Molecular Tuning in Diaryl-Capped Pyrrolo[2,3-d:5,4-d′]bisthiazoles: Effects of Terminal Aryl Unit and Comparison to Dithieno[3,2-b:2′,3′-d]pyrrole Analogues
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Electrochemistry
2.3. Absorption Spectroscopy
3. Materials and Methods
3.1. General Procedure for Bromination of PBTz Monomers
3.1.1. 2,6-Dibromo-4-octyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (8a)
3.1.2. 2,6-Dibromo-4-phenyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (8b)
3.2. General Procedure for Synthesis of Phenyl- or Thienyl-Extended PBTz Oligomers
3.2.1. 2,6-Bis(2-thienyl)-4-octyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (1a)
3.2.2. 2,6-Bis(2-thienyl)-4-phenyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (1b)
3.2.3. 2,6-Diphenyl-4-octyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (3a)
3.2.4. 2,4,6-Triphenyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (3b)
3.3. General Procedure for Synthesis of Furyl-Extended PBTz Oligomers
3.3.1. 2,6-Bis(2-furyl)-4-octyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (2a)
3.3.2. 2,6-Bis(2-furyl)-4-phenyl-4H-pyrrolo[2,3-d:5,4-d′]bisthiazole (2b)
3.4. Theoretical Methodology
3.5. Absorption Spectroscopy
3.6. Electrochemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynolds, J.R.; Skotheim, T.A.; Thompson, B. (Eds.) Handbook of Conducting Polymers, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Perepichka, I.F.; Perepichka, D.F. (Eds.) Handbook of Thiophene-Based Materials; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.B.; McCulloch, I. Recent advances in transistor performance of polythiophenes. Prog. Polym. Sci. 2013, 38, 2053–2069. [Google Scholar] [CrossRef]
- Chochos, C.L.; Choulis, S.A. How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 2011, 36, 1326–1414. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Amb, C.M.; Reynolds, J.R. Spectral engineering in π-conjugated Polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1396–1407. [Google Scholar] [CrossRef]
- Roncali, J. Molecular engineering of the band gap of π-conjugated systems: Facing technological applications. Macromol. Rapid Commun. 2007, 28, 1761–1775. [Google Scholar] [CrossRef]
- Rasmussen, S.C.; Ogawa, K.; Rothstein, S.D. Synthetic Approaches to Band Gap Control in Conjugated Polymeric Materials. In Handbook of Organic Electronics and Photonics; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2008; Volume 1, pp. 1–50. [Google Scholar]
- Rasmussen, S.C.; Uzelac, E.J.; Culver, E.W. Tricyclic-fused Bithiophenes and Related Analogues: Important Building Blocks for Conjugated Materials. In Advances in Heterocyclic Chemistry; Scriven, E., Ramsden, C., Eds.; Academic Press: Cambridge, UK, 2020; Volume 130, pp. 75–144. [Google Scholar]
- Coppo, P.; Turner, M.L. Cyclopentadithiophene based electroactive materials. J. Mater. Chem. 2005, 15, 1123–1133. [Google Scholar] [CrossRef]
- Rasmussen, S.C.; Evenson, S.J.; McCausland, C.B. Fluorescent Thiophene-based Materials and Their Outlook for Emissive Applications. Chem. Commun. 2015, 51, 4528–4543. [Google Scholar] [CrossRef]
- Baumgartner, T.J. π-Conjugated Heterocyclic fused Bithiophene Materials. Inorg. Organomet. Polym. Mater. 2005, 15, 389–409. [Google Scholar] [CrossRef]
- Ohshita, J. Conjugated Oligomers and Polymers Containing Dithienosilole Units. Macromol. Chem. Phys. 2009, 210, 1360–1370. [Google Scholar] [CrossRef]
- Rasmussen, S.C.; Evenson, S.J. Dithieno[3,2-b:2’,3’-d]pyrrole-based Materials: Synthesis and Applications to Organic Electronics. Prog. Polym. Sci. 2013, 38, 1773–1804. [Google Scholar] [CrossRef]
- Al-Hashimi, M.; Labram, J.G.; Watkins, S.; Motevalli, M.; Anthopoulos, T.D.; Heeney, M. Synthesis and Characterization of Fused Pyrrolo[3,2-d:4,5-d′]bisthiazole-Containing Polymers. Org. Lett. 2010, 12, 5478–5481. [Google Scholar] [CrossRef]
- Getmanenko, Y.A.; Singh, S.; Sandhu, B.; Wang, C.-Y.; Timofeeva, T.; Kippelen, B.; Marder, S.R. Pyrrole[3,2-d:4,5-d’]bisthiazole-bridged bis(naphthalene diimide)s as electron-transport materials. J. Mater. Chem. C 2014, 2, 124–131. [Google Scholar] [CrossRef]
- Uzelac, E.J.; McCausland, C.B.; Rasmussen, S.C. Pyrrolo[2,3-d:5,4-d’]bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes. J. Org. Chem. 2018, 83, 664–671. [Google Scholar] [CrossRef]
- Getmanenko, Y.A.; Mullins, C.S.; Nesterov, V.N.; Lake, S.; Risko, C.; Johnston-Halperin, E. Magnetic ordering in a vanadium-organic coordination polymer using a pyrrolo[2,3-d:5,4-d’]bis(thiazole)-based ligand. RSC Adv. 2018, 8, 36223–36232. [Google Scholar] [CrossRef] [Green Version]
- Xia, R.; Al-Hashimi, M.; Tsoi, W.C.; Heeney, M.; Bradley, D.D.C.; Nelson, J. Fused pyrrolo[3,2-d:4,5-d’]bisthiazole-containing polymers for using in high-performance organic bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2012, 96, 112–116. [Google Scholar] [CrossRef]
- Patra, D.; Lee, J.; Lee, J.; Sredojevic, D.N.; White, A.J.P.; Bazzi, H.S.; Brothers, E.N.; Heeney, M.; Fang, L.; Yoon, M.-H.; et al. Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d’]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). J. Mater. Chem. C 2017, 5, 2247–2258. [Google Scholar] [CrossRef]
- Su, H.-L.; Sredojevic, D.N.; Bronstein, H.; Marks, T.J.; Schroeder, B.C.; Al-Hashimi, M. Bithiazole: An Intriguing Electron-Deficient Building for Plastic Electronic Applications. Macromol. Rapid Commun. 2017, 38, 1600610. [Google Scholar] [CrossRef]
- Dey, S.; Attar, S.; Manley, E.F.; Moncho, S.; Brothers, E.N.; Bazzi, H.S.; Bronstein, H.; Marks, T.J.; Heeney, M.; Schroeder, B.C.; et al. Transition-Metal-Free Homopolymerization of Pyrrolo[2,3-d:5,4-d′]bisthiazoles via Nucleophilic Aromatic Substitution. ACS Appl. Mater. Interfaces 2021, 13, 41094–41101. [Google Scholar] [CrossRef]
- Evenson, S.J.; Rasmussen, S.C. N-Acyldithieno[3,2-b:2’,3’-d]pyrroles: Second Generation Dithieno[3,2-b:2’,3’-d]pyrrole Building Blocks with Stabilized Energy Levels. Org. Lett. 2010, 12, 4054–4057. [Google Scholar] [CrossRef]
- Mo, H.; Radke, K.R.; Ogawa, K.; Heth, C.L.; Erpelding, B.T.; Rasmussen, S.C. Solution and solid-state properties of highly fluorescent dithieno[3,2-b:2’,3’-d]pyrrole-based oligothiophenes. Phys. Chem. Chem. Phys. 2010, 12, 14585–14595. [Google Scholar] [CrossRef] [PubMed]
- Evenson, S.J.; Pappenfus, T.M.; Delgado, M.C.R.; Radke-Wohlers, K.R.; Navarrete, J.T.L.; Rasmussen, S.C. Molecular tuning in highly fluorescent dithieno[3,2-b:2’,3’-d]pyrrole-based oligomers: Effects of N-functionalization and terminal aryl unit. Phys. Chem. Chem. Phys. 2012, 14, 6101–6111. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, R.; Sauvé, G.; Kowalewski, T.; McCullough, R.D. Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2’,3’-d]pyrrole-based copolymers with surprisingly high charge-carrier mobilities. J. Am. Chem. Soc. 2008, 130, 13167–13176. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Zou, L.; Zhang, B.; Qin, J.; Lu, Z.; Poon, Y.F.; Chan-Park, M.B.; Li, C.M. Semiconductive polymers containing dithieno[3,2-b:2’,3’-d]pyrrole for organic thin-film transistors. Macromolecules 2008, 41, 8953–8955. [Google Scholar] [CrossRef]
- Espinet, P.; Echavarren, A.M. The Mechanisms of the Stille Reaction. Angew. Chem. Int. Ed. 2004, 43, 4704–4734. [Google Scholar]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef] [Green Version]
- Odom, S.A.; Lancaster, K.; Beverina, L.; Lefler, K.M.; Thompson, N.J.; Coropceanu, V.; Brédas, J.-L.; Marder, S.R.; Barlow, S. Bis[bis-(4-alkoxyphenyl)amino] derivatives of dithienylethene, bithiophene, dithienothiophene and dithienopyrrole: Palladium-catalysed synthesis and highly delocalised radical cations. Chem. Eur. J. 2007, 13, 9637–9646. [Google Scholar] [CrossRef]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 618–622. [Google Scholar]
- Amb, C.M.; Rasmussen, S.C. Sterics versus Electronics: Regioselective Cross-Coupling of Polybrominated Thiophenes. Eur. J. Org. Chem. 2008, 2008, 801–804. [Google Scholar] [CrossRef]
- Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Adv. Mater. 2011, 23, 2367–2371. [Google Scholar] [CrossRef]
- Waltman, R.J.; Bargon, J. Electrically conducting polymers: A review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 1986, 64, 76–95. [Google Scholar] [CrossRef] [Green Version]
- Ando, S.; Ueda, M. Density functional theory calculations of the local spin densities of 3-substituted thiophenes and the oligomerization mechanism of 3-methylsulfanyl thiophene. Synth. Met. 2002, 129, 207–213. [Google Scholar] [CrossRef]
- Heth, C.L.; Tallman, D.E.; Rasmussen, S.C. Electrochemical Study of 3-(N-alkylamino)thiophenes: Experimental and Theoretical Insights into a Unique Mechanism of Oxidative Polymerization. J. Phys. Chem. B 2010, 114, 5275–5282. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Pozharskii, A.F. Handbook of Heterocyclic Chemistry, 2nd ed.; Pergamon: Oxford, UK, 2000; p. 118. [Google Scholar]
- Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. [Google Scholar] [CrossRef]
- Hernandez, V.; Castiglioni, C.; Del Zoppo, M.; Zerbi, G. Confinement potential and π-electron delocalization in polyconjugated organic materials. Phys. Rev. B 1994, 50, 9815–9823. [Google Scholar] [CrossRef] [PubMed]
- Gidron, O.; Dadvand, A.; Shenynin, Y.; Bendikov, M.; Perepichka, D.F. Towards “green” electronic materials. α-Oligofurans as semiconductors. Chem. Commun. 2011, 47, 1976–1978. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lv, X.; Shi, D.; Cheng, Y.; Zhang, G.; Wang, P. Dye-Sensitized Solar Cells Based on Organic Sensitizers with Different Conjugated Linkers: Furan, Bifuran, Thiophene, Bithiophene, Selenophene, and Biselenophene. J. Phys. Chem. C 2009, 113, 7469–7479. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Han, A.; Lee, J.; Oh, J.; Yang, C. High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS Appl. Mater. Interfaces 2017, 9, 15652–15661. [Google Scholar] [CrossRef]
- Josse, P.; Chavez, P.; Dindault, C.; Dalinot, C.; McAfee, S.; Dabos-Seignon, S.; Tondelier, D.; Welch, G.; Blanchard, P.; Leclerc, N.; et al. Thiophene vs thiazole: Effect of the π-connector on the properties of phthalimide end-capped diketopyrrolopyrrole based molecular acceptors for organic photovoltaics. Dye. Pigm. 2017, 137, 576–583. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, H.; Collado-Fregoso, E.; Hadipour, A.; Soon, Y.W.; Huang, Z.; Dimitrov, S.D.; Ashraf, R.S.; Rand, B.P.; Watkins, S.E.; Tuladhar, P.S.; et al. Thieno[3,2-b]thiophene-diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. Adv. Funct. Mater. 2013, 23, 5647–5654. [Google Scholar] [CrossRef]
- Uzelac, E.J.; Rasmussen, S.C. Thiophene-Extended Nickel Thiazoledithiolene: π-Extended Fused-ring Metal Dithiolenes with Stabilized Frontier Orbitals. Eur. J. Inorg. Chem. 2017, 2017, 3878–3883. [Google Scholar] [CrossRef]
- Soto-Rojo, R.; Baldenebro-López, J.; Glossman-Mitnik, D. Theoretical Study of the π-Bridge Influence with Different Units of Thiophene and Thiazole in Coumarin Dye-Sensitized Solar Cells. Int. J. Photoenergy 2016, 2016, 6479649. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Runge, E.; Gross, E.K.U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Casida, M.E. Time-Dependent Density Functional Response Theory for Molecules. In Recent Advances in Density Functional Methods, Part I; Chong, D.P., Ed.; World Scientific Publishing: Singapore, 1995; pp. 155–192. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Turro, N.J. Modern Molecular Photochemistry; University Science Books: Sausalito, CA, USA, 1991; pp. 86–90. [Google Scholar]
- Larson, R.C.; Iwamoto, R.T.; Adams, R.N. Reference electrodes for voltammetry in acetonitrile. Anal. Chim. Acta 1961, 25, 371–374. [Google Scholar]
Oligomer | E½0/+1 (V) 1 | ΔE (mV) 1 | Epa+1/+2 (V) 1 | EHOMO (eV) 2 |
---|---|---|---|---|
1a | 0.57 | 80 | 1.14 | −5.55 |
1b | 0.67 | 80 | 1.16 | −5.65 |
2a | 0.56 | 80 | 1.35 | −5.54 |
2b | 0.64 | 80 | 1.37 | −5.62 |
3a | 0.73 | 80 | 1.42 | −5.71 |
3b | 0.84 | 70 | 1.44 | −5.82 |
Oligomer | HOMO (eV) | LUMO (eV) | ||
---|---|---|---|---|
B3LYP/6-31G** | PBE0/6-31G** | B3LYP/6-31G** | PBE0/6-31G** | |
1a | −4.96 | −5.21 | −1.97 | −1.85 |
1b | −5.10 | −5.35 | −2.08 | −1.99 |
2a | −4.85 | −5.10 | −1.75 | −1.63 |
2b | −5.00 | −5.25 | −1.89 | −1.78 |
3a | −5.07 | −5.32 | −1.82 | −1.73 |
3b | −5.22 | −5.48 | −1.94 | −1.85 |
Oligomer | Vertical Ionization Potential (eV) 1 | |
---|---|---|
B3LYP/6-31G** | PBE0/6-31G** | |
1a | 6.25 (5.58) | 6.37 (5.84) |
1b | 6.36 (5.70) | 6.49 (5.96) |
2a | 6.18 (5.43) | 6.29 (5.68) |
2b | 6.30 (5.56) | 6.42 (5.82) |
3a | 6.37 (5.62) | 6.48 (5.89) |
3b | 6.49 (5.74) | 6.62 (6.02) |
Oligomer | λmax (nm, CHCl3) | ε (M−1 cm−1) | f | λmax (nm, film) 1 |
---|---|---|---|---|
1a | 423 | 46,600 | 0.89 | 435, (463) |
1b | 421 | 39,400 | 0.72 | 406, (445) |
2a | 406 | 48,700 | 0.91 | 395, (431), (454) |
2b | 405 | 40,000 | 0.73 | 426, (451) |
3a | 399 | 39,000 | 0.79 | 399, (420), (448) |
3b | 396 | 38,600 | 0.77 | 395, (413), (441) |
Oligomer. | PBE0/6-31G** | ||
---|---|---|---|
Emax (eV) | f | Description | |
1a | 2.97 | 1.28 | HOMO → LUMO (97%) |
1b | 2.98 | 1.24 | HOMO → LUMO (97%) |
2a | 3.12 | 1.33 | HOMO → LUMO (100%) |
2b | 3.11 | 1.27 | HOMO → LUMO (100%) |
3a | 3.17 | 1.34 | HOMO → LUMO (100%) |
3b | 3.19 | 1.28 | HOMO → LUMO (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzelac, E.J.; Badía-Domínguez, I.; Gilman, S.J.; Delgado, M.C.R.; Rasmussen, S.C. Molecular Tuning in Diaryl-Capped Pyrrolo[2,3-d:5,4-d′]bisthiazoles: Effects of Terminal Aryl Unit and Comparison to Dithieno[3,2-b:2′,3′-d]pyrrole Analogues. Molecules 2022, 27, 6638. https://doi.org/10.3390/molecules27196638
Uzelac EJ, Badía-Domínguez I, Gilman SJ, Delgado MCR, Rasmussen SC. Molecular Tuning in Diaryl-Capped Pyrrolo[2,3-d:5,4-d′]bisthiazoles: Effects of Terminal Aryl Unit and Comparison to Dithieno[3,2-b:2′,3′-d]pyrrole Analogues. Molecules. 2022; 27(19):6638. https://doi.org/10.3390/molecules27196638
Chicago/Turabian StyleUzelac, Eric J., Irene Badía-Domínguez, Spencer J. Gilman, M. Carmen Ruiz Delgado, and Seth C. Rasmussen. 2022. "Molecular Tuning in Diaryl-Capped Pyrrolo[2,3-d:5,4-d′]bisthiazoles: Effects of Terminal Aryl Unit and Comparison to Dithieno[3,2-b:2′,3′-d]pyrrole Analogues" Molecules 27, no. 19: 6638. https://doi.org/10.3390/molecules27196638
APA StyleUzelac, E. J., Badía-Domínguez, I., Gilman, S. J., Delgado, M. C. R., & Rasmussen, S. C. (2022). Molecular Tuning in Diaryl-Capped Pyrrolo[2,3-d:5,4-d′]bisthiazoles: Effects of Terminal Aryl Unit and Comparison to Dithieno[3,2-b:2′,3′-d]pyrrole Analogues. Molecules, 27(19), 6638. https://doi.org/10.3390/molecules27196638