Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review
Abstract
:1. Introduction
2. General Methods of Graphene Synthesis
2.1. Top-Down Method
2.1.1. Mechanical Exfoliation
2.1.2. Electrochemical Exfoliation
2.1.3. Liquid Phase Exfoliation
2.1.4. Laser Ablation
2.2. Bottom-Up Method
2.2.1. Chemical Vapor Deposition (CVD)
2.2.2. Arc Discharge
2.2.3. Plasma-Enhanced Chemical Vapor Deposition Synthesis (PECVD)
2.2.4. Pyrolysis
3. Graphene Oxide (GO)
3.1. Synthesis of GO
3.1.1. Post-Synthesis Treatment of GO
3.1.2. Effect of Various Temperatures on the Oxidation Level of GO
3.2. Structural Aspects of GO
3.3. Characterization of GO
Technique Used to Characterize Graphene Oxide | Information Obtained | Properties of Compound Observed | References |
---|---|---|---|
SEM | Lateral size distribution of GO sheets, showing the structural morphology of GO | Micromorphology and size of graphene oxide | [146] |
TEM | Morphology of GO (wrinkles) and single-layered GO sheets. | [147] | |
AFM | Lateral size and thickness of GO sheets | [148] | |
TGA | Thermal stability of GO | Thermal stability | [149,150] |
XPS | Quantitatively analyze the chemical composition of elements present in GO | Chemical structure of GO | [151,152,153,154,155,156] |
[157,158] | |||
FTIR | Characteristic bands corresponding to carbonyl functional groups, confirmed the successful synthesis of GO | ||
XRD | Crystalline structures of the GO nanosheets and the inter-sheet distance of GO | [159,160] | |
Raman spectroscopy | Analyzing the chemical structure of GO combined with XPS, FTIR, XRD, ICP-MS. | [161,162] | |
UV spectroscopy | Help in structure identify | Presence of conjugated and non-bonding electrons | [163] |
4. GO–Metal Oxide Nanocomposite Tailoring for Enhanced Water Purification Applications
GO/Metal Oxide Nanocomposites | Main Pollutant Trapped | Achievements | Reference |
---|---|---|---|
GO–silver oxide | Cyclohexane | By using GO–Ag composities as photocatalysts, 37.0% conversion and 94.0% selectivity of cyclohexane to cyclohexanol was achieved. | [181] |
Graphene-supported Fe–Mg oxide composite | Arsenic heavy metal ions | The prepared composite exhibited the significant fast adsorption of arsenic with exceptional durability and recyclability. | [182] |
GO/Fe3O4 | Methylene blue and rhodamine B dyes | The dye removal rate for methylene blue was nearly 100%, while for rhodamine B, it was about 90%. | [183] |
GO–MnFe2O4 | Pb(II), As(III), and As(V) heavy metal ions | The exceptional adsorption property was due to a combination of the unique layered nature (allowing the maximum surface area) of the hybrid system and the good adsorption capabilities of nanoparticles. | [184] |
GO–ZrO(OH)2 | As(III) and As(V) heavy metal ions | The GO–ZrO(OH)2 nanocomposite showed a high adsorption capacity in a wide pH range, and the monolayer adsorption amounts were 95.15 and 84.89 mg/g for As(III) and As(V). | [185] |
GO–iron oxides | Pb(II) heavy metal ion | The GO–iron oxide nanocomposite acts as a good adsorbent for Pb(II). | [186] |
GO–TiO2 | Zn2+, Cd2+, and Pb2+ heavy metal ions | The various and dense oxygenated moieties on the GO surface enhanced its capacity to absorb heavy metal ions. | [187] |
Graphene–ZnO | Methyl orange dye | The maximum photocatalytic degradation efficiency of methyl orange was 97.1% and 98.6% under UV and sunlight, respectively. | [188] |
ZnO–GO/nanocellulose | Ciprofloxacin organic pollutant | The synthesized nanocomposite exhibited enhanced adsorption and photocatalytic performance against ciprofloxacin. | [189] |
GO/goethite | Tylosin organic pollutant | The degradation efficiency of the antibiotic by the synthesized composite was 84% after 120 min. | [190] |
CuO–CeO2/GO | Methyl orange dye | The nanocomposite showed better catalytic activity than pure CuO and CuO/GO in the presence of H2O2 under visible light irradiation. | [191] |
Inclusion of GO–Metal Oxide Nanocomposites into Polymeric Membranes for Enhanced Performance and Application in Different Fields
Nanoparticle Used in Membrane | Membrane Type | Application | Polymer Used for Membrane | Reference |
---|---|---|---|---|
ZnO | MF | Treatment of synthetic wastewater | PVDF | [217] |
Removal of copper ions from water | [218] | |||
Removal of COD from wastewater | [219] | |||
UF | Removal of HA | PES, PSF | [220,221] | |
Removal of salts | PA | [222] | ||
Evaluation of antifouling properties in composite membranes for water treatment. Mixture model: BSA | PVDF | [223] | ||
Removal of pollutants sodium alginate, BSA, and humic acid (HA) | PES | [224] | ||
Evaluation of antifouling properties in composite membranes for water treatment. Mixture model: BSA | PES | [225] | ||
Evaluation of antifouling properties in composite membranes for water treatment. Mixture model: BSA | PVA | [226] | ||
NF | Removal of HA | PES | [227] | |
Water filteration | PVP | [228] | ||
Removal of inorganic salts and HA | PVDF | [229] | ||
RO | Removal of salt, bivalent ions (Ca2+ SO42- and Mg2+), monovalent ions (Cl- and Na+), and bacterial retention | PA | [230,231,232] | |
FO | Removal of salts, desalination | PVDF | [230,231] | |
GO | MF | Treatment of effluents with high-dye content and water filtration | PSF, PVDF | [233,234] |
UF | Treatment of distillery effluent | PES | [235] | |
Natural organic matter removal | PA, PVDF | [236] | ||
NF | Evaluation of dye-removal capacity for water treatment | PES | [237] | |
RO | Desalination: Salt removal (NaCl, CaCl2, and Na2SO4) | PSF | [238,239] | |
FO | Possible prospect for the desalination of sea water | PA | [240] | |
Graphene | UF | Wastewater treatment | PSF | [241] |
NF | Water purification | PVDF | [242] | |
AgNO3 | UF | Reduction of the microbial load of raw milk during the concentration process by the UF process | PES | [243] |
Evaluation of antifouling properties in composite membranes for water treatment. Mixture model: BSA | PSF | [244] | ||
AgNPs | UF | Evaluation of antifouling and antibacterial properties in composite membranes for water treatment. Model bacteria: E. coli | PES, PSF, CA | [244,245] |
AgNO3 | RO | Evaluation of antibacterial properties and the removal of salt (NaCl). Model bacteria: E. coli and Bacillus subtilis | PA/PSF/PET | [246,247] |
CuNPs | UF | Treatment of wastewater (sludge filtration) and the evaluation of antifouling properties in composite membranes for water treatment. Mixture model: BSA | PES | [248] |
RO | Evaluation of antibacterial properties in composite membranes for water treatment and the removal of salt (NaCl). Model bacteria: E. coli, P. aeruginosa, and S. aureus. | PA | [248] | |
TiO2-NPs | NF | Wastewater treatment application | PES | [249] |
UF | Evaluation of antifouling properties in composite membranes for water treatment. Mixture model: BSA, PEG, and MgSO4 | PVDF | [250] | |
Evaluation of UV-cleaning properties and antifouling properties. Mixture model: red dye and BSA | PA | [251] |
5. Challenges and Futuristic Aspects
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Che, J.; An, Y.; Zhu, T.; Pang, L.; Liu, X.; Li, X.; Lv, M. Research and Preparation of Graphene Foam Based on Passive Ultra-Low Energy Consumption Building New Ultra-Thin External Wall Insulation Material. J. Nanoelectron. Optoelectron. 2021, 16, 1467–1474. [Google Scholar] [CrossRef]
- Banciu, C.A.; Nastase, F.; Istrate, A.-I.; Veca, L.M. 3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules 2022, 27, 3634. [Google Scholar] [CrossRef] [PubMed]
- Umar, A.; Kumar, S.A.; Inbanathan, S.S.R.; Modarres, M.; Kumar, R.; Algadi, H.; Baskoutas, S. Enhanced sunlight-driven photocatalytic, supercapacitor and antibacterial applications based on graphene oxide and magnetite-graphene oxide nanocomposites. Ceram. Int. 2022, 48, 29349–29358. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Vedenyapina, M.D.; Kurmysheva, A.Y.; Weichgrebe, D.; Nair, R.R.; Nguyen, N.P.T.; Kustov, L.M. Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021, 26, 6628. [Google Scholar] [CrossRef] [PubMed]
- Pelosato, R.; Bolognino, I.; Fontana, F.; Sora, I.N. Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review. Molecules 2022, 27, 2743. [Google Scholar] [CrossRef]
- Huang, H.-H.; Joshi, R.K.; de Silva, K.K.H.; Badam, R.; Yoshimura, M.J. Fabrication of reduced graphene oxide membranes for water desalination. Membr. Sci. 2019, 572, 12. [Google Scholar] [CrossRef]
- Franco, P.; Cardea, S.; Tabernero, A.; De Marco, I. Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review. Molecules 2021, 26, 4440. [Google Scholar] [CrossRef]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Mater. Today Chem. 2020, 16, 100233. [Google Scholar]
- Xiao, C.; Li, C.; Hu, J.; Zhu, L. The Application of Carbon Nanomaterials in Sensing, Imaging, Drug Delivery and Therapy for Gynecologic Cancers: An Overview. Molecules 2022, 27, 4465. [Google Scholar] [CrossRef]
- Guo, W.; Umar, A.; Alsaiari, M.A.; Wang, L.; Pei, M. Ultrasensitive and selective label-free aptasensor for the detection of penicillin based on nanoporousPtTi/graphene oxide-Fe3O4/MWCNT-Fe3O4 nanocomposite. Microchem. J. 2020, 158, 105270. [Google Scholar] [CrossRef]
- Pandey, R.R.; Chusuei, C.C. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules 2021, 26, 6674. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liang, H.; Fan, J.; Guo, L.; Li, H.; de Rooij, N.F.; Umar, A.; Algarni, H.; Wang, Y.; Zhou, G. Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing. ACS Appl. Mater. Interfaces 2022, 14, 13186–13195. [Google Scholar] [CrossRef] [PubMed]
- Al Fatease, A.; Guo, W.; Umar, A.; Zhao, C.; Alhamhoom, Y.; Muhsinah, A.B.; Mahnashi, M.H.; Ansari, Z.A. A dual-mode electrochemical aptasensor for the detection of Mucin-1 based on AuNPs-magnetic graphene composite. Microchem. J. 2022, 180, 107559. [Google Scholar] [CrossRef]
- Treerattrakoon, K.; Jiemsakul, T.; Tansarawiput, C.; Pinpradup, P.; Iempridee, T.; Luksirikul, P.; Khoothiam, K.; Dharakul, T.; Japrung, D. Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs. Anal. Biochem. 2019, 577, 89. [Google Scholar] [CrossRef] [PubMed]
- Cosma, D.; Urda, A.; Radu, T.; Rosu, M.C.; Mihet, M.; Socaci, C. Evaluation of the Photocatalytic Properties of Copper Oxides/Graphene/TiO2 Nanoparticles Composites. Molecules 2022, 27, 5803. [Google Scholar] [CrossRef]
- Wang, H.-L.; Wang, Z.-G.; Liu, S.-L. Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022, 27, 5607. [Google Scholar] [CrossRef]
- Gong, Y.; Li, H.; Pei, W.; Fan, J.; Umar, A.; Al-Assiri, M.S.; Wang, Y.; de Rooij, N.; Zhou, G. Assembly with copper(II) ions and D–π–A molecules on a graphene surface for ultra-fast acetic acid sensing at room temperature. RSC Adv. 2019, 9, 30432–30438. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, L.; Yuan, X.; Liu, X.; Diao, X.; Zhao, Q.; Tian, Z.; Sun, J.; Liu, Z.; You, J. Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: An experiment and DFT study. Dye. Pigment. 2019, 162, 573. [Google Scholar] [CrossRef]
- Xu, L.; Gai, L.; Yang, F.; Wu, S. Preparation of Nanographene and Its Effect on the Correlation Between N-Terminal Pro Brain-Type Natriuretic Peptide, Peripheral Blood Copeptin Level and Cardiac Function Grading of Patients with Heart Failure. Sci. Adv. Mater. 2021, 13, 1937–1944. [Google Scholar] [CrossRef]
- Patil, T.V.; Patel, D.K.; Dutta, S.D.; Ganguly, K.; Lim, K.-T. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021, 26, 2797. [Google Scholar] [CrossRef]
- Cirillo, G.; Pantuso, E.; Curcio, M.; Vittorio, O.; Leggio, A.; Iemma, F.; De Filpo, G.; Nicoletta, F.P. Alginate Bioconjugate and Graphene Oxide in Multifunctional Hydrogels for Versatile Biomedical Applications. Molecules 2021, 26, 1355. [Google Scholar] [CrossRef]
- Bahrami, S.; Solouk, A.; Mirzadeh, H.; Seifalian, A.M. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos. Part B Eng. 2019, 168, 421–431. [Google Scholar] [CrossRef]
- Wang, W.; Junior, J.R.P.; Nalesso, P.R.L.; Musson, D.; Cornish, J.; Mendonça, F.; Caetano, G.F.; Bártolo, P. Engineered 3D printed poly (ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2019, 100, 759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhuang, Y.; Jin, S.; Wang, K. Preparation of Nanoscale Graphene Oxide and Its Application on β-Catenin Expression in Pediatric Osteosarcoma Cells Combine with Probiotics. Sci. Adv. Mater. 2021, 13, 2131–2137. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y. A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuators B Chem. 2021, 337, 129783. [Google Scholar] [CrossRef]
- Hussein-Al-Ali, S.H.; Hussein Alali, S.H.; Al-Ani, R.; Alkrad, J.A.; Abudoleh, S.M.; Abdallah Abualassal, Q.I.; Ayoub, R.; Hussein, M.Z.; Bullo, S.; Palanisamy, A. Betulinic Acid-Graphene Oxide Nanocomposites for Cancer Treatment. Sci. Adv. Mater. 2021, 13, 2138–2148. [Google Scholar] [CrossRef]
- Singh, J.; Goyat, R. Graphene oxide: Synthesis, characterization and its applications. Res. J. Chem. Environ. 2022, 26, 150–156. [Google Scholar]
- Wan, X.; Huang, Y.; Chen, Y. Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 2012, 45, 598–607. [Google Scholar] [CrossRef]
- Ramu, A.G.; Umar, A.; Ibrahim, A.A.; Algadi, H.; Ibrahim, Y.S.A.; Choi, Y.W.D. Synthesis of porous 2D layered nickel oxide-reduced graphene oxide (NiO-rGO) hybrid composite for the efficient electrochemical detection of epinephrine in biological fluid. Environ. Res. 2021, 200, 111366. [Google Scholar] [CrossRef]
- Santosh, K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29, ISSN 2468-2179. [Google Scholar]
- Aliofkhazraei, M.; Ali, N.; Milne, W.I.; Ozkan, C.S.; Mitura, S.; Gervasoni, J.L. Graphene Science Handbook: Fabrication Methods; CRC Press: Boca Raton, FL, USA, 2016; p. 587. [Google Scholar]
- Dasari, B.L.; Nouri, J.M.; Brabazon, D.; Naher, S. Graphene and derivatives–Synthesis techniques, properties and their energy applications. Energy 2017, 140, 766. [Google Scholar] [CrossRef]
- Toh, S.Y.; Loh, K.S.; Kamarudin, S.K.; Daud, W.R.W. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterization. Chem. Eng. J. 2014, 251, 422. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Syed, J.A.; Su, D. Hybrid Supercapacitors Based on Self-Assembled Electrochemical Deposition of Reduced Graphene Oxide/Polypyrrole Composite Electrodes. J. Nanoelectron. Optoelectron. 2021, 16, 949–956. [Google Scholar] [CrossRef]
- Taghioskoui, M. Trends in graphene research. Mater. Today 2009, 12, 34–37. [Google Scholar] [CrossRef]
- Bhuyan, M.S.A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S.S. Synthesis of graphene. Int. Nano Lett. 2016, 6, 65. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192. [Google Scholar] [CrossRef]
- Ibrahim, A.; Klopocinska, A.; Horvat, K.; Abdel Hamid, Z. Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers 2021, 13, 2869. [Google Scholar] [CrossRef]
- Yu, P.; Lowe, S.E.; Simon, G.P.; Zhong, Y.L. Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 329. [Google Scholar] [CrossRef]
- Öztürk, A.; Alanyalıoğlu, M. Electrochemical fabrication and amperometric sensor application of graphene sheets. Superlattices Microstruct. 2016, 95, 56. [Google Scholar] [CrossRef]
- Parvez, K.; Li, R.; Puniredd, S.R.; Hernandez, Y.; Hinkel, F.; Wang, S.; Feng, X.; Müllen, K. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 2013, 7, 3598. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, H.; Zhen, S.G.; Poh, C.K.; Chaurasia, A.; Luo, J.; Wu, X.; Yeow, E.K.L.; Sahoo, N.G.; Lin, J.; et al. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. Rsc Adv. 2013, 3, 11745–11750. [Google Scholar] [CrossRef]
- Madurani, K.A.; Suprapto, S.; Machrita, N.I.; Bahar, S.L.; Illiya, W.; Kurniawan, F. Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry. ECS J. Solid State Sci. Technol. 2020, 9, 093013. [Google Scholar] [CrossRef]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.; McGowern, I.T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar] [CrossRef] [PubMed]
- Ma, J. A Method for Solving the Minimum Vertex Covering Problem Based on Graphene. J. Nanoelectron. Optoelectron. 2021, 16, 460–465. [Google Scholar] [CrossRef]
- Green, A.A.; Hersam, M.C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 2009, 9, 4031–4036. [Google Scholar] [CrossRef]
- Gürünlü, B.; Taşdelen-Yücedağ, Ç.; Bayramoğlu, M. Graphene Synthesis by Ultrasound Energy-Assisted Exfoliation of Graphite in Various Solvents. Crystals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Lee, C.-W.; Jeong, S.-Y.; Kwon, Y.-W.; Lee, J.-U.; Cho, S.-C.; Shin, B.-S. Fabrication of laser-induced graphene-based multifunctional sensing platform for sweat ion and human motion monitoring. Sens. Actuators A Phys. 2022, 334, 113320. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, C.; Zhang, K.; Li, H.; Cao, J.; Shao, Z.; Gong, J. Synthesis of Mn(OH)2 Nanosheets on Carbon Cloth for High-Performance Aqueous Zinc-Ion Battery. J. Nanoelectron. Optoelectron. 2021, 16, 1698–1704. [Google Scholar] [CrossRef]
- Hemani, G.K.; Vandenberghe, W.G.; Brennan, B.; Chabal, Y.J.; Walker, A.V.; Wallace, R.M.; Quevedo-Lopez, M.; Fischetti, M.V. Interfacial graphene growth in the Ni/SiO2 system using pulsed laser deposition. Appl. Phys. Lett. 2013, 103, 134102. [Google Scholar] [CrossRef]
- Cappelli, E.; Orlando, S.; Servidori, M.; Scilletta, C. Nano-graphene structures deposited by N-IR pulsed laser ablation of graphite on Si. Appl. Surf. Sci. 2007, 254, 1273. [Google Scholar] [CrossRef]
- Koh, A.T.; Foong, Y.M.; Chua, D.H. Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diam. Relat. Mater. 2012, 25, 98–102. [Google Scholar] [CrossRef]
- Barcikowski, S.; Devesa, F.; Moldenhauer, K. Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J. Nanoparticle Res. 2009, 11, 1883–1893. [Google Scholar] [CrossRef]
- Barcikowski, S.; Compagnini, G. Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 2013, 15, 3022. [Google Scholar] [CrossRef] [PubMed]
- Nancy, P.; Jose, J.; Joy, N.; Valluvadasan, S.; Philip, R.; Antoine, R.; Thomas, S.; Kalarikkal, N. Fabrication of Silver-Decorated Graphene Oxide Nano-hybrids via Pulsed Laser Ablation with Excellent Antimicrobial and Optical Limiting Performance. Nanomaterials 2021, 11, 880. [Google Scholar] [CrossRef]
- Lim, J.Y.; Mubarak, N.M.; Abdullah, E.C.; Nizamuddin, S.; Khalid, M.; Inamuddin, I.J. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. Ind. Eng. Chem. 2018, 66, 29. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef]
- Lavin-Lopez, M.P.; Valverde, J.L.; Ordoñez-Lozoya, S.; Paton-Carrero, A.; Romero, A. Role of inert gas in the Cvd-graphene synthesis over polycrystalline nickel foils. Mater. Chem. Phys. 2019, 222, 173. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008, 9, 30–35. [Google Scholar] [CrossRef]
- Chae, S.J.; GüneŞ, F.; Kim, K.K.; Kim, E.S.; Han, G.H.; Kim, S.M.; Shin, H.J.; Yoon, S.M.; Choi, J.Y.; Park, M.H.; et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. Weinh. 2009, 21, 2328–2333. [Google Scholar] [CrossRef]
- Kim, M.; Safron, N.S.; Han, E.; Arnold, M.S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 2010, 10, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S.S.; Guillemette, J.; Skulason, H.S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 2011, 49, 4204–4210. [Google Scholar] [CrossRef]
- Suk, J.W.; Kitt, A.; Magnuson, C.W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A.K.; Goldberg, B.B.; Ruoff, R.S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef]
- Chaitoglou, S.; Bertran, E. Effect of temperature on graphene grown by chemical vapor deposition. J. Mater. Sci. 2017, 52, 8348–8356. [Google Scholar] [CrossRef]
- Saeed, M.; Alshammari, Y.; Majeed, S.A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Yang, H.; Shi, Z. Large-scale synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Adv. 2016, 6, 93119–93124. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Wright, J.; Heller, M.J. Graphene bi-and trilayers produced by a novel aqueous arc discharge process. Carbon 2016, 102, 339. [Google Scholar] [CrossRef]
- Cheng, G.-W.; Chu, K.; Chen, J.S.; Tsai, J.T.H. Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system. Superlattices Microstruct. 2017, 104, 258. [Google Scholar] [CrossRef]
- Tan, H.; Wang, D.; Guo, Y. A Strategy to Synthesize Multilayer Graphene in Arc-Discharge Plasma in a Semi-Opened Environment. Materials 2019, 12, 2279. [Google Scholar] [CrossRef]
- Subrahmanyam, K.S.; Panchakarla, L.S.; Govindaraj, A.; Rao, C.N.R. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 2009, 113, 4257. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Takahashi, T.; Oh, T.; Heller, M.J. An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 2015, 11, 5041. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wang, J.; Holloway, B.C.; Outlaw, R.A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D.M. A mechanism for carbon nanosheet formation. Carbon N. Y. 2007, 45, 2229–2234. [Google Scholar] [CrossRef]
- Yuan, G.D.; Zhang, W.J.; Yang, Y.; Tang, Y.B.; Li, Y.Q.; Wang, J.X.; Meng, X.M.; He, Z.B.; Wu, C.M.L.; Bello, I.; et al. Graphene sheets via microwave chemical vapor deposition. Chem. Phys. Lett. 2009, 467, 361–364. [Google Scholar] [CrossRef]
- Kim, J.; Ishihara, M.; Koga, Y.; Tsugawa, K.; Hasegawa, M.; Iijima, S. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 091502. [Google Scholar] [CrossRef]
- Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Tendeloo, G.V.; Vanhulsel, A.; Haesendonck, C.V. Synthesis of few-layer graphene via microwave plas-ma-enhanced chemical vapour deposition. Nanotechnology 2008, 19, 305604. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, M.; Outlaw, R.A.; Zhao, X.; Manos, D.M.; Holloway, B.C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon N. Y. 2004, 42, 2867–2872. [Google Scholar] [CrossRef]
- Krivchenko, V.A.; Dvorkin, V.V.; Dzbanovsky, N.N.; Timofeyev, M.A.; Stepanov, A.S.; Rakhimov, A.T.; Suetin, N.V.; Vilkov, O.Y.; Yashina, L.V. Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon N. Y. 2012, 50, 1477–1487. [Google Scholar] [CrossRef]
- Stefanos Chaitoglou, Roger Amade, Enric Bertran, Insights into the inherent properties of vertical graphene flakes towards hydrogen evolution reaction. Appl. Surf. Sci. 2022, 592, 153327, ISSN 0169-4332. [CrossRef]
- Bo, Z.; Yang, Y.; Chen, J.; Yu, K.; Yan, J.; Cen, K. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 2013, 5, 5180–5204. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Yannopoulos, S.N.; Siokou, A.; Nasikas, N.K.; Dracopoulos, V.; Ravani, F.; Papatheodorou, G.N. CO2-Laser-induced growth of epitaxial graphene on 6H-SiC(0001). Adv. Funct. Mater. 2012, 22, 113–120. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Umar, A.; Ameen, S.; Imran, M.; Kumar, R.; Wang, Y.; Albargi, H.; Jalalah, M.; Alsaiari, M.A.; Ibrahim, A.A.; et al. Colloidal Synthesis of NiMn2O4nanodisks decorated reduced graphene oxide for electrochemical applications. Microchem. J. 2021, 160, 105630. [Google Scholar]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zeng, J.; Gao, Y.; Li, H.; de Rooij, N.; Umar, A.; Algarni, H.; Wang, Y.; Zhou, G. Charge transfer driven by redox dye molecules on graphene nanosheets for room-temperature gas sensing. Nanoscale 2021, 13, 18596–18607. [Google Scholar] [CrossRef] [PubMed]
- Olean-Oliveira, A.; Oliveira Brito, G.A.; Cardoso, C.X.; Teixeira, M.F.S. Nanocomposite Materials Based on Electrochemically Synthesized Graphene Polymers: Molecular Architecture Strategies for Sensor Applications. Chemosensors 2021, 9, 149. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Cao, N.; Wang, Y.; Li, H.; de Rooij, N.F.; Umar, A.; Feng, Y.; French, P.J.; Zhou, G. Three-Dimensional Graphene-Based Foams with “Greater Electron Transferring Areas” Deriving High Gas Sensitivity. ACS Appl. Nano Mater. 2021, 4, 13234–13245. [Google Scholar] [CrossRef]
- Wang, C.; Peng, Q.; Wu, J.; He, X.; Tong, L.; Luo, Q.; Li, J.; Moody, S.; Liu, H.; Wang, R.; et al. Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading. Carbon 2014, 80, 279–289. [Google Scholar] [CrossRef]
- Pei, W.; Zhang, T.; Wang, Y.; Chen, Z.; Umar, A.; Li, H.; Guo, W. Enhancement of Charge Transfer between Graphene and Donor-π-Acceptor Molecule for Ultrahigh Sensing Performance. Nanoscale 2017, 9, 16273–16280. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Zhang, Z.; Wang, X.; Tang, J.; Liu, H.; Shao, Q.; Ding, T.; Umar, A.; Guo, Z. Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 2019, 542, 159–167. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Shang, Y.; Umar, A.; Xie, P.; Qi, Q.; Zhou, G. One-Step Fabrication of Pyranine Modified- Reduced Graphene Oxide with Ultrafast and Ultrahigh Humidity Response. Sci. Rep. 2017, 7, 2713. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.-J.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y.J. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Comm. 2012, 3, 1298. [Google Scholar] [CrossRef]
- Schafhaeutl, C. Ueber die Verbindungen des Kohlenstoffes Mit Silicium, Eisen und Andern Metallen, Welche die Verschiedenen Arten von Gusseisen, Stahl und Schmiedeeisen Bilden. J. Prakt. Chem. 1840, 19, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Brodie, B.C. On the atomic weight of graphite. Philos. Trans. R. Soc. London 1859, 149, 249–259. [Google Scholar]
- Staudenmaier, L. Verfahrenzurdarstellung der graphits äure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487. [Google Scholar] [CrossRef]
- Hummers Jr, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Fu, L.; Liu, H.B.; Zou, Y.; Li, B. Technology research on oxidative degree of graphite oxide prepared by Hummers method. Carbon 2005, 124, 10–14. (In Chinese) [Google Scholar]
- Jeong, T.K.; Choi, M.K.; Sim, Y.; Lim, J.T.; Kim, G.S.; Seong, M.J.; Hyung, J.H.; Kim, K.S.; Umar, A.; Lee, S.K. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate. Sci. Rep. 2016, 6, 33835. [Google Scholar] [CrossRef]
- Su, C.Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C.H.; Li, L.J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 2009, 21, 5674–5680. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fugetsu, B. Mass production of graphene oxide from expanded graphite. Mater. Lett. 2013, 109, 207–210. [Google Scholar] [CrossRef]
- Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; et al. Wet chemical synthesis of graphene. Adv. Mater. 2013, 25, 3583–3587. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 2015, 81, 826–834. [Google Scholar] [CrossRef]
- Panwar, V.; Chattree, A.; Pal, K. A new facile route for synthesizing of graphene oxide using mixture of sulfuric–nitric–phosphoric acids as intercalating agent. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 73, 235–241. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-hproduction of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosillo-Lopez, M.; Salzmann, C.G. A simple and mild chemical oxidation route to high-purity nano-graphene oxide. Carbon 2016, 106, 56–63. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient synthesis of graphene oxide based on improved Hummers method. Sci. Rep. 2016, 6, 36143. [Google Scholar] [CrossRef]
- Dimiev, A.M.; Ceriotti, G.; Metzger, A.; Kim, N.D.; Tour, J.M. Chemical mass production of graphene nanoplatelets in ~100% yield. ACS Nano 2016, 10, 274–279. [Google Scholar] [CrossRef]
- Pei, S.; Wei, Q.; Huang, K.; Cheng, H.M.; Ren, W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 2018, 9, 145. [Google Scholar] [CrossRef]
- Ranjan, P.; Agrawal, S.; Sinha, A.; Rajagopala Rao, T.; Balakrishnan, J.; Thakur, A.D. A low-costnon-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 2018, 8, 12007. [Google Scholar] [CrossRef] [PubMed]
- Hummers, J.W.S. Preparation of Graphitic Acid. U.S. Patent 2,798,878, 9 July 1957. [Google Scholar]
- Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced GO films as transparent conductors. ACS Nano 2008, 2, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mueller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
- Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H.S. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zeng, B.; Liu, J.; Dong, J.; Liu, X.; Wu, Z.; Yang, X.; Li, Z. High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2009; p. 012051. [Google Scholar]
- Hasani, A.; Dehsari, H.S.; Zarandi, A.A.; Salehi, A.; Taromi, F.A.; Kazeroni, H. Visible light-assisted photoreduction of graphene oxide using CdS nanoparticles and gas sensing properties. J. Nanomater. 2015, 2015, 71–82. [Google Scholar] [CrossRef]
- Pan, X.; Ji, J.; Zhang, N.; Xing, M. Research progress of graphene-based nanomaterials for the environmental remediation. Chin. Chem. Lett. 2020, 31, 1462–1473. [Google Scholar] [CrossRef]
- Zhang, M.; Okazaki, T.; Iizumi, Y.; Miyako, E.; Yuge, R.; Bandow, S.; Iijima, S.; Yudasaka, M. Preparation of small-sized graphene oxide sheets and their biological applications. J. Mater. Chem. B 2016, 4, 121–127. [Google Scholar] [CrossRef]
- Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004, 42, 2929–2937. [Google Scholar] [CrossRef]
- Kumar, P.V.; Bardhan, N.M.; Tongay, S.; Wu, J.; Belcher, A.M.; Grossman, J.C. Scalable enhancement of GO properties by thermally driven phase transformation. Nat. Chem. 2014, 6, 151–158. [Google Scholar] [CrossRef]
- Chien, C.T.; Li, S.S.; Lai, W.J.; Yeh, Y.C.; Chen, H.A.; Chen, I.; Chen, L.C.; Chen, K.H.; Nemoto, T.; Isoda, S. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed. 2012, 51, 6662–6666. [Google Scholar] [CrossRef]
- Luo, Z.; Vora, P.M.; Mele, E.J.; Johnson, A.C.; Kikkawa, J.M. Photoluminescence and band gap modulation in GO. Appl. Phys. Lett. 2009, 94, 111909. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Casalongue, H.S.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705. [Google Scholar] [CrossRef]
- Wang, H.; Robinson, J.T.; Diankov, G.; Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, J.; Pan, D.; Wang, Y.; Noetzel, R.; Li, H.; Xie, P.; Pei, W.; Umar, A.; Jiang, L.; et al. Mimicking a Dog’s Nose: Scrolling Graphene Nanosheets. ACS Nano 2018, 12, 2521–2530. [Google Scholar] [CrossRef]
- Pitkethly, M.J. Nanomaterials-the driving force. Mater. Today 2004, 7, 20–29. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H.-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009, 47, 493–499. [Google Scholar] [CrossRef]
- Johari, P.; Shenoy, V.B. Modulating optical properties of graphene oxide: Role of prominent functional groups. ACS Nano 2011, 5, 7640–7647. [Google Scholar] [CrossRef]
- Kang, D.; Shin, H.S. Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett. 2012, 13, 39–43. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The chemical and structural analysis of GO with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Bannov, A.; Timofeeva, A.; Shinkarev, V.; Dyukova, K.; Ukhina, A.; Maksimovskii, E.; Yusin, S. Synthesis and studies of properties of graphite oxide and thermally expanded graphite. Prot. Metals. Phys. Chem. Surf. 2014, 50, 183–190. [Google Scholar] [CrossRef]
- Broughton, D.; Wentworth, R. Mechanism of decomposition of hydrogen peroxide solutions with manganese dioxide, I.J. Am. Chem. Soc. 1947, 69, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, U.; Holst, R. Über die Säurenatur und die Methylierung von Graphitoxyd. Ber. Dtsch. Chem. Ges. A B 1939, 72, 754–771. [Google Scholar] [CrossRef]
- Ruess, G. Ber das Graphitoxyhydroxyd (Graphitoxyd). Mon. Fr. Chem. 1947, 76, 381–417. [Google Scholar] [CrossRef]
- Scholz, W.; Boehm, H.P. Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Z. Anorg. Allg. Chem. 1969, 369, 327–340. [Google Scholar] [CrossRef]
- Nakajima, T.; Matsuo, Y. Formation process and structure of graphite oxide. Carbon 1994, 32, 469–475. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited II. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Savazzi, F.; Risplendi, F.; Mallia, G.; Harrison, N.M.; Cicero, G. Unravelling some of the structure–property relationships in graphene oxide at low degree of oxidation. J. Phys. Chem. Lett. 2018, 9, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006, 18, 2740–2749. [Google Scholar] [CrossRef]
- Liu, Z.; Nørgaard, K.; Overgaard, M.H.; Ceccato, M.; Mackenzie, D.M.A.; Stenger, N.; Stipp, S.L.S.; Hassenkam, T. Direct observation of oxygen configuration on individual graphene oxide sheets. Carbon 2018, 127, 141–148. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Zhong, J.; Song, L.; Wu, J.; Su, W. Graphene field emitters: A review of fabrication, characterization and properties. Mater. Sci. Eng. B 2017, 220, 44–58. [Google Scholar] [CrossRef]
- Chen, X.; Fan, K.; Liu, Y.; Li, Y.; Liu, X.; Feng, W.; Wang, X. Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering. Adv. Mater. 2022, 34, 2101665. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.B. Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 2015, 115, 2483–2531. [Google Scholar] [CrossRef]
- Steinert, B.W.; Dean, D.R. Magnetic field alignment and electrical properties of solution cast PET–carbon nanotube composite films. Polymer 2009, 50, 898–904. [Google Scholar] [CrossRef]
- Jia, R.; Xie, P.; Feng, Y.; Chen, Z.; Umar, A.; Wang, Y. Dipole-Modified Graphene with Ultrahigh Gas Sensibility. Appl. Surface Sci. 2018, 440, 409–414. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets. Chem. Mater. 2009, 21, 3514–3520. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.B.T.; Ruoff, R.S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, L.; Li, F. Structural Characterization. In Graphene Oxide: Physics and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 15–29, Chapter 2. [Google Scholar]
- Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide using High-Resolution in Situ X-ray-based Spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019. [Google Scholar] [CrossRef]
- Hintermueller, D.; Prakash, R. Comprehensive Characterization of Solution-Cast Pristine and Reduced Graphene Oxide Composite Polyvinylidene Fluoride Films for Sensory Applications. Polymers 2022, 14, 2546. [Google Scholar] [CrossRef]
- Ahmed, A.; Ibrahim, A.A.; Algadi, H.; Albargi, H.; Alsairi, M.A.; Wang, Y.; Akbar, S. Supramolecularly assembled isonicotinamide/ reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. Environ. Technol. Innov. 2022, 25, 102066. [Google Scholar]
- Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural Evolution during the Reduction of Chemically Derived Graphene Oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Schniepp, H.C.; Li, J.-L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Functionalized Single Graphene Sheets derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535–8539. [Google Scholar] [CrossRef] [PubMed]
- Shahriary, L.; Athawale, A.A. Graphene Oxide Synthesized by using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Wei, N.; Peng, X.; Xu, Z. Understanding Water Permeation in Graphene Oxide Membranes. ACS Appl. Mater. Interfaces 2014, 6, 5877–5883. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zheng, W.G.; Yan, Q.; Yang, Y.; Wang, J.W.; Lu, Z.H.; Ji, G.Y.; Yu, Z.Z. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 2010, 51, 1191–1196. [Google Scholar] [CrossRef]
- Seekaew, Y.; Lokavee, S.; Phokharatkul, D.; Wisitsoraat, A.; Kerdcharoen, T.; Wongchoosuk, C. Low-cost and flexible printed graphene–PEDOT: PSS gas sensor for ammonia detection. Org. Electron. 2014, 15, 2971–2981. [Google Scholar] [CrossRef]
- Daoudi, K.; Gaidi, M.; Columbus, S.; Shameer, M.; Alawadhi, H. Hierarchically assembled silver nanoprism-graphene oxide-silicon nanowire arrays for ultrasensitive surface enhanced Raman spectroscopy sensing of atrazine. Mater. Sci. Semicond. Processing 2022, 138, 106288. [Google Scholar] [CrossRef]
- Vandenabeele, P. ; Practical Raman Spectroscopy: An introduction; Wiley Online Library: Hoboken, NJ, USA, 2013. [Google Scholar]
- Liu, W.-W.; Chai, S.P.; Mohamed, A.R.; Hashim, U. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Eng. Chem. 2014, 20, 1171–1185. [Google Scholar] [CrossRef]
- Gurunathan, S.; Arsalan Iqbal, M.; Qasim, M.; Park, C.H.; Yoo, H.; Hwang, J.H.; Uhm, S.J.; Song, H.; Park, C.; Do, J.T.; et al. Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells. Nanomaterials 2019, 9, 969. [Google Scholar] [CrossRef]
- Mantovani, S.; Khaliha, S.; Marforio, T.D.; Kovtun, A.; Favaretto, L.; Tunioli, F.; Bianchi, A.; Petrone, G.; Liscio, A.; Palermo, V.; et al. Facile high-yield synthesis and purification of lysine-modified graphene oxide for enhanced drinking water purification. Chem. Commun. 2022, 58, 9766–9769. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, L.; Wu, Y.; Feng, C.; Ou, K.; Wang, Z.; Huang, Y.; Lv, Y.; Miao, Y.E.; Liu, T. Porous reduced graphene oxide/phenolic nanomesh membranes with ternary channels for ultrafast water purification. Compos. Commun. 2022, 33, 101216. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. Graphene oxide papers modified by divalent ions—Enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572–578. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef] [PubMed]
- Hamad, H.N.; Idrus, S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers 2022, 14, 783. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Feng, Y.; Cao, N.; Li, H.; de Rooij, N.; Umar, A.; French, P.J.; Wang, Y.; Zhou, G. Carbon-Iron Electron Transport Channels in Porphyrin–Graphene Complex for ppb-Level Room-Temperature NO Gas Sensing. Small 2022, 18, 2103259. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Singh, D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Huang, Y.; Zhang, F.; Yang, X.; Ma, Y.; Chen, Y. Preventing graphene sheets from restacking for high-capacitance performance. J. Phys. Chem. C 2011, 115, 23192–23197. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Umar, A.; Wang, Y.; Li, H.; Zhou, G. Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO2 Gas Sensibility. ACS Appl. Mater. Interfaces 2017, 9, 11819–11827. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, D.; Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 2011, 360, 463–470. [Google Scholar] [CrossRef]
- Chaitoglou, S.; Zisis, G.; Spachis, L.; Raptis, I.; Papanikolaou, N.; Vavouliotis, A.; Penedo, R.; Fernandes, N.; Dimoulas, A. Layer-by-layer assembled graphene coatings on polyurethane films as He permeation barrier. Prog. Org. Coat. 2021, 150, 105984. [Google Scholar] [CrossRef]
- Sun, X.-F.; Qin, J.; Xia, P.-F.; Guo, B.-B.; Yang, C.-M.; Song, C.; Wang, S.G. Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 2015, 281, 53–59. [Google Scholar] [CrossRef]
- Goyat, R.; Singh, J.; Umar, A.; Saharan, Y.; Kumar, V.; Algadi, H.; Akbar, S.; Baskoutas, S. Modified low-temperature synthesis of graphene oxide nanosheets: Enhanced adsorption, antibacterial and antioxidant properties. Environ. Res. 2022, 215, 114245. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tang, B.; Wu, P. Development of novel SiO2-GO nanohybrid/polysulfone membrane with enhanced performance. J. Memb. Sci. 2014, 451, 94–102. [Google Scholar] [CrossRef]
- Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 2015, 393, 65–78. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, J.; Lin, Y.; Lin, W.; Fang, Y. Novel graphene oxide-silver nanorod composites with enhanced photocatalytic performance under visible light irradiation. J. Alloys Compd. 2017, 698, 170–177. [Google Scholar] [CrossRef]
- La, D.D.; Patwari, J.M.; Jones, L.A.; Antolasic, F.; Bhosale, S.V. Fabrication of a GNP/Fe–Mg binary oxide composite for effective removal of arsenic from aqueous solution. ACS Omega 2017, 2, 218–226. [Google Scholar] [CrossRef]
- Jiao, T.; Liu, Y.; Wu, Y.; Zhang, Q.; Yan, X.; Gao, F.; Bauer, A.J.P.; Liu, J.; Zeng, T.; Li, B. Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes. Sci. Rep. 2015, 5, 12451. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Luo, X.; Wang, C.; Wang, L.; Deng, F.; Luo, S.; Tu, X.; Au, C. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chem. Eng. J. 2013, 220, 98–106. [Google Scholar] [CrossRef]
- Yang, X.; Chen, C.; Li, J.; Zhao, G.; Ren, X.; Wang, X. Graphene oxide-iron oxide and reduced graphene oxide iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012, 2, 8821–8826. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Yang, J.-W. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J. Ind. Eng. Chem. 2012, 18, 1178–1185. [Google Scholar] [CrossRef]
- Beura, R.; Thangadurai, P. Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. J. Phys. Chem. Solids 2017, 102, 168–177. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Deepa, J.R. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci. 2017, 490, 343–356. [Google Scholar] [CrossRef]
- Shan, X.; Guo, X.; Yin, Y.; Miao, Y.; Dong, H. Surface modification of graphene oxide by goethite with enhanced tylosin photocatalytic activity under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 420–427. [Google Scholar] [CrossRef]
- Huang, T.; Wu, J.; Zhao, Z.; Zeng, T.; Zhang, J.; Xu, A.; Zhou, X.; Qi, Y.; Ren, J.; Zhou, R.; et al. Synthesis and photocatalytic performance of CuO-CeO2/graphene oxide. Mater. Lett. 2016, 185, 503–506. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016, 213, 753–762. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Curcio, E.; Drioli, E. Process intensification in the textile industry: The role of membrane technology. J. Environ. Manag. 2004, 73, 267–274. [Google Scholar] [CrossRef]
- Saharan, Y.; Singh, J.; Goyat, R.; Umar, A.; Algadi, H.; Ibrahim, A.A.; Kumar, R.; Baskoutas, S. Nanoporous and hydrophobic new Chitosan-Silica blend aerogels for enhanced oil adsorption capacity. J. Clean. Prod. 2022, 351, 131247. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valorization 2018, 9, 513–529. [Google Scholar] [CrossRef]
- Roy, S.; Singha, N.R. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. Membranes 2017, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Zhang, J.; Lv, L.; Lv, Y.; Jiang, Y. Magnetically Ultrastabilized Graphene Oxide-Based Membrane Filter for Point-of-Use Water Treatment. ACS EST Eng. 2022, 2, 769–779. [Google Scholar] [CrossRef]
- Al-Gamal, A.Q.; Saleh, T.A. Design and manufacturing of a novel thin-film composite membrane based on polyamidoamine-grafted graphene nanosheets for water treatment. J. Water Process Eng. 2022, 47, 102770. [Google Scholar] [CrossRef]
- Jia, F.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z.; Qu, H.; Wang, T.; Ye, Z.; Zhu, Z.; et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654. [Google Scholar] [CrossRef]
- Raza, A.; Hassan, J.Z.; Mahmood, A.; Nabgan, W.; Ikram, M. Recent advances in membrane-enabled water desalination by 2D frameworks: Graphene and beyond. Desalination 2022, 531, 115684. [Google Scholar] [CrossRef]
- Kumar, M.; Sreedhar, N.; Thomas, N.; Mavukkandy, M.; Ismail, R.A.; Aminabhavi, T.M.; Arafat, H.A. Polydopamine-coated graphene oxide nanosheets embedded in sulfonated poly (ether sulfone) hybrid UF membranes with superior antifouling properties for water treatment. Chem. Eng. J. 2022, 433, 133526. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Kim, J.; van der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Kim, E.B.; Imran, M.; Umar, A.; Akhtar, M.S.; Ameen, S. Indandione oligomer @graphene oxide functionalized nanocomposites for enhanced and selective detection of trace Cr2+ and Cu2+ ions. Adv. Compos. Hybrid Mater. 2022, 5, 1582–1594. [Google Scholar] [CrossRef]
- Al Aani, S.; Wright, C.J.; Atieh, M.A.; Hilal, N. Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination 2017, 401, 1–15. [Google Scholar] [CrossRef]
- Mueller, N.C.; van der Bruggen, B.; Keuter, V.; Luis, P.; Melin, T.; Pronk, W.; Reisewitz, R.; Rickerby, D.; Rios, G.M.; Wennekes, W.; et al. Nanofiltration and nanostructured membranes-Should they be considered nanotechnology or not? J. Hazard. Mater. 2012, 211–212, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.F.T.; Boerrigter, M.; Faccini, M.; Chaumette, C.; Arockiasamy, L.; Bundschuh, J. Photocatalytic activity and synthesis procedures of TiO2 nanoparticles for potential applications in membranes. In Application of Nanotechnology in Membranes for Water Treatment; Figoli, J.B.A., Hoinkis, J., Altinkaya, S.A., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2017. [Google Scholar]
- Cheng, M.; Yao, C.; Su, Y.; Liu, J.; Xu, L.; Bu, J.; Wang, H.; Hou, S. Cyclodextrin modified graphene membrane for highly selective adsorption of organic dyes and copper (II) ions. Eng. Sci. 2022, 18, 299–307. [Google Scholar] [CrossRef]
- Meshhal, M.; Kühn, O. Diffusion of Water Confined between Graphene Oxide Layers: Implications for Membrane Filtration. ACS Appl. Nano Mater. 2022, 5, 11119–11128. [Google Scholar] [CrossRef]
- Liu, T.; Lyv, J.; Xu, Y.; Zheng, C.; Liu, Y.; Fu, R.; Liang, L.; Wu, J.; Zhang, Z. Graphene-based woven filter membrane with excellent strength and efficiency for water desalination. Desalination 2022, 533, 115775. [Google Scholar] [CrossRef]
- Kumar, M.; Mukherjee, T.K.; Sharma, I.; Upadhyay, S.K.; Singh, R. Role of Bacteria in Bioremediation of Chromium from Wastewaters: An Overview. Bio Sci. Res. Bull. 2021, 37, 77–87. [Google Scholar] [CrossRef]
- Xu, K.; Ding, P.; Li, Y.; Chen, L.; Xu, J.; Duan, X.; Zeng, F. Graphene Directly Growth on Non-Metal Substrate from Amorphous Carbon Nano Films Without Transfer and Its Application in Photodetector. Sci. Adv. Mater. 2021, 13, 574–582. [Google Scholar] [CrossRef]
- Celik, E.; Park, H.; Choi, H.; Choi, H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011, 45, 274–282. [Google Scholar] [CrossRef]
- Xia, S.; Ni, M. Preparation of poly (vinylidene fl uoride) membranes with graphene oxide addition for natural organic matter removal. J. Membr. Sci. 2015, 473, 54–62. [Google Scholar] [CrossRef]
- Arsuaga, J.M.; Sotto, A.; del Rosario, G.; Martínez, A.; Molina, S.; Teli, S.B.; de Abajo, J. Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 2013, 428, 131–141. [Google Scholar] [CrossRef]
- Liang, S.; Xiao, K.; Mo, Y.; Huang, X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J. Membr. Sci. 2012, 394–395, 184–192. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, Y.; Xu, J.; Han, Y.; Xu, X. Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Appl. Surf. Sci. 2014, 316, 333–340. [Google Scholar] [CrossRef]
- Hong, J.; He, Y. Effects of nano sized zinc oxide on the performance of PVDF micro filtration membranes. Desalination 2012, 302, 71–79. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Abdulkarim, A.A.; Ismail, S.; Seng, O.B. Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal. Korean J. Chem. Eng. 2016, 33, 997–1007. [Google Scholar] [CrossRef]
- Chung, Y.T.; Ba-abbad, M.M.; Mohammad, A.W. Functionalization of zinc oxide (ZnO) nanoparticles and its effects on polysulfone-ZnO membranes. Desalin. Water Treat. 2017, 57, 7801–7811. [Google Scholar] [CrossRef]
- Ghoul, J.E.L.; Ghiloufi, I.; Mir, L.E.L.; Arabia, S. Efficiency of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles. J. Ovonic Res. 2017, 13, 83–90. [Google Scholar]
- Engineering, M.; Jia, H.; Wu, Z.; Liu, N. Effect of nano-ZnO with different particle size on the performance of PVDF composite membrane. Plast. Rubber Compos. 2016, 46, 1–7. [Google Scholar]
- Dipheko, T.D.; Matabola, K.P.; Kotlhao, K.; Moutloali, R.M.; Klink, M. Fabrication and Assessment of ZnO Modified Polyethersulfone Membranes for Fouling Reduction of Bovine Serum Albumin. Int. J. Polym. Sci. 2017, 2017, 3587019. [Google Scholar] [CrossRef]
- Jo, Y.J.; Choi, E.Y.; Choi, N.W.; Kim, C.K. Antibacterial and Hydrophilic Characteristics of Poly (ether sulfone) Composite Membranes Containing Zinc Oxide Nanoparticles Grafted with Hydrophilic Polymers. Ind. Eng. Chem. Res. 2016, 55, 7801–7809. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, W.; Shi, M.; Wang, Z.; Wang, J. Improving permeability and antifouling performance of polyethersulfone ultra fi ltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 2015, 478, 105–116. [Google Scholar] [CrossRef]
- Bai, H.; Liu, Z.; Sun, D.D. A hierarchically structured and multifunctional membrane for water treatment. Appl. Catal. B Environ. 2012, 111–112, 571–577. [Google Scholar] [CrossRef]
- Bahadar, S.; Alamry, K.A.; Bifari, E.N.; Asiri, A.M.; Yasir, M.; Gzara, L.; Zulfiqar, R. Assessment of antibacterial cellulose nanocomposites for water permeability and salt rejection. J. Ind. Eng. Chem. 2015, 24, 266–275. [Google Scholar]
- Akin, I.; Ersoz, M. Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B. Desalin. Water Treat. 2016, 57, 3037–3047. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Zhu, H.; Zhang, Y.; Du, Q.; Qin, X. Effects of Zinc Oxide Nanospheres on the Separation Performance of Hollow Fiber Poly (piperazine-amide) Composite Nanofiltration Membranes. Fibers Polym. 2016, 17, 836–846. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Liu, C. Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination 2017, 408, 102–109. [Google Scholar] [CrossRef]
- Isawi, H.; El-sayed, M.H.; Feng, X.; Shawky, H.; Abdel, M.S. Applied Surface Science Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles. Appl. Surf. Sci. 2016, 385, 268–281. [Google Scholar] [CrossRef]
- Badrinezhad, L.; Ghasemi, S. Preparation and characterization of polysulfone/graphene oxide nanocomposite membranes for the separation of methylene blue from water. Polym. Bull. 2017, 75, 469–484. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, X.; Chen, J.; Yang, F. Optimization of preparation conditions of poly (vinylidene fluoride)/graphene oxide micro fi ltration membranes by the Taguchi experimental design. Desalination 2014, 334, 17–22. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Pastrana-Martı, L.M.; Figueiredo, L.; Faria, J.L.; Silva, A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015, 7, 179–190. [Google Scholar]
- Kiran, S.A.; Thuyavan, Y.L.; Arthanareeswaran, G.; Matsuura, T.; Ismail, A.F. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem. Eng. J. 2016, 286, 528–537. [Google Scholar] [CrossRef]
- Zinadini, S.; Akbar, A.; Rahimi, M.; Vatanpour, V. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Chae, H.; Lee, J.; Lee, C.; Kim, I.; Park, P. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 2015, 483, 128–135. [Google Scholar] [CrossRef]
- Ali, M.E.A.; Wang, L.; Wang, X.; Feng, X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 2016, 386, 67–76. [Google Scholar] [CrossRef]
- Shen, L.; Xiong, S.; Wang, Y. Graphene oxide incorporated thin- fi lm composite membranes for forward osmosis applications. Chem. Eng. Sci. 2016, 143, 194–205. [Google Scholar] [CrossRef]
- Crock, C.A.; Rogensues, A.R.; Shan, W.; Tarabara, V.V. Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res. 2013, 47, 3984–3996. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofi ltration Membrane forWater Purification. Adv. Funct. Mater. 2013, 23, 3693–3700. [Google Scholar] [CrossRef]
- Toroghi, M.; Raisi, A.; Aroujalian, A. Preparation and characterization of polyethersulfone/silver nanocomposite ultrafiltration membrane for antibacterial applications. Polym. Adv. Technol. 2014, 25, 711–722. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, K.; de Gusseme, B.; Verstraete, W. Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res. 2012, 46, 2077–2087. [Google Scholar] [CrossRef]
- Koseoglu-Imer, D.Y.; Kose, B.; Altinbas, M.; Koyuncu, I. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci. 2013, 428, 620–628. [Google Scholar] [CrossRef]
- Ben-Sasson, M.; Lu, X.; Bar-Zeev, E.; Zodrow, K.R.; Nejati, S.; Qi, G.; Giannelis, E.P.; Elimelech, M. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 2014, 62, 260–270. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Wang, J.; Cao, B.; Tang, C.Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 2016, 50, 9543–9550. [Google Scholar] [CrossRef] [PubMed]
- Hoek, E.M.V.; Ghosh, A.K.; Huang, X.; Liong, M.; Zink, J.I. Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination 2011, 283, 89–99. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J. Membr. Sci. 2012, 389, 522–531. [Google Scholar] [CrossRef]
- Amini, M.; Rahimpour, A.; Jahanshahi, M. Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalin. Water Treat. 2016, 57, 14013–14023. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Rahbari-Sisakht, M.; Ismail, A.F. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 2014, 237, 70–80. [Google Scholar] [CrossRef]
Top Down Method | |||||
---|---|---|---|---|---|
S. No | Methods | Thickness of Graphene Obtained | Advantage | Disadvantage | Reference |
1 | Micromechanical exfoliation | Single layer of graphene | Simple method with the formation of large size layers of graphene | Low yield | [32,33,34,35,36,37,38] |
2 | Electrochemical exfoliation | Single and few layers of graphene formed | High yield and quick process | Having structural defects and workup is expensive. | [40,41,42,43] |
3 | Liquid phase exfoliation | Mostly single layers of graphene obtained | Reliable and scalable method with the high exfoliation of graphite | Involves the use of hazardous chemical (chloro sulfonic acid) and the removal of used acid in the process is costly | [45,46,47] |
4 | Laser ablation | Single, bi, and multiple layers of graphene | Rapid, simple, and eco-friendly process with high-quality graphene. | Small laser-irradiating area for evaporating the target material | [49,50,51,52,53,54,55] |
Bottom Up Method | |||||
S. No | Techniques | Thickness | Advantage | Disadvantage | Reference |
1 | CVD | Mono and few-layer graphene sheets | Large size sheets of graphene obtained | Difficult to control numerous parameters | [61,62,63,64,65,66] |
2 | Arc discharge | Single, bi, and few layers of graphene | Cost-effective method with high-quality product | Requires a gaseous atmosphere, and the product contains structural defects | [68,69,70] |
3 | Plasma enhanced chemical vapor deposition | Bi and tri layers of graphene | Low temperature and less duration with high production | Requires high plasma power and different substrates | [74,75,76,77,78,79,80,81] |
4 | Pyrolysis | Few-layer graphene | Requires low cost and the high quality of graphene produced | Method used on a small scale | [83] |
Methods | Year | Starting Material | Different Oxidants Used | Reaction Time for GO Synthesis | Temperature °C | Features | References |
---|---|---|---|---|---|---|---|
Brodie | 1859 | Graphite | KclO3, HNO3 | 3–4 days | 60 | First attempt to synthesize GO | [96] |
Staudenmaier | 1898 | Graphite | KclO3, H2SO4, HNO3 | 96 h | Room temperature | Improved efficiency | [97] |
Hummers | 1958 | Graphite | KmnO4, H2SO4, NaNO3 | <2 h | <20–35–98 | Water-free, less than 2 h of reaction time | [98] |
Fu | 2005 | Graphite | KmnO4, H2SO4, NaNO3 | <2 h | 35 | Validation of NaNO3 | [99] |
Shen | 2009 | Graphite | Benzoyl peroxide | 10 min | 110 | Fast and non-acidic | [100] |
Su | 2009 | Graphite | KmnO4, H2SO4 | 4 h | Room temperature | Large-size GO sheets formed | [101] |
Marcano and Tour | 2010 & 2018 | Graphite | KmnO4, H3PO4, H2SO4 | 12 h | 50 | Eco-friendly resulting in a high yield | [102] |
Sun | 2013 | Graphite | KmnO4, H2SO4 | 1.5 h | Room temperature-90 | High-yield and safe method | [103] |
Eigler | 2013 | Graphite | KmnO4, NaNO3, H2SO4 | 16 h | 10 | High-quality GO produced | [104] |
Chen | 2015 | Graphite | KmnO4, H2SO4 | <1 h | 40–95 | High-yield product | [105] |
Panwar | 2015 | Graphite | H2SO4, H3PO4, KmnO4, HNO3 | 3 h | 50 | Three component acids and high-yield product | [106] |
Peng | 2015 | Graphite | K2FeO4, H2SO4 | 1 h | Room temperature | Results in a high-yield and eco-friendly method | [107] |
Rosillo-Lopez | 2016 | Graphite | HNO3 | 20 h | Room temperature | Nano-sized GO obtained | [108] |
Yu | 2016 | Graphite | K2FeO4, KmnO4 H2SO4, H3BO3 (NH4)2S2O8 | 5 h | <5–35–95 | Low manganite impurities and high yield obtained | [109] |
Dimiev | 2016 | Graphite | 98% H2SO4, fuming H2SO4 | 3–4 h | Room temperature | 25 nm thick and ~100%conversion rate | [110] |
Pei | 2018 | Graphite foil | H2SO4 | <5 min | Room temperature | High efficiency | [111] |
Ranjan | 2018 | Graphite | H2SO4, H3PO4, KmnO4 | <24 h | <RT-35–95 | Cooled exothermal reaction to make the process safe | [112] |
S. No. | Source of Carbon | H2SO4 (in mL) | Other Ingredients | Temp. (in °C) | Time (in h) | C:O | Colour of GO Obtained |
---|---|---|---|---|---|---|---|
1 | Graphite | 15.0 | 1.0 g Na2Cr2O7 | 30 | 72 | 16:1 | Black |
2 | Graphite | 15.0 | 4.0 g Na2Cr2O7 | 30 | 72 | 3.4:1 | Black |
3 | Graphite | 15.0 | 15.0 mL 70% HNO3 3.0 g KmnO4, | 30 | 24 | -- | Black |
4 | Graphite | 20.0 | 11.0 g KclO3, 10.0 mL 70% HNO3 | 0–60 | 33 | 3.1:1 | Midnight green |
5 | Graphite | 30.0 | 3.0 g KmnO4,1.0 g NaNO3 | 30 | 2 | 3.0:1 | Bluish green |
6 | Graphite | 30.0 | 3.0 g KmnO4,1.0 g NaNO3 | 45 | 1 | -- | Green |
7 | Graphite | 22.5 | 3.0 g KmnO4,1.0 g NaNO3 | 45 | 1 | -- | Brittle yellow |
8 | Graphite | 22.5 | 3.0 g KmnO4,0.5 g NaNO3 | 45 | 1 | -- | Yellow |
9 | Graphite | 22.5 | 3.0 g KmnO4,0.5 g NaNO3 | 45 | 0.5 | 2.3:1 | Yellow |
10 | Graphite | 22.5 | 3.0 g KmnO4,0.5 g NaNO3 | 35 | 0.5 | 2.05:1 | Bright yellow |
11 | Graphite | 22.5 | 3.0 g KmnO4, 1.0 g fuming HNO3 | 35 | 1 | -- | Bright yellow |
12 | Graphite | 22.5 | 3.0 g KmnO4, 1.0 g BaNO3 | 45 | 2 | -- | Light green |
Elements Present in GO (Weight %) | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Temperature 35 °C | Temperature 27 °C | Temperature 20 °C | |
Carbon | 44.09 | 45.51 | 44.55 |
Oxygen | 49.92 | 48.93 | 47.16 |
Hydrogen | 3.30 | 2.96 | 3.02 |
Atomic ratio of carbon and oxygen | 1.18 | 1.24 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyat, R.; Saharan, Y.; Singh, J.; Umar, A.; Akbar, S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules 2022, 27, 6433. https://doi.org/10.3390/molecules27196433
Goyat R, Saharan Y, Singh J, Umar A, Akbar S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules. 2022; 27(19):6433. https://doi.org/10.3390/molecules27196433
Chicago/Turabian StyleGoyat, Rohit, Yajvinder Saharan, Joginder Singh, Ahmad Umar, and Sheikh Akbar. 2022. "Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review" Molecules 27, no. 19: 6433. https://doi.org/10.3390/molecules27196433
APA StyleGoyat, R., Saharan, Y., Singh, J., Umar, A., & Akbar, S. (2022). Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules, 27(19), 6433. https://doi.org/10.3390/molecules27196433