Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Spectroscopy
2.2. Particle Size Analysis
2.3. Scanning Transmission Electron Microscopy (STEM) and Transmission Electron Microscopy (TEM)
2.4. Evaluation of the Antimicrobial Activity
3. Materials and Methods
3.1. Materials
3.2. Microbial Strains
3.3. Silver Nanoparticle Synthesis
3.4. AgNPs Characterization
3.5. Antimicrobial Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Culica, M.E.; Chibac-Scutaru, A.L.; Mohan, T.; Coseri, S. Cellulose-Based Biogenic Supports, Remarkably Friendly Biomaterials for Proteins and Biomolecules. Biosens. Bioelectron. 2021, 182, 113170. [Google Scholar] [CrossRef] [PubMed]
- Biliuta, G.; Coseri, S. Cellulose: A Ubiquitous Platform for Ecofriendly Metal Nanoparticles Preparation. Coord. Chem. Rev. 2019, 383, 155–173. [Google Scholar] [CrossRef]
- Coseri, S. Cellulose: To Depolymerize… or Not To? Biotechnol. Adv. 2017, 35, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- French, A.D. Glucose, Not Cellobiose, Is the Repeating Unit of Cellulose and Why That Is Important. Cellulose 2017, 24, 4605–4609. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Kari, Z.A.; Noor, N.H.M.; Ray, R.R. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef]
- Pal, S.; Nisi, R.; Stoppa, M.; Licciulli, A. Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega 2017, 2, 3632–3639. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, R.; Karuppusamy, I.; Saravanan, M.; Muthukumar, H.; Ponnuchamy, K.; Ramkumar, V.S.; Pugazhendhi, A. Synthesis of Silver Nanoparticles and Their Biomedical Applications - A Comprehensive Review. Curr. Pharm. Des. 2019, 25, 2650–2660. [Google Scholar] [CrossRef]
- Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative Assessment of the Apoptotic Potential of Silver Nanoparticles Synthesized by Bacillus Tequilensis and Calocybe Indica in MDA-MB-231 Human Breast Cancer Cells: Targeting P53 for Anticancer Therapy. Int. J. Nanomedicine 2015, 10, 4203. [Google Scholar] [CrossRef] [Green Version]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and Properties of Cellulose Nanocomposite Fabrics with in situ Generated Silver Nanoparticles by Bioreduction Method. J. Bioresour. Bioprod. 2021, 1, 75–81. [Google Scholar] [CrossRef]
- Yorseng, K.; Siengchin, S.; Ashok, B.; Rajuluc, A.V. Nanocomposite egg shell powder with in situ generated silver nanoparticles using inherent collagen as reducing agent. J. Bioresour. Bioprod. 2020, 2, 101–107. [Google Scholar] [CrossRef]
- Jiang, H.; Manolache, S.; Wong, A.C.L.; Denes, F.S. Plasma-Enhanced Deposition of Silver Nanoparticles onto Polymer and Metal Surfaces for the Generation of Antimicrobial Characteristics. J. Appl. Polym. Sci. 2004, 93, 1411–1422. [Google Scholar] [CrossRef]
- Becker, R.O. Silver Ions in the Treatment of Local Infections. Met. Based. Drugs 1999, 6, 311–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, J.W. History of the Medical Use of Silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir 2002, 18, 2888–2894. [Google Scholar] [CrossRef]
- Chen, M.; Wang, L.Y.; Han, J.T.; Zhang, J.Y.; Li, Z.Y.; Qian, D.J. Preparation and Study of Polyacryamide-Stabilized Silver Nanoparticles through a One-Pot Process. J. Phys. Chem. B 2006, 110, 11224–11231. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.L.; Chen, W.F. Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-Dendritic Poly(Allylamine) Derivatives. J. Phys. Chem. B 2003, 107, 11267–11272. [Google Scholar] [CrossRef]
- Zou, X.; Bao, H.; Guo, H.; Zhang, L.; Qi, L.; Jiang, J.; Niu, L.; Dong, S. Mercaptoethane Sulfonate Protected, Water-Soluble Gold and Silver Nanoparticles: Syntheses, Characterization and Their Building Multilayer Films with Polyaniline via Ion–Dipole Interactions. J. Colloid Interface Sci. 2006, 295, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J.M. Stable Silver Colloidal Dispersions Using Short Chain Polyethylene Glycol. Colloids Surf. A Physicochem. Eng. Asp. 2007, 303, 184–190. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Alturki, H.N.H.; Tawfeek, H.M. Different Cellulosic Polymers for Synthesizing Silver Nanoparticles with Antioxidant and Antibacterial Activities. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Coseri, S.; Biliuta, G.; Simionescu, B.C. Selective Oxidation of Cellulose, Mediated by: N -Hydroxyphthalimide, under a Metal-Free Environment. Polym. Chem. 2018, 9, 961–967. [Google Scholar] [CrossRef]
- Baron, R.I.; Bercea, M.; Avadanei, M.; Lisa, G.; Biliuta, G.; Coseri, S. Green Route for the Fabrication of Self-Healable Hydrogels Based on Tricarboxy Cellulose and Poly(Vinyl Alcohol). Int. J. Biol. Macromol. 2019, 123, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Culica, M.E.; Biliuta, G.; Rotaru, R.; Lisa, G.; Baron, R.I.; Coseri, S. New Electromagnetic Shielding Materials Based on Viscose-Carbon Nanotubes Composites. Polym. Eng. Sci. 2019, 59, 1499–1506. [Google Scholar] [CrossRef]
- Nica, I.; Zaharia, C.; Baron, R.I.; Coseri, S.; Suteu, D. Adsorptive Materials Based on Cellulose: Preparation, Characterization and Application for Copper Ions Retention. Cellul. Chem. Technol. 2020, 54, 579–590. [Google Scholar] [CrossRef]
- Culica, M.E.; Chibac-Scutaru, A.L.; Melinte, V.; Coseri, S. Cellulose Acetate Incorporating Organically Functionalized CeO2 NPs: Efficient Materials for UV Filtering Applications. Materials 2020, 13, 2955. [Google Scholar] [CrossRef]
- Culica, M.E.; Avadanei, M.; Baron, R.I.; Chibac-Scutaru, A.L.; Asandulesa, M.; Biliuta, G.; Lisa, G.; Coseri, S. The Source of Conductivity and Proton Dynamics Study in TEMPO-Oxidized Cellulose Doped with Various Heterocyclic Molecules. Cellulose 2020, 27, 8585–8604. [Google Scholar] [CrossRef]
- Baron, R.I.; Coseri, S. Preparation of Water-Soluble Cellulose Derivatives Using TEMPO Radical-Mediated Oxidation at Extended Reaction Time. React. Funct. Polym. 2020, 157, 104768. [Google Scholar] [CrossRef]
- Burduniuc, O.; Bostanaru, A.C.; Mares, M.; Biliuta, G.; Coseri, S. Synthesis, Characterization, and Antifungal Activity of Silver Nanoparticles Embedded in Pullulan Matrices. Materials 2021, 14, 7041. [Google Scholar] [CrossRef]
- Coseri, S.; Spatareanu, A.; Sacarescu, L.; Rimbu, C.; Suteu, D.; Spirk, S.; Harabagiu, V. Green Synthesis of the Silver Nanoparticles Mediated by Pullulan and 6-Carboxypullulan. Carbohydr. Polym. 2015, 116, 9–17. [Google Scholar] [CrossRef]
- Xu, T.C.; Wang, C.S.; Hu, Z.Y.; Zheng, J.J.; Jiang, S.H.; He, S.J.; Hou, H.Q. High Strength and Stable Proton Exchange Membrane Based on Perfluorosulfonic Acid/Polybenzimidazole. Chin. J. Polym. Sci. 2022, 40, 764–771. [Google Scholar] [CrossRef]
- Hajji, S.; Salem, R.B.S.B.; Hamdi, M.; Jellouli, K.; Ayadi, W.; Nasri, M.; Boufi, S. Nanocomposite Films Based on Chitosan–Poly(Vinyl Alcohol) and Silver Nanoparticles with High Antibacterial and Antioxidant Activities. Process Saf. Environ. Prot. 2017, 111, 112–121. [Google Scholar] [CrossRef]
- Nasiriboroumand, M.; Montazer, M.; Barani, H. Preparation and Characterization of Biocompatible Silver Nanoparticles Using Pomegranate Peel Extract. J. Photochem. Photobiol. B Biol. 2018, 179, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Barhoum, A.; García-Betancourt, M.L.; Rahier, H.; Van Assche, G. Physicochemical Characterization of Nanomaterials: Polymorph, Composition, Wettability, and Thermal Stability. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–278. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST. Available online: http://www.eucast.org (accessed on 23 February 2022).
- Weinstein, M.P.; Patel, J.B. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A11, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Golus, J.; Sawicki, R.; Widelski, J.; Ginalska, G. The Agar Microdilution Method – a New Method for Antimicrobial Susceptibility Testing for Essential Oils and Plant Extracts. J. Appl. Microbiol. 2016, 121, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Tudela, J.L.; Arendrup, M.C.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.W.; Donnelly, J.P.; Dromer, F. EUCAST Definitive Document EDef 7.1: Method for the Determination of Broth Dilution MICs of Antifungal Agents for Fermentative Yeasts. Clin. Microbiol. Infect. 2008, 15, 103. [Google Scholar] [CrossRef] [PubMed]
AgNPs | Z-Average (d.nm) | Polydispersity Index (PDI) | ζ Potential (mV) |
---|---|---|---|
AgNPs-CA | 432 ± 0.1 | 0.263 | −24.5 ± 0.5 |
AgNPs-EC | 491 ± 0.09 | 0.485 | −8.24 ± 0.2 |
AgNPs-MC | 348 ± 0.1 | 0.302 | −1.93 ± 0.6 |
AgNPs-HPC | 119.7 ± 0.2 | 0.269 | −16.2 ± 0.9 |
AgNPs | Mean Particle Size from TEM |
---|---|
AgNPs-CA | 17 ± 1.8 nm |
AgNPs-EC | 89 ± 1.3 nm |
AgNPs-MC | 54 ± 11.6 nm |
AgNPs-HPC | 62 ± 3.6 nm |
Diameters of the Inhibition Zones (mm) | ||||
---|---|---|---|---|
Strains | AgNPs-MC | AgNPs-HPC | AgNPs-CA | AgNPs-EC |
C. albicans | 9 | 10 | 8 | 11 |
C. auris | 10 | 11 | 9 | 10 |
C. glabrata | 8 | 8 | 10 | 9 |
C. parapsilosis | 9 | 9 | 11 | 10 |
C. guiliermondii | 10 | 10 | 11 | 12 |
C. krusei | 11 | 10 | 11 | 11 |
C. lusitaniae | 10 | 10 | 12 | 11 |
C. pelliculosa | 8 | 9 | 10 | 10 |
E. coli | 7 | 10 | 8 | 11 |
M. smegmatis | 9 | 10 | 9 | 13 |
S. aureus | 8 | 10 | 9 | 12 |
P. aeurginosa | 10 | 9 | 9 | 11 |
A. baumannii | 9 | 11 | 12 | 13 |
K. pneumoniae | 11 | 9 | 12 | 14 |
E. faecalis | 8 | 9 | 8 | 9 |
S. maltophilia | 11 | 12 | 10 | 12 |
Strains | AgNPs-MC | AgNPs-HPC | AgNPs-CA | AgNPs-EC | ||||
---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
C. albicans | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
C. auris | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
C. glabrata | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
C. parapsilosis | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
C. guilliermondii | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
C. krusei | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
C. lusitaniae | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
C. pelliculosa | 0.0625 | 0.125 | 0.0625 | 0.0625 | 0.0625 | 0.125 | 0.0625 | 0.125 |
Strains | AgNPs-MC | AgNPs-HPC | AgNPs-CA | AgNPs-EC | ||||
---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MBC | MIC | MBC | MIC | MBC | |
E. coli | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
M. smegmatis | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
S. aureus | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
P. aeurginosa | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
A. baumannii | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 |
K. pneumoniae | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
E. faecalis | 0.0312 | 0.0625 | 0.0312 | 0.0312 | 0.0312 | 0.0625 | 0.0312 | 0.0625 |
S. maltophilia | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliuta, G.; Bostănaru-Iliescu, A.-C.; Mareș, M.; Pavlov-Enescu, C.; Năstasă, V.; Burduniuc, O.; Coseri, S. Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices. Molecules 2022, 27, 6680. https://doi.org/10.3390/molecules27196680
Biliuta G, Bostănaru-Iliescu A-C, Mareș M, Pavlov-Enescu C, Năstasă V, Burduniuc O, Coseri S. Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices. Molecules. 2022; 27(19):6680. https://doi.org/10.3390/molecules27196680
Chicago/Turabian StyleBiliuta, Gabriela, Andra-Cristina Bostănaru-Iliescu, Mihai Mareș, Carla Pavlov-Enescu, Valentin Năstasă, Olga Burduniuc, and Sergiu Coseri. 2022. "Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices" Molecules 27, no. 19: 6680. https://doi.org/10.3390/molecules27196680
APA StyleBiliuta, G., Bostănaru-Iliescu, A. -C., Mareș, M., Pavlov-Enescu, C., Năstasă, V., Burduniuc, O., & Coseri, S. (2022). Antibacterial and Antifungal Silver Nanoparticles with Tunable Size Embedded in Various Cellulose-Based Matrices. Molecules, 27(19), 6680. https://doi.org/10.3390/molecules27196680