Extracts of Knoxia roxburghii (Spreng.) M. A. Rau Induce Apoptosis in Human MCF-7 Breast Cancer Cells via Mitochondrial Pathways
Abstract
:1. Introduction
2. Results
2.1. Effect of the Different Fractions on the Proliferation of Cancerous Cells
2.2. Identification of Compounds Present in HSF of KR
2.3. Effect of HSF on Apoptosis Staining of MCF-7 Cells
2.4. Effect of HSF on the Apoptosis Rate of MCF-7 Cells
2.5. Effect of HSF on MMP Levels in MCF-7 Cells
2.6. Effect of HSF on ROS Levels in MCF-7 Cells
2.7. The Expression of MCF-7 PI3K, AKT, p53, Caspase 9, and Cytochrome C
3. Materials and Methods
3.1. Medicinal Plant Collection and Preparation
3.2. Reagents and Assay kits
3.3. Cell Culture
3.4. Cell Viability Assay
3.5. Liquid Chromatography–Mass Spectrometry (LC–MS) Analysis
3.6. Morphological Apoptosis
3.7. Apoptosis Analysis
3.8. Measurement of Intracellular MMP
3.9. Measurement of Intracellular ROS
3.10. Western Blot Analysis
3.11. Statistical Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
butanol | n-BuOH |
Cell Counting Kit-8 | CCK-8 |
ethyl acetate | EtoAc |
H2O-soluble fraction | HSF |
Knoxia roxburghii (Spreng.) M. A. Rau | KR |
mitochondrial transmembrane potential | MMP |
mitochondrial permeability transition pore | mPTP |
petroleum ether | PET |
reactive oxygen species | ROS |
terpenoid indole alkaloids | TIAs |
References
- Dai, G.-H.; Chen, X.; Ren, Z.-M.; Dai, C.-J.; Tong, Y.-L.; Chai, K.-Q. Myricanol 5-fluorobenzyloxy ether regulation of survivin pathway inhibits human lung adenocarcinoma A549 cells growth in vitro. BMC Complement. Med. Ther. 2020, 20, 269. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; You, S.; Cho, W.C.S.; Choi, J.-Y.; Lee, M.S. A systematic review of herbal medicines for the treatment of cancer cachexia in animal models. J. Zhejiang Univ. Sci. B 2019, 20, 9–22. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Abdel-Ghany, S.E.; Ali, G.S. Genome editing approaches: Manipulating of lovastatin and taxol synthesis of filamentous fungi by crispr/cas9 system. Appl. Microbiol. Biotechnol. 2017, 101, 3953–3976. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.F.; Weaver, J.D.; Cram, E.J.; Lee-Parsons, C.W.T.; Sangeeta, D. Silencing the transcriptional repressor, zct1, illustrates the tight regulation of terpenoid indole alkaloid biosynthesis in catharanthus roseus hairy roots. PLoS ONE 2016, 11, 0159712. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517S–520S. [Google Scholar] [CrossRef]
- Liu, R.H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; Hmadi, R.; Kareh, M.; Tohme, R.; Darwiche, N. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis 2015, 20, 1531–1562. [Google Scholar] [CrossRef]
- Yu, H. Treating 12 cases of madness with Euphorbia lathyris. Guangxi Tradit. Chin. Med. 1987, 4, 9. [Google Scholar]
- Zou, C.D. Knoxia valerianoides as the main syndrome differentiation prescription for the treatment of 40 cases of schizophrenia. Henan Tradit. Chin. Med. 2011, 31, 1429–1431. [Google Scholar]
- Li, Z.F. Knoxia valerianoides how to treat 54 cases of chronic pharyngitis. Jiangxi Chin. Med. 1987, 4, 3. [Google Scholar]
- Nanjing University of Traditional Chinese Medicine. Dictionary of Traditional Chinese MedicineShanghai; Shanghai Science and Technology Press: Shanghai, China, 2006. [Google Scholar]
- Yang, X. Toxicity Study of Knoxia Valerianoides and Study on Active Components and Quality Standard of Gendarussa Vulgaris Nees; Shanghai University of Traditional Chinese Medicine: Shanghai, China, 2013. [Google Scholar]
- Qin, H.H.; Jia, L.Y.; Gao, Y. Observation on the inhibition effect of the extract of Knoxia valerianoides on mycobacterium tuberculosis. Shandong Med. 2013, 53, 77–78. [Google Scholar]
- Yoo, N.H.; Jang, D.S.; Lee, Y.M.; Jeong, I.H.; Cho, J.H.; Kim, J.H.; Kim, J.S. Anthraquinones from the roots of Knoxia valerianoides inhibit the formation of advanced glycation end products and rat lens aldose reductase in vitro. Arch. Pharmacal Res. 2010, 33, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.Y.; Wang, P.F.; Lin, H.Y.; Tang, C.Y.; Zhu, H.L.; Yang, Y.H. Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chem. Biol. Drug Des. 2018, 91, 681–690. [Google Scholar] [CrossRef]
- Xu, J.; Wu, M.; Zhang, J.; Wang, G.; Cai, B.; Song, H.; Shi, K. Research progress of rhubarb anthraquinones in regulating autophagy and inhibiting tumor. Chin. Med. Mater. 2021, 44, 1797–1801. [Google Scholar]
- Jiang, X.F.; Zhen, Y.S. Effect of emodin on reversing multi-drug resistance of tumor cells. Acta Pharm. 1990, 3, 5–8. [Google Scholar]
- Tien, A.J.; Chien, C.Y.; Chen, Y.H.; Lin, L.C.; Chien, C.T. Fruiting bodies of antrodia cinnamomea and its active triterpenoid, antcin k, ameliorates n-nitrosodiethylamine-induced hepatic inflammation, fibrosis and carcinogenesis in rats. Am. J. Chin. Med. 2017, 45, 173–198. [Google Scholar] [CrossRef]
- Martinoli, M.G.; Attard, E. Cucurbitacin e, an experimental lead triterpenoid with anticancer, immunomodulatory and novel effects against degenerative diseases. a mini-review. Curr. Top. Med. Chem. 2015, 15, 1708–1713. [Google Scholar]
- Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochem. Pharmacol. 2013, 85, 1579. [Google Scholar] [CrossRef]
- Huang, C.-S.; Ma, S.-Y.; Liu, H.-X.; Lu, Q.; Shi, L.-G.; Liao, N.; Wei, L.-B. Chemical constituents from roots of Actinidia rufa and their cytotoxicity. China J. Chin. Mater. Med. 2017, 42, 2714–2718. [Google Scholar]
- Fox, E.M.; Arteaga, C.L.; Miller, T.W. Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front. Oncol. 2012, 2, 145. [Google Scholar] [CrossRef]
- Mrutyunjaya Rao, R.; Ramakrishna, K.; Suresh Babu, K.; Surya Kumar, M.V. Isolation of Urosilic Acid from Knoxia corymbosa. Nat. Prod. Chem. Res. 2017, 5, 1–3. [Google Scholar]
- Hong, Y.L.; Ma, L.; Wang, Y.F.; Sun, J.F.; Wang, C.H. Anthraquinones and triterpenoids from roots of knoxia roxburghii. China J. Chin. Mater. Med. 2014, 39, 4230. [Google Scholar]
- Wang, L.; Yin, Q.; Liu, C.; Tang, Y.; Sun, C.; Zhuang, J. Nanoformulations of Ursolic Acid: A Modern Natural Anticancer Molecule. Front. Pharmacol. 2021, 12, 706121. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Sp, N.; Lee, J.M.; Jang, K.J. Antitumor Effects of Ursolic Acid through Mediating the Inhibition of STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer Cells. Biomedicines 2021, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Latifah, S.Y.; Gopalsamy, B.; Rahim, R.A.; Ali, A.M.; Lajis, N.H. Anticancer Potential of Damnacanthal and Nordamnacanthal from Morinda elliptica Roots on T-lymphoblastic Leukemia Cells. Molecules 2021, 26, 1554. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xie, L.; Liu, K.; Cao, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity. Phytother. Res. 2021, 35, 6131–6147. [Google Scholar] [CrossRef]
- Wu, G.; Niu, M.; Qin, J.; Wang, Y.; Tian, J. Inactivation of Rab27B-dependent signaling pathway by calycosin inhibits migration and invasion of ER-negative breast cancer cells. Gene 2019, 709, 48–55. [Google Scholar] [CrossRef]
- Abdellatef, A.A.; Fathy, M.; Mohammed, A.E.S.I.; Bakr, M.S.A.; Ahmed, A.H.; Abbass, H.S.; El-Desoky, A.H.; Morita, H.; Nikaido, T.; Hayakawa, Y. Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus. J. Nat. Med. 2010, 75, 840–853. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Wang, L.; Xiong, L.; Tang, H.; Du, J.; Peng, C. Maackiain Modulates miR-374a/GADD45A Axis to Inhibit Triple-Negative Breast Cancer Initiation and Progression. Front. Pharmacol. 2020, 13, 806869. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Ng, S.W.; Tan, J.Z.X.; Gupta, G.; Tambuwala, M.M.; Bakshi, H.A.; Dureja, H.; Dua, K.; Ishaq, M.; Caruso, V.; et al. Emerging therapeutic potential of the iridoid molecule, asperuloside: A snapshot of its underlying molecular mechanisms. Chem. Biol. Interact. 2020, 315, 108911. [Google Scholar] [CrossRef]
- ANF; Wang, S.; Tian, Q.; Zhu, D. Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Oncol. Lett. 2015, 10, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Tian, X.; Yang, A.; Zhou, Y.; Wu, D.; Wang, Z. Orientin in trollius chinensis bunge inhibits proliferation of hela human cervical carcinoma cells by induction of apoptosis. Mon. Für Chem. Chem. Mon. 2014, 145, 229–233. [Google Scholar] [CrossRef]
- Gh, A.; Sl, A.; Yz, B.; Xz, A.; Wei, C.C. Vicenin-2 is a novel inhibitor of stat3 signaling pathway in human hepatocellular carcinoma-sciencedirect. J. Funct. Foods 2020, 69, 103921. [Google Scholar]
- Govindarasu, M.; Abirami, P.; Rajakumar, G.; Ansari, M.A.; Alomary, M.N.; Alkhayl, F. Kaempferitrin inhibits colorectal cancer cells by inducing reactive oxygen species and modulating pi3k/akt signalling pathway. Process Biochem. 2021, 116, 26–37. [Google Scholar] [CrossRef]
- Shi, Y. The Study of Chemical Constituents of Knoxia Valerianoides and Its Microbial Fermentation Modification. Master’s Thesis, Yunnan University, Kunming, China, 2020. [Google Scholar]
- Gu, Y.; Piao, X.; Zhu, D. Simultaneous determination of calycosin, prim-O-glucosylcimifugin, and paeoniflorin in rat plasma by HPLC-MS/MS: Application in the pharmacokinetic analysis of HQCF. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, E.; Dai, T.; Dai, R. Simultaneous Determination of Four Main Effective Components in Paederia scandens Extracts by LC-MS/MS. Chin. J. Exp. Tradit. Med. Formulae 2018, 18, 57–62. [Google Scholar]
- Lee, J.H.; Park, M.J.; Ryu, H.W.; Yuk, H.J.; Choi, S.W.; Lee, K.S.; Kim, S.L.; Seo, W.D. Elucidation of phenolic antioxidants in barley seedlings (Hordeum vulgare L.) by uplc-pda-esi/ms and screening for their contents at different harvest times. J. Funct. Foods 2016, 26, 667–680. [Google Scholar] [CrossRef]
- Ma, X.; Shen, S.; Han, F.; Chen, Y.E. The electrospray ionization-mass spectra of Radix et rhizoma rhei anthraquinones. J. Hubei Univ. Nat. Sci. 2006, 4, 403–406. [Google Scholar]
- Liang, Y.; Wang, J.; Su, W.; Xing, L.G.; Yao, H.; Lin, Q.; Wei, P. Chemical constituents of Premna fulva Craib by UFLC-Triple TOF-MS/MS. Cent. South Pharm. 2018, 16, 1369–1373. [Google Scholar]
- Yuan, W.L.; Huang, Z.R.; Xiao, S.J.; Ye, J.; Zhang, W.D.; Shen, Y.H. Metabolites and metabolic pathways of maackiain in rats based on UPLC-Q-TOF-MS. China J. Chin. Mater. Med. 2021, 46, 6278–6288. [Google Scholar]
- Liao, S.; Chen, J.; Ying, W. Chemical Constituents of Epimedium truncatum. Plant Sci. J. 2013, 31, 385–390. [Google Scholar] [CrossRef]
- Larsen, B.D.; Sorensen, C.S. The caspase-activated DNase: Apoptosis and beyond. FEBS J. 2017, 284, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Thibeault, S. Effect of DMSO concentration, cell density and needle gauge on the viability of cryopreserved cells in three dimensional hyaluronan hydrogel. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6228–6231. [Google Scholar]
- Consiglia, P.; Dominga, L.; Tiziana, C.; Ferdinando, C.; Christian, K.; Peter, S.; Gaetano, V. Tight control of mitochondrial membrane potential by cytochrome c oxidase. Mitochondrion 2010, 11, 334–341. [Google Scholar]
- Yi, X.; Xiang, L.; Huang, Y.; Wang, Y.; He, X. Apoptosis and pro-death autophagy induced by a spirostanol saponin isolated from Rohdea chinensis (Baker) N. Tanaka (synonym Tupistra chinensis Baker) on HL-60 cells. Phytomedicine 2018, 42, 83–89. [Google Scholar] [CrossRef] [PubMed]
- De Sá Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxidative Med. Cell. Longev. 2017, 2017, 2467940. [Google Scholar] [CrossRef]
- Yang, Y.; Karakhanova, S.; Hartwig, W.; D’Haese, J.G.; Philippov, P.P.; Werner, J.; Bazhin, A.V. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell. Physiol. 2016, 231, 2570–2581. [Google Scholar] [CrossRef]
- Bilal, I. Phytoestrogens and prevention of breast cancer: The contentious debate. World J. Clin. Oncol. 2014, 5, 705–712. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, B.; Li, J.; Qin, L. Rhein augments antiproliferative effects of atezolizumab based on breast cancer (4t1) regression. Planta Med. 2019, 85, 1143–1149. [Google Scholar] [CrossRef]
- Stowe, D.F.; Camara, A.K. Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxid. Redox Signal. 2009, 11, 1373–1414. [Google Scholar] [CrossRef]
- Lia, D.; Rajoana, R.; Carson, K.L.; Palmer, A.L.; Rose, S.J.; Bermudez, L.E. Mycobacterium avium subsp. hominissuis effector mava5 06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread. Virulence 2018, 9, 1287–1300. [Google Scholar]
- Wei, Z.Z.; Qin, Q.P.; Meng, T.; Deng, C.X.; Liang, H.; Chen, Z.F. 5-bromo-oxoisoaporphine platinum(ii) complexes exhibit tumor cell cytotoxcicity via inhibition of telomerase activity and disruption of c-myc g-quadruplex dna and mitochondrial functions. Eur. J. Med. Chem. 2018, 145, 360–369. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zang, L.H.; Feng, Y.S.; Chen, L.X.; Ikejima, T. Physalin a induces apoptosis via p53-noxa-mediated ros generation, and autophagy plays a protective role against apoptosis through p38-nf-κb survival pathway in a375-s2 cells. J. Ethnopharmacol. 2013, 148, 544–555. [Google Scholar] [CrossRef]
- Yu, C.C.; Ko, F.Y.; Yu, C.S.; Lin, C.C.; Huang, Y.P.; Yang, J.S.; Lin, J.P.; Chung, J.G. Norcantharidin triggers cell death and DNA damage through S-phase arrest and ROS-modulated apoptotic pathways in TSGH 8301 human urinary bladder carcinoma cells. Int. J. Oncol. 2012, 41, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Li, G.; Lu, J.; Li, L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct. Target. Ther. 2021, 6, 400. [Google Scholar] [CrossRef] [PubMed]
- Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the pi3k-akt-mtor signaling pathway in cancer: A novel therapeutic strategy. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Conduit, S.E.; Davies, E.M.; Ooms, L.M.; Gurung, R.; Mitchell, C.A. Akt signaling promotes DNA damage accumulation and proliferation in polycystic kidney disease. Hum. Mol. Genet. 2020, 29, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Liu, R.; Li, J.; Zhang, C.; Wang, Y.; Cai, Q.; Qian, X.; Xia, Y.; Zheng, Y.; Piao, Y.; et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat. Commun. 2017, 8, 949. [Google Scholar] [CrossRef]
- Hafner, A.; Bulyk, M.L.; Jambhekar, A.; Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 2019, 20, 199–210. [Google Scholar] [CrossRef]
- Carter, J.H.; Deddens, J.A.; Mueller, G.; Lewis, T.G.; Dooley, M.K.; Robillard, M.C.; Frydl, M.; Duvall, L.; Pemberton, J.O.; Douglass, L.E. Transcription factors WT1 and p53 combined: A prognostic biomarker in ovarian cancer. Br. J. Cancer 2018, 119, 462–470. [Google Scholar] [CrossRef]
- Tan, X.L.; Guo, L.; Wang, G.H. Polyporus umbellatus inhibited tumor cell proliferation and promoted tumor cell apoptosis by down-regulating AKT in breast cancer. Biomed. Pharmacother. 2016, 83, 526–535. [Google Scholar] [CrossRef]
- Chiu, H.C.; Li CJ Yiang, G.T.; Tsai, A.; Wu, M.Y. Epithelial to mesenchymal transition and cell biology of molecular regulation in endometrial carcinogenesis. J. Clin. Med. 2019, 8, 439. [Google Scholar] [CrossRef]
- Kiraz, Y.; Adan, A.; Yandim, M.K.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. TumorBiol. 2016, 37, 8471–8486. [Google Scholar] [CrossRef] [PubMed]
- Fitzwalter, B.E.; Thorburn, A. A caspase-independent way to kill cancer cells. Nat. Cell Biol. 2017, 19, 1014. [Google Scholar] [CrossRef] [PubMed]
- Dan, S.; Xunmin, C.; Shisen, J.; Xiang, T. E0135 the effects of diabetic mellitus on the opening of mycardial mitochondrial permeability transition pore in rats. Heart 2010, 96, A43. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Rodríguez-Yoldi, M.J.; Cerrada, E. Gold as a possible alternative to platinum-based chemotherapy for colon cancer treatment. Cancers 2019, 11, 780. [Google Scholar] [CrossRef]
- Kang, K.H.; Lemke, G.; Kim, J.W. The PI3K-PTEN tug-of-war, oxidative stress and retinal degeneration. Trends Mol. Med. 2009, 15, 191–198. [Google Scholar] [CrossRef] [Green Version]
Cell Lines | IC50 (μg/mL) | |||
---|---|---|---|---|
PET | EtoAc | n-BuOH | HSF | |
A549 | 191.85 ± 3.18 | 186.86 ± 4.19 | 60.63 ± 0.35 | 1155.107 ± 3.41 |
HepG2 | 186.50 ± 3.03 | 209.81 ± 2.66 | 271.71 ± 2.13 | 183.82 ± 1.37 |
MCF-7 | 75.295 ± 2.66 | 60.93 ± 3.46 | 104.29 ± 2.55 | 28.84 ± 0.60 |
HeLa | 64.92 ± 1.57 | 82.64 ± 2.54 | 71.21 ± 2.37 | 66.90 ± 1.97 |
Name | References | Mode | Observed RT (min) | Neutral Mass | Observed m/z | Mass Error (ppm) | MS/MS | Formula | Relative Contents (%) |
---|---|---|---|---|---|---|---|---|---|
Calycosin | [38] | (M + H) | 10.5467 | 284.0685 | 284.0684 | 0.13 | 269.0666, 213.2516 | C16H12O5 | 4.98 |
Asperuloside | [39] | (M − H) | 4.9759 | 414.1162 | 414.1169 | 1.15 | 146.9253, 190.9838 | C18H22O11 | 1.30 |
Orientin | [40] | (M − H) | 6.3904 | 448.1001 | 448.1006 | 1.33 | 327.0541, 357.0070 | C21H20O11 | 1.87 |
Aloe emodin | [41] | (M − H) | 22.3318 | 270.0528 | 270.0523 | 1.9 | 225.0148, 241.0063 | C15H10O5 | 3.56 |
Vicenin-2 | [42] | (M + H) | 5.7913 | 594.1584 | 595.1651 | 0.11 | 325.1827, 337.1037 | C27H30O15 | 1.03 |
Rhein | [41] | (M − H) | 56.6358 | 284.0321 | 284.0321 | 0.81 | 239.0362, 257.0376 | C15H8O6 | 18.09 |
Maackiain | [43] | (M − H) | 27.8311 | 284.0685 | 284.0685 | 0.49 | 224.0256, 175.7748, 163.0731 | C16H12O5 | 60.81 |
Kaempferitrin | [44] | (M − H) | 13.2285 | 578.1636 | 578.1636 | 0.42 | 255.1002, 430.0110, 285.0406 | C27O30H14 | 8.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.-J.; Pu, X.-Y.; Pu, X.-M.; Li, X.; Liu, Z.-B.; Mei, M.-J.; Wang, X.-G.; Zhang, F.; Qiu, B.; Yu, J. Extracts of Knoxia roxburghii (Spreng.) M. A. Rau Induce Apoptosis in Human MCF-7 Breast Cancer Cells via Mitochondrial Pathways. Molecules 2022, 27, 6435. https://doi.org/10.3390/molecules27196435
Chen X-J, Pu X-Y, Pu X-M, Li X, Liu Z-B, Mei M-J, Wang X-G, Zhang F, Qiu B, Yu J. Extracts of Knoxia roxburghii (Spreng.) M. A. Rau Induce Apoptosis in Human MCF-7 Breast Cancer Cells via Mitochondrial Pathways. Molecules. 2022; 27(19):6435. https://doi.org/10.3390/molecules27196435
Chicago/Turabian StyleChen, Xiao-Jiao, Xin-Ying Pu, Xue-Mei Pu, Xue Li, Zhi-Bo Liu, Mi-Jia Mei, Xin-Ge Wang, Fan Zhang, Bin Qiu, and Jie Yu. 2022. "Extracts of Knoxia roxburghii (Spreng.) M. A. Rau Induce Apoptosis in Human MCF-7 Breast Cancer Cells via Mitochondrial Pathways" Molecules 27, no. 19: 6435. https://doi.org/10.3390/molecules27196435
APA StyleChen, X. -J., Pu, X. -Y., Pu, X. -M., Li, X., Liu, Z. -B., Mei, M. -J., Wang, X. -G., Zhang, F., Qiu, B., & Yu, J. (2022). Extracts of Knoxia roxburghii (Spreng.) M. A. Rau Induce Apoptosis in Human MCF-7 Breast Cancer Cells via Mitochondrial Pathways. Molecules, 27(19), 6435. https://doi.org/10.3390/molecules27196435