Defatted Seed Residue of Cucumis Melo as a Novel, Renewable and Green Biosorbent for Removal of Selected Heavy Metals from Wastewater: Kinetic and Isothermal Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of Experiment Utilizing L9 Orthogonal Array
2.2. Estimation of the Optimum Conditions for the % Sorption by Taguchi Method
2.3. Analysis of Variance
2.4. Equilibrium Isotherms
2.4.1. Freundlich Isotherm
2.4.2. Langmuir Isotherm
2.4.3. Dubnin–Radushkevich Isotherm
2.5. Adsorption Kinetics
2.5.1. Pseudo-First Order Kinetics
2.5.2. Pseudo-Second Order Kinetics
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Procurement of Raw Material
3.3. Preparation of Adsorbent and Sorbate Solutions
3.4. Metal Determination by Atomic Absorption Spectrophotometer
3.5. Selection of Parameters for the Optimized % Sorption by Selected Biosorbent
3.6. Design of Experiments Utilizing Taguchi Method/Orthogonal Array
3.7. Signal to Noise Ratio (SNR) and Analysis of Variance (ANOVA)
3.8. Equilibrium Isotherms
3.9. Adsorption Kinetics
- Pseudo-first order Kinetics
- Pseudo-Second Order Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, J.J.; Naushad, M. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Bouazza, D.; Miloud, H.; Adjdir, M.; Tayab, A.; Boos, A. Competitive adsorption of Cu (II) and Zn(II) on impregnated raw Algerian bentonite and efficiency of extraction. J. Appl. Clay Sci. 2018, 151, 118–123. [Google Scholar] [CrossRef]
- Li, N.; Bai, R.; Liu, C. Enhanced and selective adsorption of Mercury ions on Chitosan beads grafted with Polyacrylamide via Surface-initiated atom transfer radical polymerization. J. Langmuir 2005, 21, 11780–11787. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.K.; Gomez, D. Adsorption of Zinc (Zn2+) from aqueous solution on natural bentonite. Desalination 2011, 267, 286–294. [Google Scholar] [CrossRef]
- Carmen, Z.; Daniela, S. Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents—A critical overview. In Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update; Tomasz, P., Ed.; Intech Open: London, UK, 2012; pp. 1–34. [Google Scholar] [CrossRef] [Green Version]
- Vidali, M. Bioremediation: An overview. Pure Appl. Chem. 2001, 73, 1163–1172. [Google Scholar] [CrossRef]
- Agarwal, H.; Sharma, D.; Sindhu, S.K.; Tyagi, S.; Iqram, S. Removal of Mercury from Wastewater use of Green Adsorbente: A Review. J. Environ. Agric. Food Chem. 2010, 9, 1551–1558. [Google Scholar]
- Ranganathan, K. Adsorption of Hg (II) ions from aqueous chloride solutions using activated carbons. Carbon 2003, 41, 1087–1092. [Google Scholar] [CrossRef]
- Gilbert, U.A.; Emmanuel, I.U.; Adebanjo, A.A.; Olalere, G.A. Biosorptive removal of Pb2+ and Cd2+ onto a novel biosorbant: Defatted Carica papaya seeds. Biomass Bioenergy 2011, 35, 2517–2525. [Google Scholar] [CrossRef]
- Jaishankar, M.; Mathewl, B.B.; Shah, M.S.; Krishna Murthy, T.P.; Sangeetha Gowda, K.R. Biosorption of few heavy metal ions using agricultural wastes. J. Environ. Pollut. Hum. Health 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Abdelsalam, O.E.; Reiad, N.A.; Eishafei, M.M. A Study of the Removal Characteristics of Heavy Metals from Wastewater by low-cost Adsorbents. J. Adv. Res. 2011, 2, 297–303. [Google Scholar] [CrossRef]
- Akhtar, T.; Tariq, M.I.; Iqbal, S.; Sultana, N.; Chan, K.W. Production of biodiesel by ultrasonic-assisted methanolysis of cantaloupe seed oil and its optimization by Taguchi method. J. Chem. Soc. Pak. 2018, 40, 427–436. [Google Scholar]
- Mabaleha, M.B.; Mitie, Y.C.; Yeboah, S.O. A comparative study of the properties of selected melon seed oils as potential candidates for development into commercial edible vegetable oils. J. Am. Oil Chem. Soc. 2007, 84, 31–36. [Google Scholar] [CrossRef]
- Akhtar, T.; Tariq, M.I.; Iqbal, S.; Sultana, N.; Chan, K.W. Production and characterization of biodiesel from Eriobotrya japonica seed oil: An optimization study. Int. J. Green Energy 2017, 14, 569–574. [Google Scholar] [CrossRef]
- Sajjad, N.; Orfali, R.; Perveen, S.; Rehman, S.; Sultan, A.; Akhtar, T.; Nazir, A.; Muhammad, G.; Mehmood, T.; Ghaffar, S.; et al. Biodiesel Production from Alkali-Catalyzed Transesterification of Tamarindusindica Seed Oil and Optimization of Process Conditions. Molecules 2022, 27, 3230. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.-S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and nonlinear methods. Water Res. 2006, 40, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 2008, 144, 235–244. [Google Scholar] [CrossRef]
- Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S.N.A. Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. [Google Scholar] [CrossRef] [PubMed]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purification Technol. 2008, 61, 229–242. [Google Scholar] [CrossRef]
- Bulut, Y.; Aydın, H. Akinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L. Comparison between linear and nonlinear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Eng. China 2009, 3, 320–324. [Google Scholar] [CrossRef]
- Madhu, A.; Singh, K. Heavy metals removal from wastewater using various adsorbents: A review. J. Water Reuse Desalinat. 2017, 7, 387–419. [Google Scholar] [CrossRef]
Exp No. | A | B | C | % Sorption | Mean% Sorption | SNRs | ||
---|---|---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | ||||||
1 | 1 g | 5 ppm | 1 h | 90 | 91 | 91.2 | 90.77 | 39.172 |
2 | 1 g | 10 ppm | 2 h | 86 | 85 | 85.6 | 85.5 | 38.66 |
3 | 1 g | 15 ppm | 3 h | 86 | 86.6 | 88 | 86.9 | 38.79 |
4 | 2 g | 5 ppm | 2 h | 94 | 94.1 | 94.3 | 94.1 | 39.78 |
5 | 2 g | 10 ppm | 3 h | 92 | 92.4 | 93 | 92.4 | 39.31 |
6 | 2 g | 15 ppm | 1 h | 84 | 83.2 | 83 | 83.4 | 38.44 |
7 | 3 g | 5 ppm | 3 h | 86 | 85.6 | 87 | 86.5 | 38.86 |
8 | 3 g | 10 ppm | 1 h | 82 | 83.2 | 84.6 | 83.2 | 38.42 |
9 | 3 g | 15 ppm | 2 h | 82 | 82 | 83 | 82.33 | 38.32 |
SNRT = 38.86 |
Exp# | A | B | C | % Sorption | Mean% Sorption | SNRs | ||
---|---|---|---|---|---|---|---|---|
Trial 1 | Trial 2 | Trial 3 | ||||||
1 | 1 g | 5 ppm | 1 h | 92 | 91 | 89 | 90.66 | 39.14 |
2 | 1 g | 10 ppm | 2 h | 87 | 88 | 88 | 87.66 | 38.86 |
3 | 1 g | 15 ppm | 3 h | 86 | 85 | 85.7 | 85.6 | 38.66 |
4 | 2 g | 5 ppm | 2 h | 85 | 84.5 | 84 | 84.5 | 38.53 |
5 | 2 g | 10 ppm | 3 h | 92 | 92.5 | 93 | 92.5 | 39.32 |
6 | 2 g | 15 ppm | 1 h | 83.6 | 84 | 82.2 | 84.2 | 38.42 |
7 | 3 g | 5 ppm | 3 h | 86 | 87 | 87.3 | 86.77 | 38.75 |
8 | 3 g | 10 ppm | 1 h | 85 | 84.5 | 85 | 85 | 38.57 |
9 | 3 g | 15 ppm | 2 h | 82 | 83.3 | 82.1 | 82.1 | 38.33 |
SNRT= 38.78 |
Parameter | SNRL for Pb | SNRL for Cr | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||
A | Amount of sorbent | 38.89 | 39.17 | 38.53 | 38.88 | 38.76 | 38.55 |
B | Amount of sorbate | 39.28 | 38.8 | 38.51 | 38.81 | 38.91 | 38.47 |
C | Time | 38.68 | 38.92 | 38.98 | 38.71 | 38.83 | 38.91 |
Parameters | Pb | Cr | ||
---|---|---|---|---|
SSf | % Contribution | SSf | % Contribution | |
Amount of sorbent | 0.4259 | 54.7% | 0.0131 | 8.65% |
Amount of sorbate | 0.3025 | 38.8% | 0.1139 | 75% |
Time | 0.0504 | 6.47% | 0.0243 | 16% |
Parameters | Linear Method | Non-Linear Method | ||
---|---|---|---|---|
Pb | Cr | Pb | Cr | |
Freundlich Isotherm | ||||
KF (mg/g) (L/mg) n | 7.392 | 2.0792 | 0.0499 | 0.0499 |
n | 1.103 | 1.3869 | 1.84 | 1.8439 |
R2 | 0.6543 | 0.9944 | 0.9616 | 0.9616 |
Langmuir Isotherm | ||||
Qo (mg/g) | 8.591 | 38.61 | 8.591 | 38.61 |
b (L/mg) | 0.2566 | 0.1664 | 0.2566 | 0.1664 |
RL | ||||
R2 | 0.4607 | 0.9938 | ||
Dubinin–Radushkevich Isotherm | ||||
Kad (mol2/kJ2) | 3.6218 | 2.7691 | 3.6218 | 2.7691 |
qs(mg/g) | 1.6007 | 1.3801 | 1.601 | 1.3801 |
R2 | 0.6779 | 0.9043 |
Parameters | Levels | |||
---|---|---|---|---|
1 | 2 | 3 | ||
A | Amount of sorbent (g) | 1 | 2 | 3 |
B | Amount of sorbate (ppm) | 5 | 10 | 15 |
C | Time (h) | 1 | 2 | 3 |
Experiment No. | A (Amount of Sorbent) | B (Amount of Sorbate) | C (Time) |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 2 | 1 | 2 |
5 | 2 | 2 | 3 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 3 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, T.; Batool, F.; Ahmad, S.; Al-Farraj, E.S.; Irfan, A.; Iqbal, S.; Ullah, S.; Zaki, M.E.A. Defatted Seed Residue of Cucumis Melo as a Novel, Renewable and Green Biosorbent for Removal of Selected Heavy Metals from Wastewater: Kinetic and Isothermal Study. Molecules 2022, 27, 6671. https://doi.org/10.3390/molecules27196671
Akhtar T, Batool F, Ahmad S, Al-Farraj ES, Irfan A, Iqbal S, Ullah S, Zaki MEA. Defatted Seed Residue of Cucumis Melo as a Novel, Renewable and Green Biosorbent for Removal of Selected Heavy Metals from Wastewater: Kinetic and Isothermal Study. Molecules. 2022; 27(19):6671. https://doi.org/10.3390/molecules27196671
Chicago/Turabian StyleAkhtar, Taslim, Fozia Batool, Sajjad Ahmad, Eida S. Al-Farraj, Ali Irfan, Shahid Iqbal, Sami Ullah, and Magdi E. A. Zaki. 2022. "Defatted Seed Residue of Cucumis Melo as a Novel, Renewable and Green Biosorbent for Removal of Selected Heavy Metals from Wastewater: Kinetic and Isothermal Study" Molecules 27, no. 19: 6671. https://doi.org/10.3390/molecules27196671
APA StyleAkhtar, T., Batool, F., Ahmad, S., Al-Farraj, E. S., Irfan, A., Iqbal, S., Ullah, S., & Zaki, M. E. A. (2022). Defatted Seed Residue of Cucumis Melo as a Novel, Renewable and Green Biosorbent for Removal of Selected Heavy Metals from Wastewater: Kinetic and Isothermal Study. Molecules, 27(19), 6671. https://doi.org/10.3390/molecules27196671