Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Angiopep-2 3D Structure Prediction
2.2. Relevance of LRP-1 CR56 and CR17 in Ligand-Binding
2.3. Flexible Docking by Autodock Vina
3. Results
3.1. Protein–Protein Flexible Docking: Angiopep-2 Binding to CR56
3.2. Protein–Protein Flexible Docking: Angiopep-2 Binding to CR17
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barar, J.; Rafi, M.A.; Pourseif, M.M.; Omidi, Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 2016, 6, 225–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomed. 2014, 9, 2241–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demeule, M.; Regina, A.; Che, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J.P.; Beliveau, R. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 2008, 324, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Regina, A.; Demeule, M.; Che, C.; Lavallee, I.; Poirier, J.; Gabathuler, R.; Beliveau, R.; Castaigne, J.P. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol. 2008, 155, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, Y.; Currie, J.C.; Demeule, M.; Regina, A.; Che, C.; Abulrob, A.; Fatehi, D.; Sartelet, H.; Gabathuler, R.; Castaigne, J.P.; et al. Transport characteristics of a novel peptide platform for CNS therapeutics. J. Cell. Mol. Med. 2010, 14, 2827–2839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.H.; Li, D.D.; Zhao, J.J.; Song, J.N.; Zhao, Y.L. The role of the low-density lipoprotein receptor-related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev. Neurosci. 2016, 27, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiong, Z.Y.; Liu, Z.; Huang, X.; Jiang, X.B. Angiopep-2/IP10-EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma. Sci. Rep. 2018, 8, 12827. [Google Scholar] [CrossRef]
- Xin, H.L.; Sha, X.Y.; Jiang, X.Y.; Zhang, W.; Chen, L.C.; Fang, X.L. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 2012, 33, 8167–8176. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, X.M.; Gong, M.; Zhang, J.N. Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. Oncotarget 2016, 7, 79387–79393. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.L.; Sha, X.Y.; Jiang, X.Y.; Chen, L.C.; Law, K.; Gu, J.J.; Chen, Y.Z.; Wang, X.; Fang, X.L. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles. Biomaterials 2012, 33, 1673–1681. [Google Scholar] [CrossRef]
- Pucci, C.; De Pasquale, D.; Marino, A.; Martinelli, C.; Lauciello, S.; Ciofani, G. Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy. Acs Appl. Mater. Interfaces 2020, 12, 29037–29055. [Google Scholar] [CrossRef] [PubMed]
- Di Polidoro, A.C.; Zambito, G.; Haeck, J.; Mezzanotte, L.; Lamfers, M.; Netti, P.A.; Torino, E. Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers 2021, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.C.; Taskar, K.; Rudraraju, V.; Goda, S.; Thorsheim, H.R.; Gaasch, J.A.; Mittapalli, R.K.; Palmieri, D.; Steeg, P.S.; Lockman, P.R.; et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 2009, 26, 2486–2494. [Google Scholar] [CrossRef] [Green Version]
- Kumthekar, P.; Tang, S.C.; Brenner, A.J.; Kesari, S.; Piccioni, D.E.; Anders, C.; Carrillo, J.; Chalasani, P.; Kabos, P.; Puhalla, S.; et al. ANG1005, a Brain-Penetrating Peptide-Drug Conjugate, Shows Activity in Patients with Breast Cancer with Leptomeningeal Carcinomatosis and Recurrent Brain Metastases. Clin. Cancer Res. 2020, 26, 2789–2799. [Google Scholar] [CrossRef] [Green Version]
- Castaigne, J.P.; Elian, K.M.; Bouchard, D.; Neale, A.; Rosenfeld, S.; Drappatz, J.; Groves, M.; Wen, P.; Bento, P.; Lawrence, B. ANG1005: Preliminary clinical safety and tolerability in patients with recurrent malignant glioma. EJC Suppl. 2008, 6, 133–134. [Google Scholar] [CrossRef]
- Tian, X.H.; Nyberg, S.; Sharp, P.S.; Madsen, J.; Daneshpour, N.; Armes, S.P.; Berwick, J.; Azzouz, M.; Shaw, P.; Abbott, N.J.; et al. LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Sci. Rep. 2015, 5, 11990. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z.; Lu, S.; He, Q.; Deng, N.; Meng, H.; Pan, C.; Li, H.; Liu, M.; Huang, A.; et al. In-silico analysis of ligand-receptor binding patterns of α-MMC, TCS and MAP30 protein to LRP1 receptor. J. Mol. Graph. Model. 2020, 98, 107619. [Google Scholar] [CrossRef] [PubMed]
- Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor-ligand molecular docking. Biophys. Rev. 2014, 6, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Jensen, G.A.; Andersen, O.M.; Bonvin, A.M.J.J.; Bjerrum-Bohr, I.; Etzerodt, M.; Thøgersen, H.C.; O’Shea, C.; Poulsen, F.M.; Kragelund, B.B. Binding Site Structure of One LRP–RAP Complex:Implications for a Common Ligand–Receptor Binding Motif. J. Mol. Biol. 2006, 362, 700–716. [Google Scholar] [CrossRef]
- Lee, D.; Walsh, J.D.; Migliorini, M.; Yu, P.; Cai, T.; Schwieters, C.D.; Krueger, S.; Strickland, D.K.; Wang, Y.-X. The structure of receptor-associated protein (RAP). Protein Sci. 2007, 16, 1628–1640. [Google Scholar] [CrossRef] [PubMed]
- Lamiable, A.; Thevenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tuffery, P. PEP-FOLD3: Faster denovo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaufays, J.; Lins, L.; Thomas, A.; Brasseur, R. In silico predictions of 3D structures of linear and cyclic peptides with natural and non-proteinogenic residues. J. Pept. Sci. 2012, 18, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Guttman, M.; Prieto, J.H.; Handel, T.M.; Domaille, P.J.; Komives, E.A. Structure of the Minimal Interface Between ApoE and LRP. J. Mol. Biol. 2010, 398, 306–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitas, R.E.; Innerarity, T.L.; Mahley, R.W. Cell surface receptor binding of phospholipid. protein complexes containing different ratios of receptor-active and -inactive E apoprotein. J. Biol. Chem. 1980, 255, 5454–5460. [Google Scholar]
- 2fly 3d Structure pdb. Available online: https://www.rcsb.org/structure/2FYL (accessed on 1 September 2022).
- 2knx 3d Structure pdb. Available online: https://www.rcsb.org/structure/2KNX (accessed on 1 September 2022).
- Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Der Dtsch. Chem. Ges. 1894, 27, 2985–2993. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. Software news and update autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
- Wang, H.; Eckel, R.H. What are lipoproteins doing in the brian? Trends Endocrinol. Metab. 2014, 25, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Van Rooy, I.; Mastrobattista, E.; Storm, G.; Hennink, W.E.; Schiffelers, R.M. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J. Control. Release 2011, 150, 30–36. [Google Scholar] [CrossRef]
Binding Energy ΔG [=] Kcal/mol | Pi Interaction | Electrostatic Clashes | |
---|---|---|---|
Model 1 | −5.25 ± 0.2 | 16ARG, 27ASP, 28ASP, 30CYS, 62ANS, 70ASP, 80CYS | 28ASP, 29ASP, 70ASP |
Model 2 | −7.8 ± 1.2 | 16ARG, 27ASP, 28ASP, 62ANS, 63TRP, 64ARG, 70ASP, 71CYS, 80CYS | 29ASP, 62ANS, 70ASP, 80CYS |
Model 3 | −5.12 ± 0.2 | 16ARG, 28ASP, 29ASP, 62ANS, 65CYS, 80CYS, 82HIS | 16ARG, 29ASP, 62ANS, 65CYS, 80CYS, 82HIS |
Model 4 | −5.22 ± 0.4 | 16ARG, 28ASP, 29ASP, 30CYS, 58CYS, 62ANS, 63TRP,70ASP, 71CYS, 80CYS | 28ASP, 29ASP, 58CYS, 62ANS,70ASP, 71CYS, 80CYS |
Model 5 | −5.05 ± 0.3 | 16ARG, 17CYS, 25ASP, 27ASP, 28ASP, 29ASP, 30CYS, 58CYS, 63TRP,70ASP, 71CYS | 17CYS, 27ASP, 28ASP, 29ASP, 70ASP, 71CYS, 80CYS |
Binding Energy ΔG [=] Kcal/mol | Pi Interaction | Electrostatic Clashes | |
---|---|---|---|
Model 1 | −4.77 ± 0.2 | 17THR, 41ILE, 50THR, 24ARG, 47TYR,27CYR, 28ASP | 17THR, 41ILE, 50THR, 27CYS, 28ASP |
Model 2 | −8 ± 1.4 | 11SER, 13SER, 27CYS, 39GLU, 41ILE, 48ASN, 43ALA, 23GLU, 24ARG | 11SER, 13SER, 27CYS, 39GLU, 41ILE, 48ASN, 43ALA, 23GLU, 24ARG |
Model 3 | −5.05 ± 0.17 | 24ARG, 28ASP, 29GLY, 30ASP, 49SER, 23GLU, 47TYR | 28ASP, 29GLU |
Model 4 | −4.48 ± 0.57 | 23GLU, 27CYS, 39GLU, 40SER, 44GLY, 47TYR, 48ASN, 50THR | 23GLU, 27CYS, 39GLU, 47TYR, 48ASN, 50THR |
Model 5 | −4.44 ± 0.74 | 23GLU, 24ARG, 26LEU, 28ASP, 39GLU, 41ILE, 48ASN, 50THR | 23GLU, 24ARG, 26LEU, 28ASP, 39GLU, 41ILE, 48ASN, 50THR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Polidoro, A.C.; Cafarchio, A.; Vecchione, D.; Donato, P.; De Nola, F.; Torino, E. Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM). Molecules 2022, 27, 6696. https://doi.org/10.3390/molecules27196696
di Polidoro AC, Cafarchio A, Vecchione D, Donato P, De Nola F, Torino E. Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM). Molecules. 2022; 27(19):6696. https://doi.org/10.3390/molecules27196696
Chicago/Turabian Styledi Polidoro, Angela Costagliola, Andrea Cafarchio, Donatella Vecchione, Paola Donato, Francesco De Nola, and Enza Torino. 2022. "Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM)" Molecules 27, no. 19: 6696. https://doi.org/10.3390/molecules27196696
APA Styledi Polidoro, A. C., Cafarchio, A., Vecchione, D., Donato, P., De Nola, F., & Torino, E. (2022). Revealing Angiopep-2/LRP1 Molecular Interaction for Optimal Delivery to Glioblastoma (GBM). Molecules, 27(19), 6696. https://doi.org/10.3390/molecules27196696