An Innovative Chiral UPLC-MS/MS Method for Enantioselective Determination and Dissipation in Soil of Fenpropidin Enantiomers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enantio-separation and Optimization
2.1.1. Optimization of Chiral Stationary Phases
2.1.2. Optimization of Mobile Phase
2.1.3. Effects of the Column Temperature on Enantio-Separation
2.2. Box-Benhnken Design
2.3. Absolute Configuration
2.4. Molecule Docking
2.5. Method Validation
2.5.1. Specificity, Linearity, LOQs and Matrix Effect
2.5.2. Accuracy and Precision
2.6. Stability of Fenpropidin Enantiomers
2.7. Enantioselective Dissipation of Fenpropidin in Soil
3. Materials and method
3.1. Reagents and Materials
3.2. Instrumental Analysis
3.3. Separation Condition Optimization
3.4. Determination of Specific Optical Rotation
3.5. Confirmation of Absolute Configuration
3.6. Chiral Stationary Phase Recognition Mechanism
3.7. Sample Preparation
3.8. Method Validation
3.9. Stability of Fenpropidin Enatiomers
3.10. Enantioselective Dissipation in Soil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulrich, E.M.; Morrison, C.N.; Goldsmith, M.R.; Foreman, W.T. Chiral pesticides: Identification, description, and environmental implications. Rev. Environ. Contam. Toxicol. 2012, 217, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Garrison, A.W. An introduction to pesticide chirality and the consequences of stereoselectivity. ACS Sym. Ser. 2011, 1085, 1–7. [Google Scholar]
- Pandya, P.A.; Shah, P.A.; Shrivastav, P.S. Simultaneous enantioseparation and simulation studies of atenolol, metoprolol and propranolol on Chiralpak IG column using supercritical fluid chromatography. J. Pharm. Anal. 2020, 11, 746–756. [Google Scholar] [CrossRef]
- Li, R.; Hu, M.F.; Liu, K.F.; Zhang, H.; Li, X.S.; Tan, H.H. Trace enantioselective determination of imidazolinone herbicides in various food matrices using a modified QuEChERS method and ultra-performance liquid chromatography/tandem mass spectrometry. Food Anal. Meth. 2019, 12, 2647–2664. [Google Scholar] [CrossRef]
- Gamiz, B.; Facenda, G.; Celis, R. Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil. Environ. Pollut. 2016, 213, 966–973. [Google Scholar] [CrossRef] [Green Version]
- Garrison, A.W. Probing the enantioselectivity of chiral pesticides. Environ. Sci. Technol. 2006, 40, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Li, R.N.; Pan, X.L.; Wang, Q.Q.; Tao, Y.; Chen, Z.L.; Jiang, D.D.; Wu, C.; Dong, F.S.; Xu, J.; Liu, X.G.; et al. Development of S-fluxametamide for bioactivity improvement and risk reduction: Systemic evaluation of the novel insecticide fluxametamide at the enantiomeric level. Environ. Sci. Technol. 2019, 53, 13657–13665. [Google Scholar] [CrossRef]
- Li, R.; Luo, C.X.; Qiu, J.S.; Li, Y.F.; Zhang, H.; Tan, H.H. Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. J. Hazard. Mater. 2021, 425, 127818. [Google Scholar] [CrossRef]
- Wu, X.M.; Dong, F.S.; Xu, J.; Liu, X.G.; Wu, X.H.; Zheng, Y.Q. Enantioselective separation and dissipation of pydiflumetofen enantiomers in grape and soil by supercritical fluid chromatography–tandem mass spectrometry. J. Sep. Sci. 2020, 43, 2217–2227. [Google Scholar] [CrossRef]
- Liu, W.; Tang, M. Enantioselective activity and toxicity of chiral herbicides. In Herbicides-Mechanisms and Mode of Action; Hasaneen, M.N., Ed.; InTech: Rijeka, Croatia, 2011; pp. 63–80. ISBN 978-953-307-744-4. [Google Scholar]
- Baloch, R.I.; Mercer, E.I. Inhibition of sterol Δ8 → Δ7-isomerase and Δ14-reductase by fenpropimorph tridemorph and fenpropidin in cell-free enzyme systems from Saccharomyces cerevisiae. Phytochemistry 1987, 26, 663–668. [Google Scholar] [CrossRef]
- Macbean, C. Pesticide Manual: A World Compendium; British Crop Protection Council: Farnham, UK, 2012. [Google Scholar]
- Zhao, H.Y.; Xue, J.Y.; Jiang, N.W.; Peng, W.; Liu, F.M. Dissipation and residue of fenpropidin in wheat and soil under field conditions. Ecotox. Environ. Safe 2012, 77, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Hvezdova, M.; Kosubova, P.; Kosikova, M.; Scherr, K.E.; Simek, Z.; Brodsky, L.; Sudoma, M.; Skulcova, L.; Sanka, M.; Svobodova, M.; et al. Currently and recently used pesticides in Central European arable soils. Sci. Total Environ. 2018, 613, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.B.; Mueller, R.; Brack, W.; Wenzel, K.D.; Streck, G.; Ruck, W.; Liess, M. Determination of 10 particle-associated multiclass polar and semi-polar pesticides from small streams using accelerated solvent extraction. Chemosphere 2008, 70, 1952–1960. [Google Scholar] [CrossRef] [PubMed]
- Buerge, I.J.; Krauss, J.; Lopez-Cabeza, R.; Siegfried, W.; Stussi, M.; Wettstein, F.E.; Poiger, T. Stereoselective metabolism of the sterol biosynthesis inhibitor fungicides fenpropidin, fenpropimorph, and spiroxamine in grapes, sugar beets, and wheat. J. Agric. Food Chem. 2016, 64, 5301–5309. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.L.; Li, X.G.; Miao, Y.L.; Lin, M.; Xu, M.F.; Wang, Q.; Zhang, H. Simultaneous enantioselective determination of triadimefon and its metabolite triadimenol in edible vegetable oil by gel permeation chromatography and ultraperformance convergence chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 8849–8859. [Google Scholar] [CrossRef] [PubMed]
- Sardella, R.; Ianni, F.; Lisanti, A.; Marinozzi, M.; Scorzoni, S.; Natalini, B. The effect of mobile phase composition in the enantioseparation of pharmaceutically relevant compounds with polysaccharide-based stationary phases. Biomed. Chromatogr. 2014, 28, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.J.; Ward, K.D. Chiral separations: Fundamental review 2010. Anal. Chem. 2010, 82, 4712–4722. [Google Scholar] [CrossRef]
- Ward, T.J.; Ward, K.D. Chiral separations: A review of current topics and trends. Anal. Chem. 2011, 84, 626–635. [Google Scholar] [CrossRef]
- Dousa, M.; Lehnert, P.; Adamusova, H.; Bosakovab, Z. Fundamental study of enantioselective HPLC separation of tapentadol enantiomers using cellulose-based chiral stationary phase in normal phase mode. J. Pharm. Biomed. Anal. 2013, 74, 111–116. [Google Scholar] [CrossRef]
- Sack, C.; Vonderbrink, J.; Smoker, M.; Smith, R.E. Determination of acid herbicides using modified QuEChERS with fast switching ESI+/ESI−LC-MS/MS. J. Agric. Food Chem. 2015, 63, 9657–9665. [Google Scholar] [CrossRef]
- Gao, B.B.; Zhang, Q.; Tian, M.M.; Zhang, Z.X.; Wang, M.H. Enantioselective determination of the chiral pesticide isofenphos-methyl in vegetables, fruits, and soil and its enantioselective degradation in pak choi using HPLC with UV detection. Anal. Bioanal. Chem. 2016, 408, 6719–6727. [Google Scholar] [CrossRef]
- Lin, L. Establishment of the mathematic model of the roughness of the ECMP-processed micro-hole internal surface, International Conference on Intelligent Transportation. In Big Data & Smart City (ICITBS); IEEE: Piscataway, NJ, USA, 2016; pp. 388–391. [Google Scholar]
- Liang, Z.B.; Qing, X. π-cation interactions in molecular recognition: Perspectives on pharmaceuticals and pesticides. J. Agric. Food Chem. 2018, 66, 3315–3323. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.S.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef]
- Gros, M.; Rodriguez-Mozaz, S.; Barcelo, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2012, 1248, 104–121. [Google Scholar] [CrossRef]
- Liu, W.; Qin, S.; Gan, J. Chiral stability of synthetic pyrethroid insecticides. J. Agric. Food Chem. 2005, 53, 3814–3820. [Google Scholar] [CrossRef]
- Qin, S.; Gan, J. Abiotic enantiomerization of permethrin andcypermethrin: Effects of organic solvents. J. Agric. Food Chem. 2007, 55, 5734–5739. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, Z.; Gao, Y.Y.; Zhao, X.J.; Gao, B.B.; Zhang, Z.X.; Li, L.S.; He, Z.Z.; Wang, M.H. Novel Liquid Chromatography–Tandem Mass Spectrometry Method for Enantioseparation of Tefluthrin via a Box–Behnken Design and Its Stereoselective Degradation in Soil. J. Agric. Food Chem. 2019, 67, 11591–11597. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Zhang, Y.Q.; Chen, Z.H.; Sang, N.N.; Wang, M.H.; Shi, H.Y. A Novel Enantioseparation Method and Enantioselective Dissipation of Novaluron in Tomatoes Using Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry via a Box-Behnken Design. J. Agric. Food Chem. 2022, 70, 6670–6678. [Google Scholar] [CrossRef]
- Warnke, I.; Furche, F. Circular dichroism: Electronic. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 150–166. [Google Scholar] [CrossRef]
- He, Z.Z.; Wu, F.X.; Xia, W.T.; Li, L.S.; Hu, K.M.; Kaziem, A.E.; Wang, M.H. Separation and detection of cyproconazole enantiomers and its stereospecific recognition with chiral stationary phase by high-performance liquid chromatography. Analyst 2019, 144, 5193–5200. [Google Scholar] [CrossRef]
- Yamamoto, C.; Yashima, E.; Okamoto, Y. Structural analysis of amylose tris(3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC. J. Am. Chem. Soc. 2002, 124, 12583–12589. [Google Scholar] [CrossRef]
Compounds | Matrix | Regression Equation | R2 | Matrix Effect (%) | LOQ (μg/kg) |
---|---|---|---|---|---|
S-(-)-fenpropidin | acetonitrile | y = 10537x − 32578 | 0.9998 | ||
wheat | y = 10501x + 43144 | 0.9991 | −0.26 | 5 | |
grape | y = 8249.5x + 19379 | 0.9999 | −21.71 | 5 | |
apple | y = 9070.7x − 16612 | 1.s0000 | −13.92 | 5 | |
banana | y = 7968x − 6797.5 | 1.0000 | −24.38 | 5 | |
soybean | y = 10552x + 30602 | 0.9995 | 0.14 | 5 | |
rice | y = 8508.9x + 16128 | 0.9997 | −19.25 | 5 | |
soil | y = 10666x + 43568 | 0.9989 | 1.22 | 5 | |
R-(+)-fenpropidin | acetonitrile | y = 11301x − 59712 | 0.9995 | ||
wheat | y = 9972.5x + 68949 | 0.9988 | −11.76 | 5 | |
grape | y = 8346.9x + 9890.1 | 1.0000 | −26.14 | 5 | |
apple | y = 9404.4x − 24369 | 0.9999 | −16.78 | 5 | |
banana | y = 8559.4x − 16592 | 1.0000 | −24.26 | 5 | |
soybean | y = 10378x + 29535 | 0.9995 | −8.17 | 5 | |
rice | y = 8657.3x + 2716.4 | 0.9998 | −23.39 | 5 | |
soil | y = 11004x + 19222 | 0.9993 | −2.63 | 5 |
Compounds | Matrix | Spiked Level (μg/kg) | Intraday (n = 5) | Interday (n = 15) | |||||
---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | RSD (%) | ||||||
Mean Recovery (%) | RSD (%) | Mean Recovery (%) | RSD (%) | Mean Recovery (%) | RSD (%) | ||||
S-(-)-fenpropidin | wheat | 5 | 89.3 | 1.3 | 89.3 | 1.2 | 90.1 | 1.3 | 1.2 |
50 | 98.1 | 4.7 | 102.8 | 3.6 | 103.7 | 2.7 | 5.1 | ||
500 | 91.6 | 2.5 | 91.1 | 3.4 | 90.9 | 3.3 | 2.6 | ||
grape | 5 | 91.9 | 4.2 | 94.8 | 3.6 | 97.7 | 1.4 | 4.6 | |
50 | 92.5 | 1.6 | 93.3 | 3.0 | 95.2 | 2.9 | 2.7 | ||
500 | 90.1 | 4.7 | 89.6 | 4.6 | 92.0 | 2.3 | 3.5 | ||
apple | 5 | 101.3 | 3.4 | 104.0 | 2.8 | 103.4 | 2.6 | 3.2 | |
50 | 91.7 | 3.1 | 89.8 | 1.3 | 89.7 | 1.2 | 2.4 | ||
500 | 100.7 | 8.8 | 100.8 | 8.5 | 96.7 | 8.9 | 8.0 | ||
banana | 5 | 83.2 | 4.0 | 80.7 | 3.0 | 78.6 | 0.7 | 3.9 | |
50 | 92.2 | 2.6 | 91.4 | 1.6 | 93.0 | 1.1 | 2.1 | ||
500 | 94.5 | 0.7 | 92.9 | 3.1 | 90.4 | 4.5 | 3.8 | ||
soybean | 5 | 73.3 | 2.2 | 74.4 | 1.7 | 74.8 | 1.1 | 1.7 | |
50 | 71.5 | 0.3 | 71.9 | 0.5 | 71.9 | 0.6 | 0.5 | ||
500 | 77.2 | 4.4 | 76.7 | 5.1 | 75.7 | 5.4 | 4.1 | ||
rice | 5 | 83.4 | 2.6 | 80.7 | 3.1 | 80.6 | 3.1 | 3.2 | |
50 | 83.3 | 4.8 | 80.8 | 0.6 | 80.2 | 1.0 | 3.8 | ||
500 | 91.3 | 1.7 | 91.1 | 1.6 | 90.5 | 1.2 | 1.3 | ||
soil | 5 | 85.8 | 1.8 | 85.5 | 1.9 | 82.9 | 2.6 | 2.8 | |
50 | 86.3 | 1.8 | 86.3 | 1.8 | 87.4 | 1.4 | 1.6 | ||
500 | 88.3 | 4.2 | 87.2 | 3.8 | 86.0 | 5.6 | 4.7 | ||
1000 | 89.2 | 2.3 | 88.5 | 2.1 | 87.1 | 1.2 | 1.2 | ||
R-(+)-fenpropidin | wheat | 5 | 95.9 | 4.4 | 93.2 | 4.0 | 94.9 | 3.7 | 3.8 |
50 | 96.1 | 6.5 | 103.1 | 5.9 | 104.9 | 4.9 | 7.7 | ||
500 | 94.0 | 2.2 | 92.8 | 3.8 | 92.3 | 3.8 | 2.7 | ||
grape | 5 | 89.4 | 2.8 | 90.4 | 2.4 | 92.9 | 2.2 | 3.1 | |
50 | 92.7 | 1.2 | 93.6 | 2.1 | 95.4 | 3.7 | 2.9 | ||
500 | 90.3 | 6.1 | 91.5 | 5.8 | 94.7 | 1.1 | 4.4 | ||
apple | 5 | 97.8 | 0.4 | 99.2 | 2.1 | 99.1 | 2.1 | 1.7 | |
50 | 95.1 | 1.9 | 94.9 | 1.5 | 95.4 | 1.5 | 1.4 | ||
500 | 94.1 | 2.0 | 93.7 | 2.7 | 92.2 | 2.6 | 2.3 | ||
banana | 5 | 103.8 | 4.5 | 106.1 | 0.7 | 104.2 | 3.4 | 3.8 | |
50 | 94.0 | 4.7 | 91.5 | 2.4 | 90.9 | 3.2 | 4.2 | ||
500 | 96.4 | 4.3 | 97.6 | 4.0 | 100.0 | 1.3 | 3.4 | ||
soybean | 5 | 72.6 | 1.2 | 72.4 | 0.9 | 73.3 | 0.6 | 1.0 | |
50 | 71.7 | 1.2 | 71.6 | 0.7 | 72.2 | 0.9 | 0.8 | ||
500 | 75.3 | 3.8 | 74.9 | 3.5 | 73.8 | 3.7 | 2.8 | ||
rice | 5 | 78.6 | 5.8 | 75.6 | 1.1 | 75.8 | 1.1 | 3.7 | |
50 | 81.5 | 3.3 | 80.4 | 1.8 | 78.3 | 2.5 | 3.1 | ||
500 | 91.1 | 1.6 | 90.8 | 1.2 | 90.2 | 1.1 | 1.2 | ||
soil | 5 | 92.2 | 5.7 | 95.7 | 5.1 | 94.9 | 4.7 | 4.8 | |
50 | 88.0 | 3.1 | 86.2 | 1.7 | 88.1 | 3.0 | 2.9 | ||
500 | 87.8 | 4.5 | 87.3 | 4.0 | 86.5 | 5.2 | 4.1 | ||
1000 | 90.2 | 2.1 | 87.1 | 2.3 | 88.4 | 1.3 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhang, Y.; Li, Y.; Chen, Z.; Wang, Z.; Wang, M. An Innovative Chiral UPLC-MS/MS Method for Enantioselective Determination and Dissipation in Soil of Fenpropidin Enantiomers. Molecules 2022, 27, 6530. https://doi.org/10.3390/molecules27196530
Li R, Zhang Y, Li Y, Chen Z, Wang Z, Wang M. An Innovative Chiral UPLC-MS/MS Method for Enantioselective Determination and Dissipation in Soil of Fenpropidin Enantiomers. Molecules. 2022; 27(19):6530. https://doi.org/10.3390/molecules27196530
Chicago/Turabian StyleLi, Rui, Yanqing Zhang, Yanhong Li, Zihao Chen, Zhen Wang, and Minghua Wang. 2022. "An Innovative Chiral UPLC-MS/MS Method for Enantioselective Determination and Dissipation in Soil of Fenpropidin Enantiomers" Molecules 27, no. 19: 6530. https://doi.org/10.3390/molecules27196530
APA StyleLi, R., Zhang, Y., Li, Y., Chen, Z., Wang, Z., & Wang, M. (2022). An Innovative Chiral UPLC-MS/MS Method for Enantioselective Determination and Dissipation in Soil of Fenpropidin Enantiomers. Molecules, 27(19), 6530. https://doi.org/10.3390/molecules27196530