corn and tapioca starches. Czech. J. Food Sci. 2009, 27, 151. [Google Scholar] [CrossRef]
- Bieganski, R.M.; Fowler, A.; Morgan, J.R.; Toner, M. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol. Prog. 1998, 14, 615–620. [Google Scholar] [CrossRef]
- Bordat, P.; Lerbret, A.; Demaret, J.P.; Affouard, F.; Descamps, M. Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhys. Lett. 2004, 65, 41. [Google Scholar] [CrossRef]
- Tillequin, F. Trehala, a meeting point between zoology, botany, chemistry, and biochemistry. Rev. Hist. Pharm. 2009, 57, 163–172. [Google Scholar] [CrossRef]
- Adams, R.P.; Kendall, E.; Kartha, K.K. Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem. Syst. Ecol. 1990, 18, 107–110. [Google Scholar] [CrossRef]
- Pampurova, S.; Van Dijck, P. The desiccation tolerant secrets of Selaginella lepidophylla: What we have learned so far? Plant Physiol. Biochem. 2014, 80, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.E.; Delorge, I.; Figueroa, C.M.; Van Dijck, P.; Stitt, M. Trehalose metabolism in plants. Plant J. 2014, 79, 544–567. [Google Scholar] [CrossRef] [PubMed]
- Clegg, J.S. Free glycerol in dormant cysts of the brine shrimp Artemia salina, and its disappearance during development. Biol. Bull. 1962, 123, 295–301. [Google Scholar] [CrossRef]
- Clegg, J.S. Metabolic studies of crytobiosis in encysted embryos of Artemia salina. Comp. Biochem. Phys. 1967, 20, 801–809. [Google Scholar] [CrossRef]
- Crowe, J.H. Trehalose and anhydrobiosis: The early work of J. S. Clegg. J. Exp. Biol. 2008, 211, 2899–2900. [Google Scholar] [CrossRef]
- Feofilova, E.P.; Usov, A.I.; Mysyakina, I.S.; Kochkina, G.A. Trehalose: Chemical structure, biological functions, and practical application. Microbiology 2014, 83, 184–194. [Google Scholar] [CrossRef]
- Higashiyama, T. Novel functions and applications of trehalose. Pure Appl. Chem. 2002, 74, 1263–1269. [Google Scholar] [CrossRef]
- Burek, M.; Waśkiewicz, S.; Wandzik, I. Trehalose–properties, biosynthesis and applications. Chemik 2015, 3, 9–10. [Google Scholar]
- Lombardo, D.; Calandra, P.; Caccamo, M.T.; Magazù, S.; Pasqua, L.; Kiselev, M.A. Interdisciplinary approaches to the study of biological membranes. AIMS Biophys. 2020, 7, 267–290. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Cannuli, A. PEG Acoustic Levitation Treatment for Historic Wood Preservation investigated by means of FTIR spectroscopy. Curr. Chem. Biol. 2019, 13, 60–72. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Magazù, S. Experimental Investigation on the Bioprotective Role of Trehalose on Glutamine Solutions by Infrared Spectroscopy. Materials 2022, 15, 4329. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, M.T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazù, S. Self-assembly Processes in Hydrated Montmorillonite by FTIR Investigations. Materials 2020, 13, 1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliardo, F.; Affouard, F.; Bordat, P.; Descamps, M.; Lerbret, A.; Magazù, S.; Ramirez-Cuesta, A.J.; Telling, M.F.T. A Combined Neutron Scattering and Simulation Study on Bioprotectant Systems. Chem. Phys. 2005, 317, 258–266. [Google Scholar]
- Branca, C.; Magazù, S.; Maisano, G.; Migliardo, F. Vibrational and Relaxational Contributions in Disaccharide/H2O Glass Formers. Phy. Rev. B. 2001, 64, 224204. [Google Scholar] [CrossRef]
- Magazù, S.; Maisano, G.; Migliardo, P.; Villari, V. Experimental Simulation of Macromolecules in Trehalose Aqueous solutions: A Photon Correlation Spectroscopy Study. J. Chem. Phys. 1999, 111, 9086–9092. [Google Scholar] [CrossRef]
- Fenimore, P.W.; Frauenfelder, H.; Magazù, S.; McMahon, B.H.; Mezei, F.; Migliardo, F.; Young, R.D.; Stroe, I. Concepts and problems in protein dynamics. Chem. Phys. 2013, 424, 2–6. [Google Scholar] [CrossRef]
- Cannuli, A.; Caccamo, M.T.; Castorina, G.; Colombo, F.; Magazù, S. Laser Techniques on Acoustically Levitated Droplets. EPJ Web Conf. 2018, 167, 05010. [Google Scholar] [CrossRef]
- Frauenfelder, H.; Sligar, S.G.; Wolynes, P.G. The energy landscapes and motions of proteins. Science 1991, 254, 1598–1603. [Google Scholar] [CrossRef]
- Frauenfelder, H.; McMahon, B. Dynamics and function of proteins: The search for general concepts. Proc. Natl. Acad. Sci. USA 1998, 9995, 4795–4797. [Google Scholar] [CrossRef]
- Oliver, A.E.; Crowe, L.M.; Crowe, J.H. Methods for dehydration-tolerance: Depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci. Res. 1998, 8, 211–221. [Google Scholar] [CrossRef]
- Green, J.L.; Angell, C.A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. B 1989, 93, 2880–2882. [Google Scholar] [CrossRef]
- Crowe, J.H.; Cooper, A.F., Jr. Cryptobiosis. Sci. Am. 1971, 225, 30–36. [Google Scholar] [CrossRef]
- Maisano, G.; Majolino, D.; Migliardo, P.; Venuto, S.; Aliotta, F.; Magazú, S. Sound velocity and hydration phenomena in aqueous polymeric solutions. Mol. Phys. 1993, 78, 421–435. [Google Scholar] [CrossRef]
- Magazù, S.; Maisano, G.; Migliardo, F.; Mondelli, C. Mean-Square Displacement Relationship in Bioprotectant Systems by Elastic Neutron Scattering. Biophys. J. 2004, 86, 3241–3249. [Google Scholar] [CrossRef]
- Lin, T.Y.; Timasheff, S.N. On the role of surface tension in the stabilization of globular proteins. Protein Sci. 1996, 5, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.; Zangana, R.; Swenson, J. Stabilization of proteins embedded in sugars and water as studied by dielectric spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 21197–21207. [Google Scholar] [CrossRef]
- Magazù, S.; Calabrò, E.; Caccamo, M.T. Experimental study of thermal restraint in bio-protectant disaccharides by FTIR spectroscopy. Open Biotechnol. 2018, 12, 123–133. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Migliardo, F.; Magazù, S.; Caccamo, M.T. Infrared, Raman and INS Studies of Poly-Ethylene Oxide Oligomers. J. Mol. Struc. 2013, 1048, 261–266. [Google Scholar] [CrossRef]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Phys. 2004, 29, 463–487. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Gugliandolo, C.; Zammuto, V.; Magazù, S. Thermal properties of an exopolysaccharide produced by a marine thermotolerant Bacillus licheniformis by ATR-FTIR spectroscopy. Int. J. Biol. Macromol. 2020, 145, 77–83. [Google Scholar] [CrossRef]
- Kazarian, S.G.; Chan, K.A. ATR-FTIR spectroscopic imaging: Recent advances and applications to biological systems. Analyst 2013, 138, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Vafaee, M.; Maghari, A. Understanding molecular harmonic emission at relatively long intense laser pulses: Beyond the Born-Oppenheimer approximation. Phys. Rev. A 2016, 94, 033415. [Google Scholar] [CrossRef]
- Kreibich, T.; Lein, M.; Engel, V.; Gross, E.K.U. Even-harmonic generation due to beyond-born-oppenheimer dynamics. Phys. Rev. Lett. 2001, 87, 103901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccamo, M.T.; Magazù, S. Tagging the oligomer-to-polymer crossover on EG and PEGs by infrared and Raman spectroscopies and by wavelet cross-correlation spectral analysis. Vib. Spectr. 2016, 85, 222–227. [Google Scholar] [CrossRef]
- Ozaki, Y. Infrared Spectroscopy—Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. Anal. Sci. 2021, 37, 1193–1212. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, M.T.; Magazù, S. Ethylene Glycol-Polyethylene Glycol (EG-PEG) Mixtures: IR Spectra Wavelet Cross-Correlation Analysis. Appl. Spectr. 2017, 71, 401–409. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Magazù, S. Multiscaling Wavelet Analysis of Infrared and Raman Data on Polyethylene Glycol 1000 Aqueous Solutions. Spectr. Lett. 2017, 50, 130–136. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Magazù, S. A Conic Pendulum of Variable Length Analysed by wavelets. In New Trends in Physics Education Research; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 117–131. ISBN 978-1-53613-893-1. [Google Scholar]
- Posada, H.; Ferrand, M.; Davrieux, F.; Lashermes, P.; Bertrand, B. Stability across environments of the coffee variety near infrared spectral signature. Heredity 2009, 102, 113–119. [Google Scholar] [CrossRef]
- Griffiths, P.; Haseth, J. Fourier Transform Infrared Spectrometry, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Caccamo, M.T.; Magazù, S. Thermal restraint on PEG-EG mixtures by FTIR investigations and wavelet cross-correlation analysis. Pol. Test. 2017, 62, 311–318. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, H.; Sui, Q.; Zhang, L.; Jia, L.; Jiang, M.; Zhang, F. Novel methodology to improve the accuracy of oxide determination in cement raw meal by near infrared spectroscopy (NIRS) and cross-validation-absolute-deviation-F-test (CVADF). Anal. Lett. 2020, 53, 2734–2747. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Calabró, E.; Cannuli, A.; Magazù, S. Wavelet Study of Meteorological Data Collected by Arduino-Weather Station: Impact on Solar Energy Collection Technology. MATEC Web Conf. 2016, 55, 02004. [Google Scholar] [CrossRef]
- Shi, Z.; Cogdill, R.P.; Short, S.M.; Anderson, C.A. Process characterization of powder blending by near-infrared spectroscopy: Blend end-points and beyond. J. Pharm. Biomed. Anal. 2008, 47, 738–745. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caccamo, M.T.; Magazù, S. Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy. Molecules 2022, 27, 6310. https://doi.org/10.3390/molecules27196310
Caccamo MT, Magazù S. Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy. Molecules. 2022; 27(19):6310. https://doi.org/10.3390/molecules27196310
Chicago/Turabian StyleCaccamo, Maria Teresa, and Salvatore Magazù. 2022. "Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy" Molecules 27, no. 19: 6310. https://doi.org/10.3390/molecules27196310
APA StyleCaccamo, M. T., & Magazù, S. (2022). Stabilization Effects Induced by Trehalose on Creatine Aqueous Solutions Investigated by Infrared Spectroscopy. Molecules, 27(19), 6310. https://doi.org/10.3390/molecules27196310