Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota deserti (Noë) Jury
Abstract
:1. Introduction
2. Results and Discussion
2.1. EOBD Analysis by GC/MS
2.2. Antioxidant Activity
2.3. Antibacterial Activity of EOBD
2.4. Antifungal Activity of EOBD
2.5. Molecular Docking
3. Material and Methods
3.1. Chemicals Used
3.2. Plant Material
3.3. Extraction of Essential Oils
3.4. Analysis of Essential Oil
3.5. Antioxidant Activity of EOBD
3.5.1. DPPH Test
3.5.2. TAC Test
3.5.3. FRAP Test
3.6. Antimicrobial Activities
3.6.1. Microbial Inoculum Preparation
3.6.2. Disc Diffusion Method
3.6.3. Determination of Minimum Inhibitory Concentration (MIC)
3.7. Molecular Docking
3.8. Statistical Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
EOBD | Essential oils from Ballota deserti (Noë) Jury |
GC/MS | Gas chromatography coupled with mass spectrometry |
FRAP | Ferric reducing antioxidant power |
DPPH | 1,1-diphenyl-2-picrylhydrazyl (DPPH) |
TAC | Total antioxidant capacity |
MIC | Minimum inhibitory concentration |
TCA | Trichloracetic acid |
ME | Malt extract |
DMSO | Dimethylsulfoxide |
TTC | Tchloride |
FeCL3 | Ferric chloride |
BHT | Butylated hydroxytoluene |
SDA | Sabouraud dextrose agar |
MHA | Mueller–Hinton agar |
SDF | Proton glutamate Symporter |
PDB | Protein Data Bank |
References
- Egamberdieva, D.; Mamedov, N.; Ovidi, E.; Tiezzi, A.; Craker, L. Phytochemical and Pharmacological Properties of Medicinal Plants from Uzbekistan: A Review. J. Med. Act. Plants 2017, 5, 59–75. [Google Scholar]
- Bourhia, M.; Messaoudi, M.; Bakrim, H.; Mothana, R.A.; Sddiqui, N.A.; Almarfadi, O.M.; El Mzibri, M.; Gmouh, S.; Laglaoui, A.; Benbacer, L. Citrullus Colocynthis (L.) Schrad: Chemical Characterization, Scavenging and Cytotoxic Activities. Open Chem. 2020, 18, 986–994. [Google Scholar] [CrossRef]
- Maroyi, A. Traditional Use of Medicinal Plants in South-Central Zimbabwe: Review and Perspectives. J. Ethnobiol. Ethnomedicine 2013, 9, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Yoldi, M.J. Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, F.; Romero, M.R.; Blazquez, A.G.; Kaufmann, D.; Ashour, M.L.; Kahl, S.; Marin, J.J.; Efferth, T.; Wink, M. Diversity of Pharmacological Properties in Chinese and European Medicinal Plants: Cytotoxicity, Antiviral and Antitrypanosomal Screening of 82 Herbal Drugs. Diversity 2011, 3, 547–580. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, M.; Leonti, M.; Nebel, S.; Peschel, W. “Local Food-Nutraceuticals”: An Example of a Multidisciplinary Research Project on Local Knowledge. J. Physiol. Pharmacology. Suppl. 2005, 56, 5–22. [Google Scholar]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Aruoma, O.I. Free Radicals, Oxidative Stress, and Antioxidants in Human Health and Disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef]
- Knekt, P.; Jarvinen, R.; Reunanen, A.; Maatela, J. Flavonoid Intake and Coronary Mortality in Finland: A Cohort Study. BMJ 1996, 312, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and Economic Impact of Antibiotic Resistance in Developing Countries: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. 2017; Volume 10. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013–508.pdf (accessed on 20 January 2021).
- Bourhia, M.; Ullah, R.; Alqahtani, A.S.; Ibenmoussa, S. Evidence of Drug-Induced Hepatotoxicity in the Maghrebian Population. Drug Chem. Toxicol. 2020, 45, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef] [PubMed]
- Laouer, H.; Yabrir, B.; Djeridane, A.; Yousfi, M.; Beldovini, N.; Lamamra, M. Composition, Antioxidant and Antimicrobial Activities of the Essential Oil of Marrubium Deserti. Nat. Prod. Commun. 2009, 4, 1934578X0900400824. [Google Scholar] [CrossRef] [Green Version]
- Hammiche, V.; Maiza, K. Traditional Medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol. 2006, 105, 358–367. [Google Scholar] [CrossRef] [PubMed]
- BM, L. Labiatae Oils Mother Nature’s Chemical Factory. In Proceedings of the Paper XIth International Congress of Essential Oils, Fragrance and flavours, New Delhi, India, 12–16 November 1989; p. 71. [Google Scholar]
- Lazari, D.M.; Skaltsa, H.D.; Constantinidis, T. Essential oils of Marrubium velutinum Sm. and Marrubium peregrinum L., growing wild in Greece. Flavour Fragr. J. 1999, 14, 290–292. [Google Scholar] [CrossRef]
- Hamedeyazdan, S.; Asnaashari, S.; Fathiazad, F. Characterization of Non-Terpenoids in Marrubium Crassidens Boiss. Essential Oil. Adv. Pharm. Bull. 2013, 3, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.H. The Mechanism of Antioxidant Action in Vitro. In Food antioxidants; Springer: Berlin/Heidelberg, Germany, 1990; pp. 1–18. [Google Scholar]
- EL Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Salamatullah, A.M.; Ullah, R.; Bari, A.; Majid Mahmood, H.; Sohaib, M.; Serhii, B.; Rozhenko, A.; et al. Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania Frutescens L. Appl. Sci. 2021, 11, 5168. [Google Scholar] [CrossRef]
- El Moussaoui, A.; Kadiri, M.; Bourhia, M.; Agour, A.; Salamatullah, A.M.; Alzahrani, A.; Alyahya, H.K.; Albadr, N.A.; Chedadi, M.; Sfaira, M.; et al. Promising Antioxidant and Anticorrosion Activities of Mild Steel in 1.0 M Hydrochloric Acid Solution by Withania Frutescens L. Essential Oil. Front. Chem. 2021, 9, 760. [Google Scholar] [CrossRef]
- Chebbac, K.; Moussaoui, A.E.L.; Bourhia, M.; Salamatullah, A.M.; Alzahrani, A.; Guemmouh, R. Chemical Analysis and Antioxidant and Antimicrobial Activity of Essential Oils from Artemisia Negrei L. Against Drug-Resistant Microbes. Evid.-Based Complementary Altern. Med. 2021, 2021, 5902851. [Google Scholar] [CrossRef]
- Lafraxo, S.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Alzahrani, A.; Akka, A.A.; Choubbane, A.; Akhazzane, M.; Aboul-Soud, M.A.M.; et al. Essential Oils from Leaves of Juniperus Thurifera L., Exhibiting Antioxidant, Antifungal and Antibacterial Activities against Antibiotic-Resistant Microbes. Horticulturae 2022, 8, 321. [Google Scholar] [CrossRef]
- Rezgui, M.; Majdoub, N.; Mabrouk, B.; Baldisserotto, A.; Bino, A.; Ben Kaab, L.B.; Manfredini, S. Antioxidant and Antifungal Activities of Marrubiin, Extracts and Essential Oil from Marrubium Vulgare L. against Pathogenic Dermatophyte Strains. J. De Mycol. Médicale 2020, 30, 100927. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martínez, R.; García-Rodríguez, Y.M.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant Activity of the Essential Oil and Its Major Terpenes of Satureja Macrostema (Moc. and Sessé Ex Benth.) Briq. Pharmacogn. Mag. 2017, 13, S875. [Google Scholar] [CrossRef]
- Baccouri, B.; Rajhi, I. Potential Antioxidant Activity of Terpenes. Terpenes Terpenoids-Recent Adv. 2021, 53–62. [Google Scholar]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Phytochemistry, Antioxidant and Antibacterial Activities of Two Moroccan Teucrium Polium L. Subspecies: Preventive Approach against Nosocomial Infections. Arab. J. Chem. 2019, 13, 3866–3874. [Google Scholar] [CrossRef]
- Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Ouaritini, Z.B.; Salamatullah, A.M.; Alzahrani, A.; Aboul-soud, M.A.M.; Giesy, J.P.; et al. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia. Molecules 2022, 27, 1136. [Google Scholar] [CrossRef]
- Yabrir, B. Chemical composition and biological activities of some marrubium species essential oil: A review. Chem. J. Mold. Gen. Ind. Ecol. Chem. 2018, 13, 8–23. [Google Scholar] [CrossRef]
- Deba, F.; Xuan, T.D.; Yasuda, M.; Tawata, S. Chemical Composition and Antioxidant, Antibacterial and Antifungal Activities of the Essential Oils from Bidens Pilosa Linn. Var. Radiata. Food Control 2008, 19, 346–352. [Google Scholar] [CrossRef]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical Composition and Antimicrobial Activity of Essential Oil of Thyme (Thymus Vulgaris) from Eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Magiatis, P.; Melliou, E.; Skaltsounis, A.L.; Chinou, I.B.; Mitaku, S. Chemical Composition and Antimicrobial Activity of the Essential Oils of Pistacia Lentiscus Var. Chia. Planta Med. 1999, 65, 749–752. [Google Scholar] [CrossRef]
- Sökmen, A.; Vardar-Ünlü, G.; Polissiou, M.; Daferera, D.; Sökmen, M.; Dönmez, E. Antimicrobial Activity of Essential Oil and Methanol Extracts of Achillea Sintenisii Hub. Mor. (Asteraceae). Phytother. Res. 2003, 17, 1005–1010. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Sansonetty, F.; Martinez-De-Oliveira, J.; Fonseca, A.F.; Mårdh, P.-A. Antifungal Activity of Local Anesthetics against Candida Species. Infect. Dis. Obstet. Gynecol. 2000, 8, 124–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pina-Vaz, C.; Sansonetty, F.; Rodrigues, A.G.; Martinez-De-Oliveira, J.; Fonseca, A.F.; Mårdh, P.-A. Antifungal Activity of Ibuprofen Alone and in Combination with Fluconazole against Candida Species. J. Med. Microbiol. 2000, 49, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimad, A.; Sanae, R.; Anas, F.; Abdelfattah, E.M.; Bourhia, M.; Mohammad Salamatullah, A.; Alzahrani, A.; Alyahya, H.K.; Albadr, N.A.; Abdelkrim, A. Chemical Characterization and Antioxidant, Antimicrobial, and Insecticidal Properties of Essential Oil from Mentha pulegium L. Evid.-Based Complementary Altern. Med. 2021, 2021, 1108133. [Google Scholar] [CrossRef]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and Antifungal Properties of Essential Oil Components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-1-932()33-11-4. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Mašković, P.Z.; Manojlović, N.T.; Mandić, A.I.; Mišan, A.Č.; Milovanović, I.L.; Radojković, M.M.; Cvijović, M.S.; Solujić, S.R. Phytochemical Screening and Biological Activity of Extracts of Plant Species Halacsya Sendtneri (Boiss.). Dörfl. Hem. Ind. 2012, 66, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Moattar, F.S.; Sariri, R.; Yaghmaee, P.; Giahi, M. Enzymatic and Non-Enzymatic Antioxidants of Calamintha Officinalis Moench Extracts. J. Appl. Biotechnol. Rep. 2016, 3, 489–494. [Google Scholar]
- Saghrouchni, H.; El Barnossi, A.; Salamatullah, A.M.; Bourhia, M.; Alzahrani, A.; Alkaltham, M.S.; Khalil Alyahya, H.; El, N.; Tahiri, H. Carvacrol: A Promising Environmentally Friendly Agent to Fight Seeds Damping-Off Diseases Induced by Fungal Species. Agronomy 2021, 11, 985. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; Moussaoui, A.E.L.; Bourhia, M.; Imtara, H.; Saghrouchni, H.; Ammor, K.; Ouassou, H.; Elamine, Y.; Ullah, R.; Ezzeldin, E.; et al. Anacyclus Pyrethrum Var. Pyrethrum (l.) and Anacyclus Pyrethrum Var. Depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. Plants 2021, 10, 149. [Google Scholar] [CrossRef]
- Aboul-Soud, M.A.; Ennaji, H.; Kumar, A.; Alfhili, M.A.; Bari, A.; Ahamed, M.; Chebaibi, M.; Bourhia, M.; Khallouki, F.; Alghamdi, K.M. Antioxidant, Anti-Proliferative Activity and Chemical Fingerprinting of Centaurea Calcitrapa against Breast Cancer Cells and Molecular Docking of Caspase-3. Antioxidants 2022, 11, 1514. [Google Scholar] [CrossRef]
Compound | Retention Index | Chemical Class | Area (%) | |
---|---|---|---|---|
Calculated | Literature | |||
α-Pinene | 938 | 939 | MO.H | 1.35 |
Camphene | 963 | 968 | MO.H | 0.69 |
Isopinocampheol | 1175 | 1179 | ST.O | 1.32 |
β-Myrcene | 988 | 990 | MO.H | 0.69 |
o-Cymene | 1022 | 1026 | MO.H | 0.84 |
D-Limonene | 1028 | 1029 | MO.H | 1.66 |
Cineole | 1029 | 1031 | MO.O | 12.04 |
β-Ocimene | 1033 | 1037 | MO.H | 2.98 |
Linalool | 1089 | 1090 | MO.O | 37.82 |
Thujone | 1102 | 1102 | MO.O | 3.90 |
Camphor | 1141 | 1146 | MO.O | 5.28 |
Borneol | 1134 | 1138 | MO.O | 11.07 |
Terpinen-4-ol | 1173 | 1177 | MO.O | 4.80 |
Crypton | 1183 | 1185 | O | 1.91 |
Butanoic acid | 769 | 772 | MO.O | 0.85 |
α-Terpineol | 1163 | 1164 | MO.O | 0.99 |
Hexyl butanoate | 1411 | 1414 | O | 1.73 |
Caryophyllene | 1404 | 1408 | ST.H | 2.46 |
β-Bisabolene | 1500 | 1506 | ST.H | 0.92 |
α-Humulene | 1657 | 1660 | MO.H | 1.06 |
α-Bisabolene | 1506 | 1507 | ST.H | 2.84 |
Globulol | 1590 | 1590 | ST.O | 1.12 |
β-Bisabolol | 1675 | 1675 | ST.O | 1.67 |
Total | 99.99 | |||
Monoterpene hydrocarbon (MO.H) | 9.27 | |||
Oxygenated Monoterpene (MO.O) | 76.75 | |||
Sesquiterpene hydrocarbon (ST.H) | 6.22 | |||
Sesquiterpene oxygenated (ST.O) | 4.11 | |||
Other (O) | 3.64 |
Chemical Class | Area (%) | Terpenic Compounds Dominant | Molecular Structure |
---|---|---|---|
Monoterpene hydrocarbon | 2.27 | β-Ocimene | |
Oxygenated Monoterpene | 76.75 | Linalool | |
Sesquiterpene hydrocarbon | 6.22 | α-Bisabolene | |
Sesquiterpene oxygenated | 4.11 | β-Bisabolol | |
Other | 3.64 | Crypton |
S.A | E.C | B.S | P.A | ||
---|---|---|---|---|---|
EOBD | Id (mm) | 36.40 ± 1.70 | 19.68 ± 1.25 b | 17.48 ± 1.75 b | 28.47 ± 1.44 a |
MIC (µg/mL) | 10.78 ± 1.28 | 14.57 ± 1.87 b | 22.48 ± 1.69 | 14.65 ± 1.28 a | |
Strp | Id (mm) | 11.73± 1.27 | Rst | Rst | Rst |
MIC (µg/mL) | 17.43 ± 1.74 | - | - | - | |
Kana | Id (mm) | Rst | Rst | Rst | Rst |
MIC (µg/mL) | - | - | - |
C.A | A.N | A.F | F.O | ||
---|---|---|---|---|---|
EOBD | Id (mm) | 36.79 ± 1.35 | 17.63 ± 1.08 | 16.76 ± 1.83 | 34.91 ± 1.84 |
MIC (µg/mL) | 15.32 ± 1.47 | 19.57 ± 1.72 | 23.74 ± 1.54 | 17.79 ± 1.07 | |
Fluc | Id (mm) | Rst | Rst | Rst | 18.02 ± 1.40 |
MIC (µg/mL) | Rst | Rst | Rst | 30.50 ± 1.09 |
Glide Gscore | Glide Emodel | Glide Energy | |
---|---|---|---|
Thujone | −5.403 | −24.559 | −19.146 |
o-Cymene | −5.344 | −23.239 | −17.415 |
Butanoic acid | −4.973 | −24.998 | −16.225 |
Terpinen-4-ol | −4.944 | −25.569 | −19.655 |
Globulol | −4.819 | −16.777 | −15.173 |
Crypton | −4.671 | −22.251 | −16.915 |
Isopinocampheol | −4.412 | −25.665 | −19.872 |
alpha-Terpineol | −4.364 | −21.379 | −17.396 |
Caryophyllene | −4.343 | −11.897 | −11.633 |
alpha-Humulene | −4.333 | −19.261 | −17.306 |
Camphene | −4.286 | −9.485 | −2.959 |
beta-Bisabolol | −4.248 | −31.183 | −25.133 |
alpha-Bisabolene | −4.1 | −28 | −22.884 |
alpha-Pinene | −4.091 | −13.289 | −10.067 |
D-Limonene | −4.02 | −16.575 | −14.119 |
Camphor | −3.845 | −21.596 | −17.537 |
Cineole | −3.79 | −19.999 | −16.693 |
Borneol | −3.74 | −23.722 | −19.178 |
Linalool | −2.996 | −22.954 | −20.074 |
beta-Ocimene | −2.207 | −17.529 | −16.436 |
beta-Myrcene | −2.099 | −19.157 | −17.24 |
Hexyl butanoate | 0.659 | −23.996 | −26.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shammari, B.R. Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota deserti (Noë) Jury. Molecules 2022, 27, 6636. https://doi.org/10.3390/molecules27196636
Al Shammari BR. Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota deserti (Noë) Jury. Molecules. 2022; 27(19):6636. https://doi.org/10.3390/molecules27196636
Chicago/Turabian StyleAl Shammari, Basim R. 2022. "Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota deserti (Noë) Jury" Molecules 27, no. 19: 6636. https://doi.org/10.3390/molecules27196636
APA StyleAl Shammari, B. R. (2022). Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota deserti (Noë) Jury. Molecules, 27(19), 6636. https://doi.org/10.3390/molecules27196636