Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight
Abstract
:1. Introduction
2. Search Syntax and Inclusion Criteria
3. Magnolol Inhibits Proliferation and Growth
4. Magnolol Inhibits PI3K/Akt/mTOR Signaling
5. Magnolol Inhibits MAPK Signaling
6. Magnolol Inhibits NF-κB Signaling
7. Magnolol Induces Cell Cycle Arrest
8. Magnolol Induces Apoptosis
9. Magnolol Inhibits Migration and Invasion
10. Magnolol Suppresses Angiogenesis
11. Synthetic Analogues of Magnolol and Their Anticancer Activities
12. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PI3K | phosphoinositide 3-kinase |
Akt | protein kinase B |
mTOR | mammalian target of rapamycin |
MAPK | mitogen-activated protein kinase |
NF-κB | nuclear factor kappa-B |
PIP3 | phosphatidylinositol (3,4,5)-trisphosphate |
mTORC1, | mTOR complex 1 |
p70S6K | p70S6 kinase |
4E-BP1 | eukaryotic translation initiation factor 4E binding protein 1 |
ERK | extracellular signal-regulated kinase |
JNK | C-Jun N-Terminal Kinase |
EMT | epithelial-mesenchymal transition |
CDK | cyclin dependent kinase |
CKI | cyclin dependent kinase inhibitor |
AIF | apoptosis-inducing factor |
ECM | extracellular matrix |
MMPs | matrix metalloproteinases |
uPA | urokinase-type plasminogen activator |
TGF-β1 | transforming growth factor beta 1 |
TCF | transcription factor |
PKCδ | protein kinase C delta |
STAT3 | signal transducer and activator of transcription 3 |
FAK | focal adhesion kinase |
VEGF | vascular endothelial growth factor |
HIF-1α | hypoxia-inducible factor 1α |
HUVECs | human umbilical endothelial cells |
MES | mouse embryonic stem |
EB | embryoid body |
CAM | chicken chorioallantoic membrane |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl. Ed.) 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Gulder, T.; Gulder, T.A.; Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 2011, 111, 563–639. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, P.J.; Bures, M.; Praestgaard, J.; Fesik, S.W. Privileged molecules for protein binding identified from NMR-based screening. J. Med. Chem. 2000, 43, 3443–3447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, Z.Q. Comparison of antioxidant abilities of magnolol and honokiol to scavenge radicals and to protect DNA. Biochimie 2011, 93, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019, 144, 192–209. [Google Scholar] [CrossRef]
- Pan, J.; Lee, Y.; Wang, Y.; You, M. Honokiol targets mitochondria to halt cancer progression and metastasis. Mol. Nutr Food Res. 2016, 60, 1383–1395. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S.; Piazza, G.A.; Contreras, C.M.; Panyam, J.; Singh, A.P. Honokiol: A novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 2012, 12, 1244–1252. [Google Scholar] [CrossRef]
- Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Rauf, A.; Patel, S.; Imran, M.; Maalik, A.; Arshad, M.U.; Saeed, F.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ahmad, N.; Elsharkawy, E. Honokiol: An anticancer lignan. Biomed. Pharmacother. 2018, 107, 555–562. [Google Scholar] [CrossRef]
- Fried, L.E.; Arbiser, J.L. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal. 2009, 11, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Cho, Y.H.; Park, K.; Kim, E.J.; Jung, K.H.; Park, S.S.; Kim, W.J.; Moon, S.K. Magnolol elicits activation of the extracellular signal-regulated kinase pathway by inducing p27KIP1-mediated G2/M-phase cell cycle arrest in human urinary bladder cancer 5637 cells. Biochem. Pharmacol. 2008, 75, 2289–2300. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Lee, C.F.; Huang, W.H.; Chou, T.C. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1alpha/VEGF signaling pathway in human bladder cancer cells. Biochem. Pharmacol. 2013, 85, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, W.; Zhang, B.; Liu, Y.Q.; Wang, Z.Y.; Wu, Y.P.; Yu, X.J.; Zhang, X.D.; Ming, P.H.; Zhou, G.B.; et al. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci. Rep. 2013, 3, 3098. [Google Scholar] [CrossRef]
- Zhou, Y.; Bi, Y.; Yang, C.; Yang, J.; Jiang, Y.; Meng, F.; Yu, B.; Khan, M.; Ma, T.; Yang, H. Magnolol induces apoptosis in MCF-7 human breast cancer cells through G2/M phase arrest and caspase-independent pathway. Pharmazie 2013, 68, 755–762. [Google Scholar]
- Zhang, F.H.; Ren, H.Y.; Shen, J.X.; Zhang, X.Y.; Ye, H.M.; Shen, D.Y. Magnolol suppresses the proliferation and invasion of cholangiocarcinoma cells via inhibiting the NF-κB signaling pathway. Biomed. Pharmacother. 2017, 94, 474–480. [Google Scholar] [CrossRef]
- Hsu, Y.F.; Lee, T.S.; Lin, S.Y.; Hsu, S.P.; Juan, S.H.; Hsu, Y.H.; Zhong, W.B.; Lee, W.S. Involvement of Ras/Raf-1/ERK actions in the magnolol-induced upregulation of p21 and cell-cycle arrest in colon cancer cells. Mol. Carcinog. 2007, 46, 275–283. [Google Scholar] [CrossRef]
- Kang, Y.J.; Park, H.J.; Chung, H.J.; Min, H.Y.; Park, E.J.; Lee, M.A.; Shin, Y.; Lee, S.K. Wnt/beta-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol. Pharmacol. 2012, 82, 168–177. [Google Scholar] [CrossRef]
- Park, J.B.; Lee, M.S.; Cha, E.Y.; Lee, J.S.; Sul, J.Y.; Song, I.S.; Kim, J.Y. Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol. Pharm. Bull. 2012, 35, 1614–1620. [Google Scholar] [CrossRef]
- Lin, S.Y.; Liu, J.D.; Chang, H.C.; Yeh, S.D.; Lin, C.H.; Lee, W.S. Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis. J. Cell Biochem. 2002, 84, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Chei, S.; Oh, H.J.; Song, J.H.; Seo, Y.J.; Lee, K.; Lee, B.Y. Magnolol Suppresses TGF-β-Induced Epithelial-to-Mesenchymal Transition in Human Colorectal Cancer Cells. Front. Oncol. 2019, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Su, C.M.; Weng, Y.S.; Kuan, L.Y.; Chen, J.H.; Hsu, F.T. Suppression of PKCδ/NF-κB Signaling and Apoptosis Induction through Extrinsic/Intrinsic Pathways Are Associated Magnolol-Inhibited Tumor Progression in Colorectal Cancer In Vitro and In Vivo. Int. J. Mol. Sci. 2020, 21, 3527. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, K.; Ding, X.; Tang, H.; Xu, Z. Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway. J. Thorac. Dis. 2019, 11, 3030–3038. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Nagase, H. Magnolol has the ability to induce apoptosis in tumor cells. Biol. Pharm. Bull. 2002, 25, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, F.; Wang, X.; Wu, X.; Zhang, B.; Zhang, N.; Wu, W.; Wang, Z.; Weng, H.; Liu, S.; et al. Magnolol inhibits growth of gallbladder cancer cells through the p53 pathway. Cancer Sci. 2015, 106, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Rasul, A.; Yu, B.; Khan, M.; Zhang, K.; Iqbal, F.; Ma, T.; Yang, H. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int. J. Oncol. 2012, 40, 1153–1161. [Google Scholar] [CrossRef]
- Yueh, P.F.; Lee, Y.H.; Fu, C.Y.; Tung, C.B.; Hsu, F.T.; Lan, K.L. Magnolol Induces the Extrinsic/Intrinsic Apoptosis Pathways and Inhibits STAT3 Signaling-Mediated Invasion of Glioblastoma Cells. Life 2021, 11, 1399. [Google Scholar] [CrossRef]
- Chen, L.C.; Liu, Y.C.; Liang, Y.C.; Ho, Y.S.; Lee, W.S. Magnolol inhibits human glioblastoma cell proliferation through upregulation of p21/Cip1. J. Agric. Food Chem. 2009, 57, 7331–7337. [Google Scholar] [CrossRef]
- Chen, L.C.; Lee, W.S. P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. J. Agric. Food Chem. 2013, 61, 2811–2819. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Hueng, D.Y.; Huang, H.Y.; Chen, J.Y.; Chen, Y. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas. Oncotarget 2016, 7, 29116–29130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.C.; Tsao, M.J.; Chiu, C.Y.; Kan, P.C.; Chen, Y. Magnolol Inhibits Human Glioblastoma Cell Migration by Regulating N-Cadherin. J. Neuropathol. Exp. Neurol. 2018, 77, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Hsu, F.T.; Chen, W.L.; Chen, J.H. Induction of Apoptosis, Inhibition of MCL-1, and VEGF-A Expression Are Associated with the Anti-Cancer Efficacy of Magnolol Combined with Regorafenib in Hepatocellular Carcinoma. Cancers 2021, 13, 2066. [Google Scholar] [CrossRef] [PubMed]
- Kuan, L.Y.; Chen, W.L.; Chen, J.H.; Hsu, F.T.; Liu, T.T.; Chen, W.T.; Wang, K.L.; Chen, W.C.; Liu, Y.C.; Wang, W.S. Magnolol Induces Apoptosis and Inhibits ERK-modulated Metastatic Potential in Hepatocellular Carcinoma Cells. In Vivo 2018, 32, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Sun, X.J.; Yang, W.J.; Li, J.; Yin, J.J. Magnolol exerts anticancer activity in hepatocellular carcinoma cells through regulating endoplasmic reticulum stress-mediated apoptotic signaling. Onco Targets Ther. 2018, 11, 5219–5226. [Google Scholar] [CrossRef]
- Tsai, J.J.; Chen, J.H.; Chen, C.H.; Chung, J.G.; Hsu, F.T. Apoptosis induction and ERK/NF-κB inactivation are associated with magnolol-inhibited tumor progression in hepatocellular carcinoma in vivo. Environ. Toxicol. 2020, 35, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.R.; Chong, I.W.; Chen, Y.H.; Hwang, J.J.; Yin, W.H.; Chen, H.L.; Chou, S.H.; Chiu, C.C.; Liu, P.L. Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells. Arch. Pharm. Res. 2014, 37, 548–557. [Google Scholar] [CrossRef]
- Li, H.B.; Yi, X.; Gao, J.M.; Ying, X.X.; Guan, H.Q.; Li, J.C. Magnolol-induced H460 cells death via autophagy but not apoptosis. Arch. Pharm. Res. 2007, 30, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.U.; Kim, M.H.; Kim, H.M.; Jeong, H.J. Anticancer potential of magnolol for lung cancer treatment. Arch. Pharm. Res. 2011, 34, 625–633. [Google Scholar] [CrossRef]
- Shen, J.; Ma, H.; Zhang, T.; Liu, H.; Yu, L.; Li, G.; Li, H.; Hu, M. Magnolol Inhibits the Growth of Non-Small Cell Lung Cancer via Inhibiting Microtubule Polymerization. Cell Physiol. Biochem. 2017, 42, 1789–1801. [Google Scholar] [CrossRef]
- Ikai, T.; Akao, Y.; Nakagawa, Y.; Ohguchi, K.; Sakai, Y.; Nozawa, Y. Magnolol-induced apoptosis is mediated via the intrinsic pathway with release of AIF from mitochondria in U937 cells. Biol. Pharm. Bull. 2006, 29, 2498–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Q.; Li, M.; Jiao, G. Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells. Arch. Pharm. Res. 2009, 32, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Emran, A.A.; Chinna Chowdary, B.R.; Ahmed, F.; Hammerlindl, H.; Huefner, A.; Haass, N.K.; Schuehly, W.; Schaider, H. Magnolol induces cell death through PI3K/Akt-mediated epigenetic modifications boosting treatment of BRAF- and NRAS-mutant melanoma. Cancer Med. 2019, 8, 1186–1196. [Google Scholar] [CrossRef]
- Jin, W.; Wang, X.; Zeng, Y.; Lan, Y.; Wang, X. Magnolol suppressed cell migration and invasion and induced cell apoptosis via inhibition of the NF-κB signaling pathway by upregulating microRNA-129 in multiple myeloma. Neoplasma 2021, 68, 404–415. [Google Scholar] [CrossRef]
- Peng, C.Y.; Yu, C.C.; Huang, C.C.; Liao, Y.W.; Hsieh, P.L.; Chu, P.M.; Yu, C.H.; Lin, S.S. Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas. J. Formos. Med. Assoc. 2022, 121, 51–57. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lin, C.W.; Su, C.W.; Yang, W.E.; Chuang, C.Y.; Su, S.C.; Hsieh, M.J.; Yang, S.F. Magnolol Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells through JNK1/2 and p38 Pathways. Biomedicines 2021, 9, 1295. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wen, H.; Li, H. Magnolol induces apoptosis in osteosarcoma cells via G0/G1 phase arrest and p53-mediated mitochondrial pathway. J. Cell Biochem. 2019, 120, 17067–17079. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.C.; Hsu, S.C.; Cheng, Y.T.; Shao, W.S.; Wu, K.; Fang, G.S.; Ou, C.C.; Wang, V. Magnolol down-regulates HER2 gene expression, leading to inhibition of HER2-mediated metastatic potential in ovarian cancer cells. Cancer Lett. 2011, 311, 11–19. [Google Scholar] [CrossRef]
- Chen, S.; Shen, J.; Zhao, J.; Wang, J.; Shan, T.; Li, J.; Xu, M.; Chen, X.; Liu, Y.; Cao, G. Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling. Front. Oncol. 2020, 10, 597672. [Google Scholar] [CrossRef]
- Lee, D.H.; Szczepanski, M.J.; Lee, Y.J. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J. Cell Biochem. 2009, 106, 1113–1122. [Google Scholar] [CrossRef]
- McKeown, B.T.; Hurta, R.A. Magnolol affects expression of IGF-1 and associated binding proteins in human prostate cancer cells in vitro. Anticancer Res. 2014, 34, 6333–6338. [Google Scholar] [PubMed]
- McKeown, B.T.; McDougall, L.; Catalli, A.; Hurta, R.A. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins. Nutr. Cancer 2014, 66, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Park, K.K. Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci. Biotechnol. Biochem. 2010, 74, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Zhou, S.; Song, J. Induction of apoptosis by magnolol via the mitochondrial pathway and cell cycle arrest in renal carcinoma cells. Biochem. Biophys. Res. Commun. 2019, 508, 1271–1278. [Google Scholar] [CrossRef]
- Woo, S.M.; Min, K.J.; Kwon, T.K. Magnolol Enhances the Therapeutic Effects of TRAIL through DR5 Upregulation and Downregulation of c-FLIP and Mcl-1 Proteins in Cancer Cells. Molecules 2020, 25, 4591. [Google Scholar] [CrossRef] [PubMed]
- Chilampalli, C.; Guillermo, R.; Zhang, X.; Kaushik, R.S.; Young, A.; Zeman, D.; Hildreth, M.B.; Fahmy, H.; Dwivedi, C. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer 2011, 11, 456. [Google Scholar] [CrossRef]
- Kuo, D.H.; Lai, Y.S.; Lo, C.Y.; Cheng, A.C.; Wu, H.; Pan, M.H. Inhibitory effect of magnolol on TPA-induced skin inflammation and tumor promotion in mice. J. Agric. Food Chem. 2010, 58, 5777–5783. [Google Scholar] [CrossRef]
- Huang, S.H.; Chen, Y.; Tung, P.Y.; Wu, J.C.; Chen, K.H.; Wu, J.M.; Wang, S.M. Mechanisms for the magnolol-induced cell death of CGTH W-2 thyroid carcinoma cells. J. Cell Biochem. 2007, 101, 1011–1022. [Google Scholar] [CrossRef]
- Hassan, B.; Akcakanat, A.; Holder, A.M.; Meric-Bernstam, F. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg. Oncol. Clin. North Am. 2013, 22, 641–664. [Google Scholar] [CrossRef]
- Alessi, D.R.; James, S.R.; Downes, C.P.; Holmes, A.B.; Gaffney, P.R.; Reese, C.B.; Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 1997, 7, 261–269. [Google Scholar] [CrossRef]
- Memmott, R.M.; Dennis, P.A. Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal. 2009, 21, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufour, M.; Dormond-Meuwly, A.; Demartines, N.; Dormond, O. Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers 2011, 3, 2478–2500. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Sung, B. NF-κB in cancer: A matter of life and death. Cancer Discov. 2011, 1, 469–471. [Google Scholar] [CrossRef]
- Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef]
- Xia, Y.; Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2014, 2, 823–830. [Google Scholar] [CrossRef]
- Law, M.E.; Corsino, P.E.; Narayan, S.; Law, B.K. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics. Mol. Pharmacol. 2015, 88, 846–852. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Liu, X.; Kim, C.; Yang, J.; Jemmerson, R.; Wang, X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996, 86, 147–157. [Google Scholar] [CrossRef]
- Kovarik, J.; Siegrist, C.-A. Immunity in early life. Immunol. Today 1998, 19, 150–152. [Google Scholar] [CrossRef]
- Saelens, X.; Festjens, N.; Vande Walle, L.; van Gurp, M.; van Loo, G.; Vandenabeele, P. Toxic proteins released from mitochondria in cell death. Oncogene 2004, 23, 2861–2874. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef]
- Fidler, I.J.; Kripke, M.L. The challenge of targeting metastasis. Cancer Metastasis Rev. 2015, 34, 635–641. [Google Scholar] [CrossRef]
- Singh, D.; Srivastava, S.K.; Chaudhuri, T.K.; Upadhyay, G. Multifaceted role of matrix metalloproteinases (MMPs). Front. Mol. Biosci. 2015, 2, 19. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef]
- Mittal, V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 2018, 13, 395–412. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Höckel, M.; Vaupel, P. Biological consequences of tumor hypoxia. Semin. Oncol. 2001, 28, 36–41. [Google Scholar] [CrossRef]
- Le, Q.T.; Denko, N.C.; Giaccia, A.J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev. 2004, 23, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Wang, L.; Esko, J.; Giordano, F.J.; Huang, Y.; Gerber, H.P.; Ferrara, N.; Johnson, R.S. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004, 6, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Kuk, H.; Arnold, C.; Meyer, R.; Hecker, M.; Korff, T. Magnolol inhibits venous remodeling in mice. Sci. Rep. 2017, 7, 17820. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D.; Oh, J.; Park, H.J.; Bae, K.; Lee, S.K. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Int. J. Oncol. 2013, 43, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Jada, S.; Doma, M.R.; Singh, P.P.; Kumar, S.; Malik, F.; Sharma, A.; Khan, I.A.; Qazi, G.N.; Kumar, H.M. Design and synthesis of novel magnolol derivatives as potential antimicrobial and antiproliferative compounds. Eur. J. Med. Chem. 2012, 51, 35–41. [Google Scholar] [CrossRef]
- Kumar, S.; Guru, S.K.; Pathania, A.S.; Kumar, A.; Bhushan, S.; Malik, F. Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis. 2013, 4, e889. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Pathania, A.S.; Guru, S.K.; Jada, S.; Sharma, P.R.; Bhushan, S.; Saxena, A.K.; Kumar, H.M.; Malik, F. Tiron and trolox potentiate the autophagic cell death induced by magnolol analog Ery5 by activation of Bax in HL-60 cells. Apoptosis 2013, 18, 605–617. [Google Scholar] [CrossRef]
- Xu, T.; Zheng, Z.; Guo, Y.; Bai, L.P. Semisynthesis of novel magnolol-based Mannich base derivatives that suppress cancer cells via inducing autophagy. Eur. J. Med. Chem. 2020, 205, 112663. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, Y.; Li, D.; Fu, S.; Tang, M.; Wan, L.; Chen, K.; Liu, Z.; Xue, L.; Peng, A.; et al. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur. J. Med. Chem. 2018, 156, 190–205. [Google Scholar] [CrossRef]
- Zhao, M.; Zheng, Y.H.; Zhao, Q.Y.; Zheng, W.; Yang, J.H.; Pei, H.Y.; Liu, L.; Liu, K.J.; Xue, L.L.; Deng, D.X.; et al. Synthesis and evaluation of new compounds bearing 3-(4-aminopiperidin-1-yl)methyl magnolol scaffold as anticancer agents for the treatment of non-small cell lung cancer via targeting autophagy. Eur. J. Med. Chem. 2021, 209, 112922. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tao, C.; Huang, X.; Chen, Z.; Wang, L.; Li, X.; Ma, M.; Wu, Z. CT2-3, a novel magnolol analogue suppresses NSCLC cells through triggering cell cycle arrest and apoptosis. Bioorganic Med. Chem. 2020, 28, 115352. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Chen, J.; Huang, X.; Chen, Z.; Li, X.; Li, Y.; Xu, Y.; Ma, M.; Wu, Z. CT1-3, a novel magnolol-sulforaphane hybrid suppresses tumorigenesis through inducing mitochondria-mediated apoptosis and inhibiting epithelial mesenchymal transition. Eur. J. Med. Chem. 2020, 199. [Google Scholar] [CrossRef]
- Sun, X.-L.; Zhu, M.-L.; Dai, Y.-Q.; Li, H.-M.; Li, B.-H.; Ma, H.; Zhang, C.-H.; Wu, C.-Z. Semi-Synthesis and In Vitro Anti-Cancer Evaluation of Magnolol Derivatives. Molecules 2021, 26, 4302. [Google Scholar] [CrossRef]
- Ding, R.B.; Chen, P.; Rajendran, B.K.; Lyu, X.; Wang, H.; Bao, J.; Zeng, J.; Hao, W.; Sun, H.; Wong, A.H.; et al. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat. Commun. 2021, 12, 3046. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Yang, G.; Shi, Q.; Feng, F. Comparative pharmacokinetics and brain distribution of magnolol and honokiol after oral administration of Magnolia officinalis cortex extract and its compatibility with other herbal medicines in Zhi-Zi-Hou-Po Decoction to rats. Biomed. Chromatogr. 2016, 30, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Chou, C.J.; Lee, T.F.; Wang, L.C.H.; Chen, C.F. Pharmacokinetic and Pharmacodynamic Studies of Magnolol after Oral Administration in Rats. Pharm. Pharmacol. Commun. 1996, 2, 191–193. [Google Scholar]
- Lin, Y.; Li, Y.; Zeng, Y.; Tian, B.; Qu, X.; Yuan, Q.; Song, Y. Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update. Front. Pharmacol. 2021, 12, 632767. [Google Scholar] [CrossRef]
- Lin, H.L.; Cheng, W.T.; Chen, L.C.; Ho, H.O.; Lin, S.Y.; Hsieh, C.M. Honokiol/Magnolol-Loaded Self-Assembling Lecithin-Based Mixed Polymeric Micelles (lbMPMs) for Improving Solubility to Enhance Oral Bioavailability. Int. J. Nanomed. 2021, 16, 651–665. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chien, Y.C.; Wu, C.H.; Liu, D.M. Magnolol-loaded core-shell hydrogel nanoparticles: Drug release, intracellular uptake, and controlled cytotoxicity for the inhibition of migration of vascular smooth muscle cells. Mol. Pharm. 2011, 8, 2339–2349. [Google Scholar] [CrossRef] [Green Version]
No. | Cancer Types | Cell Lines Used | Models | IC50 In Vitro/ Drug Dose In Vivo | Mechanism of Action | Reference |
---|---|---|---|---|---|---|
1 | Bladder cancer | 5637 | In vitro | 60 μM (24 h) | Induces cell cycle arrest at G0/G1 (low dose) and G2/M (high dose) Cyclin D1/E/B1, CDK2/4↓ p-Cdc25c, p-Cdc2↓; p27↑ Activates p38/MAPK signaling p-ERK, p-p38, p-JNK↑ | [13] |
2 | Bladder cancer | T24 | In vitro | NA | Inhibits hypoxia-induced angiogenesis HIF-1α, CD31, CA-IX↓ Inhibits VEGF/PI3K/Akt/mTOR signaling VEGF, p-VEGFR2↓ p-Akt, p-mTOR, p-p70S6K, p-4E-BP1↓ | [14] |
In vivo | i.p. 5–10 mg/kg every day | |||||
3 | Breast cancer | MCF-7 | In vitro | 58.27 μM (24 h); 53.39 μM (48 h); 49.56 μM (72 h) | Induces cell cycle arrest at G2/M p21, p53↑; CDK1, Cyclin B1↓ Induces apoptosis Bax, Cytochrome C, AIF, Cleaved PARP↑ Bcl-2↓ | [16] |
4 | Breast cancer | MDA-MB-231; MDA-MB-468; MDA-MB-453; MDA-MB-435S; MCF-7; SK-BR3 | In vitro | MDA-MB-231: 25.32 μM (24 h) MDA-MB-468: 24.79 μM (24 h) MDA-MB-453: 35.69 μM (24 h) MDA-MB-435S: 25.49 μM (24 h) MCF-7: 70.52 μM (24 h) SK-BR3: 59.4 μM (24 h) | Inhibits migration and invasion MMP-2/9↓ Inhibits NF-κB signaling NF-κB activity, p-p65, p-IκBα↓ | [15] |
MDA-MB-231; MCF-7 | In vivo | i.p. 40 mg/kg four times a week | ||||
5 | Cholangiocarcinoma | QBC939; SK-ChA-1; MZ-ChA-1; RBE | In vitro | QBC939: 40–80 μM (24 h); ~40 μM (48 h); 20–40 μM (72 h) SK-ChA-1: 40–80 μM (24 h); 40–80 μM (48 h); 20–40 μM (72 h) MZ-ChA-1: 40–80 μM (24 h); ~40 μM (48 h); 20–40 μM(72 h) RBE: 80–100 μM (24 h); 40–80 μM (48 h); 40–80 μM (72 h) | Induces cell cycle arrest at G0/G1 Cyclin D1↓ Inhibits migration and invasion MMP-2/7/9↓ Inhibits NF-κB signaling p-IκBα, p-p65↓ | [17] |
MZ-ChA-1 | In vivo | i.p. 40 mg/kg every day | ||||
6 | Colon cancer | COLO-205 | In vitro | NA | Induces cell cycle arrest at G0/G1 p21, p-ERK, p-Raf, ↑ | [18] |
7 | Colon cancer | SW480; HCT116 | In vitro | SW480: 166.9 μM (24 h); 67.9 μM(48 h); 53.5 μM (72 h) HCT116: 95.6 μM (24 h); 75.4 μM (48 h); 72.9 μM (72 h) | Inhibits β-Catenin/TCF signaling β-Catenin, c-Myc, Cyclin D1↓ Inhibits migration and invasion E-cadherin↑; MMP-7 and uPA↓ | [19] |
HCT116 | In vivo | i.p. 5 mg/kg three times a week | ||||
8 | Colon cancer | HCT116 | In vitro | 25–50 μM (24 h) | Induces apoptosis Cleaved Caspase-3, Cleaved PARP↑ Bax, p53, Cytochrome C↑; Bcl-2↓ Activates AMPK signaling p-AMPK↑ Inhibits mTOR signaling p-mTOR, p-p70S6K↓ Inhibits migration and invasion | [20] |
9 | Colon cancer | COLO-205; HT29 | In vitro | NA | Induces cell cycle arrest at G0/G1 P21↑; CDK2, Cyclin A/E↓ | [21] |
COLO-205 | In vivo | i.p. 100 mg/kg 5 times a week | ||||
10 | Colon cancer | HCT116; SW480 | In vitro | NA | Inhibits migration and invasion E-Cadherin, ZO-1, Claudin↑ N-Cadherin, Twist, Slug, Snail↓ TGF-β, TGF-β RI↓ p-ERK, p-GSK3β, p-Smad↓ | [22] |
11 | Colon cancer | CT26; HT29 | In vitro | 75 μM (24 h) | Inhibits NF-κB signaling NF-κB activity, p-p65↓ Inhibits PKCδ/MAPK/Akt signaling p-PKCδ, p-ERK, p-Akt↓ Induces apoptosis Cleaved Caspase-3/8/9, FAS, FASL↑ Mcl-1, c-FLIP, XIAP↓ Inhibits migration and invasion MMP-2/9, uPA↓ Cyclin D1↓ | [23] |
In vivo | 50–100 mg/kg twice a week | |||||
12 | Esophagus cancer | TE-1; KYSE-150; Eca-109 | In vitro | KYSE-150: 50–100 μM (24 h); ~50 μM (48 h) Eca-109: 50–100 μM (24 h); 50–100 μM (48 h); TE-1: 100–150 μM (24 h); 100–150 μM (48 h); | Induces apoptosis Cleaved Caspase-3/8/9, Bax↑; Bcl-2↓ Inhibits migration MMP-2↓ Activates p38/MAPK signaling p-p38, p-ERK↑ | [24] |
KYSE-150 | In vivo | i.p.30mg/kg every other day | ||||
13 | Fibrosarcoma | HT1080 | In vitro | NA | Induces apoptosis Caspases-3/8 activity↑ | [25] |
14 | Gallbladder cancer | GBC-SD SGC996 | In vitro | GBC-SD: 20.5 μM (48 h) SGC996: 14.9 μM (48 h) | Induces apoptosis Cleaved Caspase-3/9, Cleaved PARP↑ Bax, p53, p21↑; Bcl-2↓ Induces cell cycle arrest at G0/G1 Cdc25A, CDK2, Cyclin D1↓ | [26] |
GBC-SD | In vivo | i.p. 5–20 mg/kg every day | ||||
15 | Gastric cancer | SGC-7901 | In vitro | 50–100 μM (48 h) | Induces cell cycle arrest at Sub-G1 and S Induces apoptosis Cleaved Caspase-3, Bax↑; Bcl-2↓ Inhibits PI3K/Akt signaling p-PI3K, p-Akt↓ | [27] |
16 | Glioblastoma | GBM8401; BP5 | In vitro | GBM8401: 25 μM(48 h) BP5: 150 μM(48 h) | Induces apoptosis Cleaved Caspase-3/8/9, FAS, FASL, DR4/5↑ Inhibits PKCδ/STAT3 signaling p-STAT3, p-PKCδ↓ Inhibits migration and invasion MMP-9, uPA↓ | [28] |
17 | Glioblastoma | U373 | In vitro | NA | Induces cell cycle arrest at G0/G1 Cyclin A/D1↓; p21↑ | [29] |
18 | Glioblastoma | U373 | In vitro | NA | Induces apoptosis Induces cell cycle arrest at G0/G1 P21, p27↑ Activates cSrc/MAPK signaling p-cSrc, p-ERK, p-p38, p-Akt↑ | [30] |
In vivo | i.p. 100 mg/kg Every other day | |||||
19 | Glioblastoma | U87MG; LN229; GBM8401 | In vitro | NA | Induces apoptosis Cleaved Caspase-3↑; Bcl-2↑ Inhibits PI3K/Akt signaling p-PI3K, p-Akt↓ | [31] |
LN229 | In vivo | i.p. 20 mg/kg every day | ||||
20 | Glioblastoma | U87MG; LN229 | In vitro | NA | Inhibits migration and invasion p-FAK, p-paxillin, integrin β1/β3, p-Src↓ p-MLC, p-MLCK, p-MYPY1↓ N-Cadherin, β-catenin↓ | [32] |
LN229 | In vivo | i.p. 20 mg/kg every day | ||||
21 | Leukemia | THP-1 | In vitro | NA | Induces apoptosis Caspases-3/8 activity↑ | [25] |
22 | Liver cancer | HepG2; Hep-3B | In vitro | NA | Induces cell cycle arrest at G0/G1 P21↑; CDK2, Cyclin A/E↓ | [21] |
23 | Liver cancer | Hep-3B; SK-Hep1 | In vitro | Hep-3B: 75–100 μM (48 h) SK-Hep1: 75–100 μM (48 h) | Induces apoptosis Cleaved Caspase-3/8/9, Cleaved PARP↑ Bax, Bak, FAS↑ XIAP, C-FLIP, Mcl-1, MDC-1↓ Inhibits migration and invasion MMP-9, VEGF-A↓ | [33] |
24 | Liver cancer | SK-Hep1 | In vitro | ~150 μM (48 h) | Induces cell cycle arrest at Sub-G1 Induces apoptosis Caspase-3 activity↑; Survivin, XIAP↓ Inhibits migration and invasion MMP-2/9, uPA↓ Inhibits NF-κB signaling NF-κB activity, p-ERK↓ | [34] |
25 | Liver cancer | HepG2 | In vitro | ~30 μM (48 h) | Induces cell cycle arrest at G0/G1 Inhibits migration and invasion Induces apoptosis Bax, Cleaved PARP, Cytochrome C↑; Bcl-2↓ Activates ER stress signaling GRP78, p-ERK, p-eIF2α, CHOP↑ | [35] |
In vivo | i.p. 10–30 mg/kg every day | |||||
26 | Liver cancer | SK-Hep1 | In vivo | p.o. 50–100 mg/kg every day | Induces apoptosis XIAP, c-FLIP, Mcl-1↓ Cleaved Caspase-3/9↑ Inhibits NF-κB signaling NF-κB activity, p-p65↓ p-ERK, MMP-9, Cyclin D1↓ | [36] |
27 | Lung cancer | A549; H441; H520 | In vitro | A549: 80–100 μM (24 h) H441: 80–100 μM (24 h) H520: ~100 μM (24 h) | Induces apoptosis Bid, Bax, Cytochrome C, Cleaved PARP↑ Induce mitochondria-to-nuclear translocation of AIF and EndoG Activates p38/JNK signaling p-p38, p-JNK↑ Inhibits PI3K/Akt signaling p-PI3K, p-Akt, p-ERK↓ | [37] |
28 | Lung cancer | H460 | In vitro | 80–100 μM (24 h); 60–80 μM (48 h) | Induces autophagy Inhibits PTEN/Akt signaling PTEN↑; p-Akt↓ | [38] |
29 | Lung cancer | A549 | In vitro | 50–100 μM (24 h) | Induces cell cycle arrest at sub-G1 Induces apoptosis Cleaved PARP↑ Inhibits NF-κB signaling NF-κB activity, p65↓ Inhibits angiogenesis | [39] |
30 | Lung cancer | A549; H1299 | In vitro | A549: 5 μM (72 h) H1299: 5 μM (72 h) | Induces cell cycle arrest at G2/M Cyclin B1, CDK2, p21, P27↑ p-Cdc2, Cdc25c, Cyclin D1/A2, CDK1/4↓ Inhibits microtubule polymerization MPM-2↑ Induces apoptosis Cleaved Caspase-9, Cleaved PARP, Bax↑ Bcl-2↓ Induces autophagy ATG5/12, LC3B-II/I ratio↑ mTOR, p62, p-Akt↓ | [40] |
A549 | In vivo | i.p. 25 mg/kg every other day | ||||
31 | Lymphoma | U937 | In vitro | 31.63 μM (72 h) | Induces apoptosis Cleaved Caspase-3, AIF, Bax↑ Bcl-2, c-Myc↓ p-ERK↑ | [41] |
32 | Melanoma | A375-S2 | In vitro | 50–100 μM (24 h); ~50 μM (48 h) | Induces apoptosis Caspase-3/8 activity, Cleaved PARP↑ Bax, Cytochrome C↑; Bcl-2, ICAD↓ | [42] |
33 | Melanoma | WM164; WM1366; HaCaT; D24; | In vitro | NA | Induces cell cycle arrest at G0/G1 Induces apoptosis Inhibits PI3K/Akt signaling p-Akt, p-mTOR, p-ERK↓ | [43] |
34 | Melanoma | B16-BL6 | In vitro | NA | Induces apoptosis Caspases-3/8 activity↑ | [25] |
35 | Myeloma | U266; LP1 | In vitro | U266: 20–40 μM (24 h); 20–40 μM (48 h) LP1: 20–40 μM (24 h); 10–20 μM (48 h) | Induces apoptosis Inhibits migration and invasion MMP7/9↓ Upregulates miR-129 Inhibits NF-κB signaling p-p65, p-IκBα↓ | [44] |
36 | Oral carcinoma | SAS; GNM; OECM1 | In vitro | SAS: 2.4 μM (24 h) GNM: 11.7 μM (24 h) OECM1: 4.1 μM (24 h) | Inhibits cancer stemness ALDH1↓ Inhibits migration and invasion Inhibits STAT3/IL6 signaling p-STAT3, IL6↓ | [45] |
37 | Oral carcinoma | HSC-3; SCC-9 | In vitro | HSC-3: 50–75 μM (24 h) SCC-9: 50–75 μM (24 h) | Induces apoptosis Cleaved Caspase-3/8/9, Cleaved PARP↑ HO-1↑; cIAP1↓ Induces cell cycle arrest at Sub-G1 Activates MAPK/ERK signaling p-ERK, p-JNK, p-p38↑ | [46] |
38 | Osteosarcoma | MG-63; 143B | In vitro | MG-63: 32.9 μM (24 h); 27.8 μM (48 h) 143B: 30.3 μM (24 h); 25.1 μM (48 h) | Inhibits migration and invasion Induces cell cycle arrest at G0/G1 P27↑; CDK2, Cyclin D1↓ Induces apoptosis P53, Bax, Cytochrome C, Apaf-1↑ Cleaved Caspase-3/9↑; Bcl-2↓ | [47] |
39 | Ovarian cancer | SKOV3; TOV21G | In vitro | SKOV3: 25–50 μM (48 h); 25–50 μM (72 h) TOV21G: 50–100 μM (48 h); 50–100 μM (72 h) | Inhibits HER2 signaling HER2, p-HER2↓ Inhibits NF-κB signaling p65↓ Inhibits PI3K/Akt/mTOR signaling p-Akt, p-mTOR, p-GSK3β, p38↓ Inhibits migration Induces apoptosis Cleaved Caspase-3, Cleaved PARP↑ | [48] |
40 | Pancreatic cancer | Panc-1; AsPC-1 | In vitro | Panc-1: 140.5 μM (24 h); 117.3 μM (48 h); 96.4 μM (72 h) AsPC-1: 160 μM (24 h); 104.2 μM (48 h); 75.4 μM (72 h) | Inhibits migration and invasion Inhibits EMT E-Cadherin↑; Vimentin↓ Inhibits TGF-β1/Smad signaling p-SMAD2/3↓ | [49] |
AsPC-1 | In vivo | i.p. 50 mg/kg every day | ||||
41 | Prostate cancer | LNCaP; PC-3; DU-145 | In vitro | LNCaP:53 μM (24 h) PC-3:60 μM (24 h) DU-145:70 μM (24 h) | Induces apoptosis Cleaved Caspase-3/8/9, Cleaved PARP↑ Bax, Cytochrome C↑; p-Bad↓ Inhibits EGFR/PI3K/Akt signaling p-EGFR, p-PI3K, p-Akt, p-PDK1↓ | [50] |
42 | Prostate cancer | LNCaP; PC3 | In vitro | NA | Inhibits IGF-1 signaling IGF-1, p-IGR-1R, IGFBP5↓ IGFBP-3/4↑ | [51] |
43 | Prostate cancer | Du145; PC3 | In vitro | Du145: ~40 μM (24 h) PC3: ~80 μM (24 h) | Induces cell cycle arrest at G0/G1 CDK2, Cyclin D1↓ | [52] |
44 | Prostate cancer | PC-3 | In vitro | ~40 μM (24 h); 25–30 μM (48 h); 25–30 μM (72 h) | Inhibits migration and invasion MMP-2/9, COX-1/2↓ | [53] |
45 | Renal cancer | 786-O; OS-RC-2 | In vitro | 786-O: 30.29 μM (24 h); 25.4 μM (48 h) OS-RC-2: 31.19 μM (24 h); 25.9 μM (48 h) | Inhibits migration and invasion Induces cell cycle arrest at G0/G1 P53, p21↑; Cyclin D1, CDK2↓ Induces apoptosis Bax, Cytochrome C, Apaf-1↑ Cleaved Caspase-3/9↑; Bcl-2↓ | [54] |
46 | Renal cancer | Caki-1; ACHN | In vitro | NA | Induces cell cycle arrest at Sub-G1 Induces TRAIL-mediated apoptosis Cleaved Caspase-3, Cleaved PARP, DR5↑ Mcl-1, c-FLIP↓; ATF4↑ | [55] |
47 | Skin cancer | A431 | In vitro | NA | Induces apoptosis Cleaved Caspase-3/8, Cleaved PARP↑ Induces cell cycle arrest at G2/M Cyclin A/B1/D1, CDK2/4, Cdc2/25A/25C↓ P21, p-ERK↑ BRAF, p-STAT3, p-MEK, p-Akt↓ | [56] |
UVB-induced carcinogenesis | In vivo | topically applied 30–60 μg/mouse 5 times a week | ||||
48 | Skin cancer | TP-induced carcinogenesis | In vivo | topically applied 1–5 μM twice a week | Inhibits inflammation iNOS, COX-2↓ Inhibits NF-κB signaling p-p65, p-IκBα↓ Inhibits MAPK signaling p-p38, p-ERK↓ Inhibits PI3K/Akt signaling p-PI3K, p-Akt↓ | [57] |
49 | Thyroid cancer | CGTH W-2 | In vitro | NA | Induces apoptosis Cleaved Caspase-3/7, Cleaved PARP↑ Cytochrome C↑ p-PTEN, p-Akt↓ | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Q.; Fu, Y.; Ding, R.-B.; Qi, X.; Zhou, X.; Sun, Z.; Bao, J. Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight. Molecules 2022, 27, 6441. https://doi.org/10.3390/molecules27196441
Wang X, Liu Q, Fu Y, Ding R-B, Qi X, Zhou X, Sun Z, Bao J. Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight. Molecules. 2022; 27(19):6441. https://doi.org/10.3390/molecules27196441
Chicago/Turabian StyleWang, Xiaofeng, Qingqing Liu, Yuanfeng Fu, Ren-Bo Ding, Xingzhu Qi, Xuejun Zhou, Zhihua Sun, and Jiaolin Bao. 2022. "Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight" Molecules 27, no. 19: 6441. https://doi.org/10.3390/molecules27196441
APA StyleWang, X., Liu, Q., Fu, Y., Ding, R. -B., Qi, X., Zhou, X., Sun, Z., & Bao, J. (2022). Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight. Molecules, 27(19), 6441. https://doi.org/10.3390/molecules27196441