Electrolyte Analysis in Blood Serum by Laser-Induced Breakdown Spectroscopy Using a Portable Laser
Abstract
:1. Introduction
2. Experimental Setup and Sample Presentation
2.1. LIBS System
2.2. Sample Preparation
3. Result and Discussion
3.1. Spectra Presentation
3.2. Quantitative Analysis by PLSR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bardarov, K.; Buchvarov, I.; Yordanova, T.; Georgiev, P.; Dreischuh, A.A.; Neshev, D.N.; Staude, I.; Spassov, T. Laser-Induced Break Down Spectroscopy for Quantitative Analysis of Electrolytes (Na, K, Ca, Mg) in Human Blood Serum. In Proceedings of the International Conference on Quantum, Nonlinear, and Nanophotonics 2019, Sofia, Bulgaria, 2–4 September 2019. [Google Scholar]
- Bowling, J.L.; Katayev, A. An Evaluation of the Roche Cobas c 111. Lab. Med. 2010, 41, 398–402. [Google Scholar] [CrossRef]
- Scott, M.G.V.A.L.; Klutts, J.S. Electrolytes and Blood Gases. In Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th ed.; Elsevier: New York, NY, USA, 2006; pp. 983–1018. [Google Scholar]
- García-Alegría, A.M.; Gómez-Álvarez, A.; García-Rico, L.; Serna-Félix, M. Validation of an analytical method to quantify serum electrolytes by atomic absorption spectroscopy. Acta Univ. 2015, 25, 3–12. [Google Scholar] [CrossRef]
- Sajnóg, A.; Hanć, A.; Barałkiewicz, D.; Gryszczyńska, B.; Majewski, W.; Iskra, M. Bioimaging of macro- and microelements in blood vessels with calcified plaque in atherosclerosis obliterans by LA-ICP-MS. Microchem. J. 2019, 150, 104090. [Google Scholar] [CrossRef]
- Hanć, A.; Komorowicz, I.; Iskra, M.; Majewski, W.; Barałkiewicz, D. Application of spectroscopic techniques: ICP-OES, LA-ICP-MS and chemometric methods for studying the relationships between trace elements in clinical samples from patients with atherosclerosis obliterans. Anal. Bioanal. Chem. 2011, 399, 3221–3231. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.; Omenetto, N. Laser-Induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma. Appl. Spectrosc. 2010, 64, 335–366. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Fisher, A.; Gibson, B.; Marshall, J.; Russell, B.; Whiteside, I. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. J. Anal. At. Spectrom. 2017, 32, 2068–2117. [Google Scholar] [CrossRef]
- Pedarnig, J.D.; Trautner, S.; Grünberger, S.; Giannakaris, N.; Eschlböck-Fuchs, S.; Hofstadler, J. Review of Element Analysis of Industrial Materials by In-Line Laser—Induced Breakdown Spectroscopy (LIBS). Appl. Sci. 2021, 11, 9274. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Melikechi, N.; Abdel-Salam, Z.A.; Harith, M.A.; Palleschi, V.; Motto-Ros, V.; Busser, B. Laser-induced breakdown spectroscopy for human and animal health: A review. Spectrochim. Acta Part B At. Spectrosc. 2018, 152, 123–148. [Google Scholar] [CrossRef]
- Cheung, N.-H.; Yeung, E.S. Distribution of Sodium and Potassium within Individual Human Erythrocytes by Pulsed-Laser Vaporization in a Sheath Flow. Anal. Chem. 1994, 66, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Khumaeni, A.; Budi, W.S.; Wardaya, A.Y.; Niki, H.; Kurniawan, K.H. Identification of Elements in Human Blood Serum Using Laser-Induced Breakdown Spectroscopy. In Proceedings of the International Conference on Science and Applied Science (Icsas) 2019, Surakarta, Indonesia, 19 July 2019. [Google Scholar]
- Coté, G.L.; Melikechi, N.; Priezzhev, A.V.; Ding, H.; Rock, S.; Marcano, O.A.; Connolly, D. Laser-Induced Breakdown Spectroscopy of Whole Blood and Other Liquid Organic Compounds. In Proceedings of the Conference on Optical Diagnostics and Sensing VIII, San Jose, CA, USA, 21–23 January 2008. [Google Scholar]
- Pokrajac, D.; Lazarevic, A.; Kecman, V.; Marcano, A.; Markushin, Y.; Vance, T.; Reljin, N.; McDaniel, S.; Melikechi, N. Automatic Classification of Laser-Induced Breakdown Spectroscopy (LIBS) Data of Protein Biomarker Solutions. Appl. Spectrosc. 2014, 68, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Chen, T.; Chen, F.; Tang, Y.; Tang, S.; Jin, H.; Guo, L.; Lu, Y.F.; Zeng, X. Discrimination of nasopharyngeal carcinoma serum using laser-induced breakdown spectroscopy combined with an extreme learning machine and random forest method. J. Anal. At. Spectrom. 2018, 33, 2083–2088. [Google Scholar] [CrossRef]
- Berlo, K.; Xia, W.; Zwillich, F.; Gibbons, E.; Gaudiuso, R.; Ewusi-Annan, E.; Chiklis, G.R.; Melikechi, N. Laser induced breakdown spectroscopy for the rapid detection of SARS-CoV-2 immune response in plasma. Sci. Rep. 2022, 12, 16–140. [Google Scholar] [CrossRef] [PubMed]
- Al-Jeffery, M.O.; Telle, H.H. LIBS and LIFS for Rapid Detection of Rb Traces in Blood. In Proceedings of the Conference on Optical Biopsy IV, San Jose, CA, USA, 21–23 January 2002. [Google Scholar]
- Zhang, D.C.; Hu, Z.Q.; Su, Y.B.; Hai, B.; Zhu, X.L.; Zhu, J.F.; Ma, X. Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS). Opt. Express 2018, 26, 18794–18802. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Afgan, M.S.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC Trends Anal. Chem. 2021, 143, 116385. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Ukon, K.; Arai, Y.; Takao, S.; Matsuura, T.; Ishikawa, M.; Shirato, H.; Shimizu, S.; Umegaki, K.; Miyamoto, N. Prediction of target position from multiple fiducial markers by partial least squares regression in real-time tumor-tracking radiation therapy. J. Radiat. Res. 2021, 62, 926–933. [Google Scholar] [CrossRef] [PubMed]
Target Element | Reference Concentration (mmol/L) | Predicted Concentration (mmol/L) | Accuracy (%) |
---|---|---|---|
K | 4.26 | 4.20 | 1.45 |
Na | 145.60 | 144.72 | 0.61 |
Ca | 1.11 | 1.15 | 3.80 |
Target Element | Reference Concentration (mmol/L) | Predicted Concentration (mmol/L) | Accuracy (%) |
---|---|---|---|
K | 4.26 | 3.94 | 7.47 |
Na | 145.60 | 143.33 | 1.56 |
Ca | 1.11 | 1.12 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Li, S.; Gu, T.; Zhou, X.; Zhang, Z.; Yang, Z.; Hou, J.; Zhu, J.; Zhang, D. Electrolyte Analysis in Blood Serum by Laser-Induced Breakdown Spectroscopy Using a Portable Laser. Molecules 2022, 27, 6438. https://doi.org/10.3390/molecules27196438
Feng Z, Li S, Gu T, Zhou X, Zhang Z, Yang Z, Hou J, Zhu J, Zhang D. Electrolyte Analysis in Blood Serum by Laser-Induced Breakdown Spectroscopy Using a Portable Laser. Molecules. 2022; 27(19):6438. https://doi.org/10.3390/molecules27196438
Chicago/Turabian StyleFeng, Zhongqi, Shuaishuai Li, Tianyu Gu, Xiaofei Zhou, Zixu Zhang, Zhifu Yang, Jiajia Hou, Jiangfeng Zhu, and Dacheng Zhang. 2022. "Electrolyte Analysis in Blood Serum by Laser-Induced Breakdown Spectroscopy Using a Portable Laser" Molecules 27, no. 19: 6438. https://doi.org/10.3390/molecules27196438
APA StyleFeng, Z., Li, S., Gu, T., Zhou, X., Zhang, Z., Yang, Z., Hou, J., Zhu, J., & Zhang, D. (2022). Electrolyte Analysis in Blood Serum by Laser-Induced Breakdown Spectroscopy Using a Portable Laser. Molecules, 27(19), 6438. https://doi.org/10.3390/molecules27196438