Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Characterization of the Gel and Emulsion Formulations
2.2. Characterization of the PLGA Solid Dispersion
2.3. Bioadhesion of the Formulations to the Bone Grafts
2.4. In Vitro Testing of Cell Viability and Proliferation
2.5. Ex Vivo Dissolution of Vancomycin Hydrochloride and Gentamicin Sulphate
3. Materials and Methods
3.1. Materials
3.2. Preparation of Vancomycin and Gentamicin-Loaded Formulations
3.3. Rheological Measurements
3.4. Physicochemical Characterization of the PLGA Solid Dispersion
3.5. Bioadhesion Testing of the Formulations
3.6. MSCs Proliferation and Viability Test
3.7. Ex Vivo Drug Release Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Basile, G.; Gallina, M.; Passeri, A.; Gaudio, R.M.; Castelnuovo, N.; Ferrante, P.; Calori, G.M. Prosthetic joint infections and legal disputes: A threat to the future of prosthetic orthopedics. J. Orthop. Traumatol. 2021, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, B.H.; Berg, R.A.; Daley, J.A.; Fritz, J.; Bhave, A.; Mont, M.A. Periprosthetic joint infection. Lancet 2016, 387, 386–394. [Google Scholar] [CrossRef]
- Diefenbeck, M.; Mückley, T.; Hofmann, G.O. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury 2006, 37 (Suppl. 2), S95–S104. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Schröder, K. Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: A systematic review of the literature. Int. J. Biomater. 2012, 2012, 538061. [Google Scholar] [CrossRef]
- Peeters, A.; Putzeys, G.; Thorrez, L. Current Insights in the Application of Bone Grafts for Local Antibiotic Delivery in Bone Reconstruction Surgery. J. Bone Jt. Infect. 2019, 4, 245–253. [Google Scholar] [CrossRef]
- Winkler, H.; Kaudela, K.; Stoiber, A.; Menschik, F. Bone grafts impregnated with antibiotics as a tool for treating infected implants in orthopedic surgery-one stage revision results. Cell Tissue Bank. 2006, 7, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Bidossi, A.M.; Logoluso, N.; De Vecchi, E. In Vitro Evaluation of Gentamicin or Vancomycin Containing Bone Graft Substitute in the Prevention of Orthopedic Implant-Related Infections. Int. J. Mol. Sci. 2020, 21, 9250. [Google Scholar] [CrossRef] [PubMed]
- Winkler, H.; Janata, O.; Berger, C.; Wein, W.; Georgopoulos, A. In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J. Antimicrob. Chemother. 2000, 46, 423–428. [Google Scholar] [CrossRef]
- Klapkova, E.; Nescakova, M.; Melichercik, P.; Jahoda, D.; Dunovska, K.; Cepova, J.; Prusa, R. Vancomycin and its crystalline degradation products released from bone grafts and different types of bone cement. Folia Microbiol. (Praha) 2020, 65, 475–482. [Google Scholar] [CrossRef]
- Frazer, R.Q.; Byron, R.T.; Osborne, P.B.; West, K.P. PMMA: An essential material in medicine and dentistry. J. Long Term Eff. Med. Implants 2005, 15, 629–639. [Google Scholar] [CrossRef] [Green Version]
- El-Husseiny, M.; Patel, S.; MacFarlane, R.J.; Haddad, F.S. Biodegradable antibiotic delivery systems. J. Bone Joint Surg. Br. 2011, 93, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duminis, T.; Shahid, S.; Hill, R.G. Apatite Glass-Ceramics: A Review. Front. Mater. 2017, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Garvin, K.; Feschuk, C. Polylactide-polyglycolide antibiotic implants. Clin. Orthop. Relat. Res. 2005, 437, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Kanellakopoulou, K.; Giamarellos-Bourboulis, E.J. Carrier Systems for the Local Delivery of Antibiotics in Bone Infections. Drugs 2000, 59, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Kucera, T.; Ryskova, L.; Soukup, T.; Malakova, J.; Cermakova, E.; Mericka, P.; Suchanek, J.; Sponer, P. Elution kinetics of vancomycin and gentamicin from carriers and their effects on mesenchymal stem cell proliferation: An in vitro study. BMC Musculoskelet. Disord. 2017, 18, 381. [Google Scholar] [CrossRef]
- Colucci, G.; Santamaria-Echart, A.; Silva, S.C.; Fernandes, I.P.M.; Sipoli, C.C.; Barreiro, M.F. Development of Water-in-Oil Emulsions as Delivery Vehicles and Testing with a Natural Antimicrobial Extract. Molecules 2020, 25, 2105. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Zhu, Q.; Pan, Y.; Jia, X.; Li, J.; Zhang, M.; Yin, L. Review on the Stability Mechanism and Application of Water-in-Oil Emulsions Encapsulating Various Additives. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1660–1675. [Google Scholar] [CrossRef]
- Bjerregaard, S.; Pedersen, H.; Vedstesen, H.; Vermehren, C.; Söderberg, I.; Frokjaer, S. Parenteral water/oil emulsions containing hydrophilic compounds with enhanced in vivo retention: Formulation, rheological characterisation and study of in vivo fate using whole body gamma-scintigraphy. Int. J. Pharm. 2001, 215, 13–27. [Google Scholar] [CrossRef]
- Penn-Barwell, J.G.; Murray, C.K.; Wenke, J.C. Local antibiotic delivery by a bioabsorbable gel is superior to PMMA bead depot in reducing infection in an open fracture model. J. Orthop. Trauma 2014, 28, 370–375. [Google Scholar] [CrossRef]
- Khiste, R.; Bhapkar, N.; Kulkarni, N. A Review on Applications of Hydroxy Propyl Methyl Cellulose and Natural polymers for the development of modified release drug delivery systems. Res. J. Pharm. Technol. 2021, 14, 1163–1170. [Google Scholar] [CrossRef]
- Mašková, E.; Kubová, K.; Raimi-Abraham, B.T.; Vllasaliu, D.; Vohlídalová, E.; Turánek, J.; Mašek, J. Hypromellose-A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release 2020, 324, 695–727. [Google Scholar] [CrossRef] [PubMed]
- Vallejo Diaz, A.; Deimling, C.; Morgenstern, M.; D’Este, M.; Puetzler, J.; Zeiter, S.; Arens, D.; Metsemakers, W.J.; Richards, R.G.; Eglin, D.; et al. Local Application of a Gentamicin-Loaded Hydrogel Early After Injury Is Superior to Perioperative Systemic Prophylaxis in a Rabbit Open Fracture Model. J. Orthop. Trauma 2020, 34, 231–237. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Garcia-Casas, A.; Mediero, A.; Romera, D.; Mulero, F.; Cuevas-López, I.; Jiménez-Morales, A.; Esteban, J. A New Antibiotic-Loaded Sol-Gel Can Prevent Bacterial Prosthetic Joint Infection: From in vitro Studies to an in vivo Model. Front. Microbiol. 2019, 10, 2935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, T.; Chen, J.; Qi, P.; Xiao, P.; Wang, P. Goserelin/PLGA solid dispersion used to prepare long-acting microspheres with reduced initial release and reduced fluctuation of drug serum concentration in vivo. Int. J. Pharm. 2022, 615, 121474. [Google Scholar] [CrossRef]
- Martins, C.; Sousa, F.; Araújo, F.; Sarmento, B. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Adv. Healthc. Mater. 2018, 7, 1701035. [Google Scholar] [CrossRef]
- Snejdrova, E.; Dittrich, M.; Drastik, M. Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers. Int. J. Pharm. 2013, 458, 282–286. [Google Scholar] [CrossRef]
- Jin, S.; Xia, X.; Huang, J.; Yuan, C.; Zuo, Y.; Li, Y.; Li, J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021, 127, 56–79. [Google Scholar] [CrossRef]
- Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Front. Pharmacol. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Snejdrova, E.; Loskot, J.; Martiska, J.; Soukup, T.; Prokes, L.; Frolov, V.; Kucera, T. Rifampicin-loaded PLGA nanoparticles for local treatment of musculoskeletal infections: Formulation and characterization. J. Drug Deliv. Sci. Technol. 2022, 73, 103435. [Google Scholar] [CrossRef]
- Snejdrova, E.; Martiška, J.; Loskot, J.; Paraskevopoulos, G.; Kováčik, A.; Regdon Jr, G.; Budai-Szűcs, M.; Palát, K.; Konečná, K. PLGA-based film forming systems for superficial fungal infections treatment. Eur. J. Pharm. Sci. 2021, 163, 105855. [Google Scholar] [CrossRef] [PubMed]
- Bayer, I.S. Recent Advances in Mucoadhesive Interface Materials, Mucoadhesion Characterization, and Technologies. Adv. Mater. Interfaces 2022, 9, 2200211. [Google Scholar] [CrossRef]
- Nair, A.K.; Gautieri, A.; Chang, S.W.; Buehler, M.J. Molecular mechanics of mineralized collagen fibrils in bone. Nat. Commun. 2013, 4, 1724–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szűcs, M.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Vaghi, P.; Szabó-Révész, P.; Erős, I. Mucoadhesive behaviour of emulsions containing polymeric emulsifier. Eur. J. Pharm. Sci. 2008, 34, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Baus, R.A.; Zahir-Jouzdani, F.; Dünnhaupt, S.; Atyabi, F.; Bernkop-Schnürch, A. Mucoadhesive hydrogels for buccal drug delivery: In vitro-in vivo correlation study. Eur. J. Pharm. Biopharm. 2019, 142, 498–505. [Google Scholar] [CrossRef]
- Prochazka, E.; Soukup, T.; Hroch, M.; Fuksa, L.; Brcakova, E.; Cermanova, J.; Kolouchova, G.; Urban, K.; Mokry, J.; Micuda, S. Methotrexate released in vitro from bone cement inhibits human stem cell proliferation in S/G2 phase. Int. Orthop. 2010, 34, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J.; et al. PLGA-based Nanospheres as a Potent Macrophage-Specific Drug Delivery System. Nanomaterials 2021, 11, 749. [Google Scholar] [CrossRef]
- Safety and Efficacy of Hydroxypropyl Methyl Cellulose for All Animal Species. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2020.6214 (accessed on 2 August 2022).
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Bode, C.; Kranz, H.; Fivez, A.; Siepmann, F.; Siepmann, J. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J. Control. Release 2019, 306, 97–107. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Chen, C.-N.; Li, Y.-T.; Chang, C.-W.; Cheng, M.-Y.; Chang, H.-I. The Effect of Polymer Molecular Weight and UV Radiation on Physical Properties and Bioactivities of PCL Films. Cell. Polym. 2011, 30, 261–276. [Google Scholar] [CrossRef]
- Snejdrova, E.; Podzimek, S.; Martiska, J.; Holas, O.; Dittrich, M. Branched PLGA derivatives with tailored drug delivery properties. Acta Pharm. 2020, 70, 63–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, M.; Lund, T.; Lenvik, T.; Aguiar, D.; Koodie, L.; Verfaillie, C.M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001, 98, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
Formulation | K (Pa·sn) | n (-) | Corr. |
---|---|---|---|
Hypromellose gel | 87.46 ± 4.46 | 0.4049 ± 0.0182 | 0.9988 |
Water-in-oil emulsion | 3.096 ± 0.196 | 0.3123 ± 0.0117 | 0.9982 |
G* (Pa) | δ (°) | σ′ (Pa) | |
---|---|---|---|
Average ± SD | 270.73 ± 5.78 | 42.71 ± 0.09 | 168.20 ± 5.56 |
Culture System Designation | Days in Culture | Number of Cells | Viability (%) |
---|---|---|---|
Cells seeded | D0 | 40,000 | 92.3 |
Cells/well | D1 | 50,200 ± 3065 | 90.2 |
1. Blank | D7 | 119,350 ± 8598 | 88.8 |
2. Graft | D7 | 116,800 ± 8059 | 91.8 |
3. Gel | D7 | 79,600 ± 5732 | 78.1 |
4. Emulsion | D7 | 74,400 ± 5282 | 78.4 |
5. PLGA | D7 | 87,200 ± 6104 | 82.3 |
6. Graft solution | D7 | 72,600 ± 5372 | 85.5 |
7. Graft gel | D7 | 82,400 ± 6015 | 82.4 |
8. Graft emulsion | D7 | 73,600 ± 5152 | 81.1 |
9. Graft PLGA | D7 | 92,800 ± 6589 | 86.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokes, L.; Snejdrova, E.; Soukup, T.; Malakova, J.; Frolov, V.; Loskot, J.; Andrys, R.; Kucera, T. Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study. Molecules 2022, 27, 6487. https://doi.org/10.3390/molecules27196487
Prokes L, Snejdrova E, Soukup T, Malakova J, Frolov V, Loskot J, Andrys R, Kucera T. Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study. Molecules. 2022; 27(19):6487. https://doi.org/10.3390/molecules27196487
Chicago/Turabian StyleProkes, Libor, Eva Snejdrova, Tomas Soukup, Jana Malakova, Vladislav Frolov, Jan Loskot, Rudolf Andrys, and Tomas Kucera. 2022. "Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study" Molecules 27, no. 19: 6487. https://doi.org/10.3390/molecules27196487
APA StyleProkes, L., Snejdrova, E., Soukup, T., Malakova, J., Frolov, V., Loskot, J., Andrys, R., & Kucera, T. (2022). Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study. Molecules, 27(19), 6487. https://doi.org/10.3390/molecules27196487