Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure Characterization
2.2. Design of PEC Sensing Platform
2.3. Optimization of Experimental Conditions
2.4. Analytical Behavior of the Proposed PEC Sensing Platform
2.5. Selectivity, Stability, and Reproducibility of the PEC Sensor
3. Materials and Methods
3.1. Synthesis of TTPA-COF
3.2. Preparation of TTPA-CONs
3.3. Preparation of Ti3C2Tx
3.4. Preparation of TTPA-CONs/Ti3C2Tx
3.5. Fabrication of the PEC sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, X.; Xu, R.; Sun, X.; Wang, Y.; Ren, X.; Du, B.; Wu, D.; Wei, Q. Using reduced graphene oxide-Ca: CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens. Bioelectron. 2017, 96, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, J.; Yu, Z.; Tang, D. Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal. Chem. 2020, 92, 2809–2814. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Zhang, K.; Zhu, L.; Tang, D. ZIF-8-assisted NaYF4: Yb Tm@ ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal. Chem. 2019, 92, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal. Chem. 2007, 26, 679–688. [Google Scholar] [CrossRef]
- Lance, R.; Drake, R. Dean A Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Expert Rev. Anticancer Ther. 2011, 11, 1341–1343. [Google Scholar] [CrossRef]
- Allison, R.; Jeferson, Y.; José, E.; José, G.; Lima, N.; de Sousa, P.G., Jr.; Maria, V.; dos Santos José, C. The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Melcucules 2022, 27, 4529. [Google Scholar]
- Souada, M.; Piro, B.; Reisberg, S.; Anquetin, G.; Noël, V.; Pham, M. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens. Bioelectron. 2015, 68, 49–54. [Google Scholar] [CrossRef]
- Jarju, J.; Lavender, A.; Begoña, E.; Vanesa, R.; Laura, M. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Melcucules 2020, 25, 5404. [Google Scholar] [CrossRef]
- Fenner, A. Novel “inverse sensitivity” enzyme-linked crystal-growth assay to detect ultralow PSA levels. Nat. Rev. Urol. 2012, 9, 354. [Google Scholar] [CrossRef]
- Kim, D.; Lee, N.; Park, J.; Park, I.; Kim, J.; Cho, H. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens. Bioelectron. 2010, 25, 2477–2482. [Google Scholar] [CrossRef]
- Xu, J.; Cao, P.; Fan, Z.; Luo, X.; Yang, G.; Qu, T.; Gao, J. Rapid Screening of Lipase Inhibitors in Scutellaria baicalensis by Using Porcine Pancreatic Lipase Immobilized on Magnetic Core–Shell Metal–Organic Frameworks. Melcucules 2022, 37, 3745. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, M.; Nolte, D. Prostate specific antigen detection in patient sera by fluorescence-free BioCD protein array. Biosens. Bioelectron. 2011, 26, 1871–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, D.; Wang, G. Covalent Organic Frameworks for Chemical and Biological Sensing. Melcucules 2022, 27, 2586. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.; Chen, H. Photoelectrochemical DNA biosensors. Chem. Rev. 2014, 114, 7421–7441. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, Z.; Gao, J.; Ji, W.; Zhang, J. An antibody-aptamer sandwich cathodic photoelectrochemical biosensor for the detection of progesterone. Biosens. Bioelectron. 2020, 160, 112210. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Qi, H.; Shang, M.; Zhang, J.; Yan, J.; Song, W. Carbon dots-sensitized amorphous MoSx photoanode: Sequential electrodeposition preparation and dual amplified photoelectrochemical aptasensing of adenosine. Biosens. Bioelectron. 2019, 146, 111741. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, K.; Chen, L.; Guo, L.; Ai, S. A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine. Biosens. Bioelectron. 2013, 44, 48–51. [Google Scholar] [CrossRef]
- Sun, G.; Wang, P.; Ge, S.; Ge, L.; Yu, J.; Yan, M. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosens. Bioelectron. 2014, 56, 97–103. [Google Scholar] [CrossRef]
- Fan, D.; Bao, C.; Khan, M.; Wang, C.; Zhang, Y.; Liu, Q.; Zhang, X.; Wei, Q. A novel label-free photoelectrochemical sensor based on NS-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosens. Bioelectron. 2018, 106, 14–20. [Google Scholar] [CrossRef]
- Han, F.; Song, Z.; Nawaz, M.; Dai, M.; Han, D.; Han, L.; Fan, Y.; Xu, J.; Han, D.; Niu, L. MoS2/ZnO-Heterostructures-Based Label-Free Visible-Light-Excited Photoelectrochemical Sensor for Sensitive and Selective Determination of Synthetic Antioxidant Propyl Gallate. Anal. Chem. 2019, 16, 10657–10662. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Liang, Z.; Wu, Z.; Wang, W.; Han, D.; Niu, L. CdS/TiO2 Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Anal. Chem. 2021, 2, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Han, N.; Xiong, M.; Han, X.; Zuo, Y.; Wang, K. Portable Photoelectrochromic Visualization Sensor for Detection of Chemical Oxygen Demand. Anal. Chem. 2020, 19, 13604–13609. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Fan, G.; Li, Z.; Gao, F.; Luo, X. Universal Design of Selectivity-Enhanced Photoelectrochemical Enzyme Sensor: Integrating Photoanode with Biocathode. Anal. Chem. 2018, 18, 10681–10687. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, Y.; Gao, W.; Zhao, D.; Yang, D.; Jia, N. Hollow ZnS-CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline. Biosens. Bioelectron. 2020, 168, 112522. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, Y.; Li, J.; Yang, F.; Xu, L.; Wang, W.; Yao, X.; Yin, Y. Magnetic–Optical Core–Shell Nanostructures for Highly Selective Photoelectrochemical Aptasensing. Anal. Chem. 2020, 5, 4094–4100. [Google Scholar] [CrossRef]
- Li, M.; Chen, C.; Shi, Y.; Li, L. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lim, H.; Lee, J.; Choi, H. Synthesis of a scalable two-dimensional covalent organic framework by the photon-assisted imine condensation reaction on the water surface. Langmuir 2018, 34, 8731–8738. [Google Scholar] [CrossRef]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H. Two-dimensional metal–organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 16, 6267–6295. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, T.; Feng, X. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 13, 6189–6235. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, M.; Chen, L.; Gong, C.; Li, N.; Huang, Y.; Cheng, C. Ultrathin covalent organic framework nanosheet-based photoregulated metal-free oxidase-like nanozyme. Nano Res. 2022, 15, 8783–8790. [Google Scholar] [CrossRef]
- Liu, T.; Cui, L.; Zhao, H.; Zhang, X. In situ generation of regularly ordered 2D ultrathin covalent organic framework films for highly sensitive photoelectrochemical bioanalysis. ACS Appl. Mater. Interfaces 2020, 41, 47090–47098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, L.; Wang, Q.; Zhang, L.; Zhu, P.; Yu, J.; Zhang, Y. Porphyrin-based covalent organic framework thin films as cathodic materials for “on-off-on” photoelectrochemical sensing of lead ions. ACS Appl. Mater. Interfaces 2021, 17, 20397–20404. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, N.; Liu, X.; Tian, Y.; Zhai, X.; Chen, X.; Hou, B. Fluoro-Substituted Covalent Organic Framework Particles Anchored on TiO2 Nanotube Arrays for Photoelectrochemical Determination of Dopamine. ACS Appl. Nano Mater. 2021, 9, 8801–8812. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Zhang, X.; Li, J.; Zhang, R.; Song, W. Liposomal Controlled Release Ag-Activated DNA zyme Cycle Amplification on a 2D Pyrene COF-Based Photocathode for α-Synuclein Immunosensing. Anal. Chem. 2021, 24, 8647–8655. [Google Scholar] [CrossRef]
- Chen, L.; Huang, M.; Chen, B.; Gong, C.; Li, N.; Cheng, H.; Chen, Y.; Peng, Y.; Xu, G. Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications. Chin. Chem. Lett. 2021, 6, 2867–2882. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, Z.; Xu, P.; Li, L.; Zeng, G.; Xiao, R.; Tang, Z.; Huang, D.; Tang, L.; Lai, C.; et al. Recent progress in covalent organic framework thin films: Fabrications applications and perspectives. Chem. Soc. Rev. 2019, 2, 488–516. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, G.; Zhou, L.; Li, W.; Dong, Y. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: Synthesis functionalization and applications. Nanoscale Adv. 2020, 9, 3656–3733. [Google Scholar] [CrossRef]
- Low, J.; Zhan, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 36, 255–266. [Google Scholar] [CrossRef]
- Ye, C.; Wu, Z.; Wu, K.; Xia, Z.; Pan, J.; Wang, M.; Ye, C. Ti3C2 MXene-based Schottky photocathode for enhanced photoelectrochemical sensing. J. Alloys Compd. 2021, 859, 157787. [Google Scholar] [CrossRef]
- Ye, C.; Xu, F.; Ullah, F.; Wang, M. CdS/Ti3C2 heterostructure–based photoelectrochemical platform for sensitive and selective detection of trace amount of Cu2+. Anal. Bioanal. Chem. 2022, 12, 3571–3580. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Tahir, M.; Bafaqeer, A. Constructing a stable 2D layered Ti3C2 MXene cocatalyst-assisted TiO2/g-C3N4/Ti3C2 heterojunction for tailoring photocatalytic bireforming of methane under visible light. Energy Fuels 2020, 8, 9810–9828. [Google Scholar] [CrossRef]
- Junaidi, N.; Wong, W.; Loh, K.; Rahman, S.; Daud, W. A comprehensive review of MXenes as catalyst supports for the oxygen reduction reaction in fuel cells. Int. J. Energy Res. 2021, 11, 15760–15782. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Liu, P.; Yan, J.; Zhang, X.; Xing, Y.; Song, W. Charge transfer accelerated by internal electric field of MoS2 QDs-BiOI pn heterojunction for high performance cathodic PEC aptasensing. Electrochim. Acta 2021, 365, 137392. [Google Scholar] [CrossRef]
- El-Mahdy, A.; Mohamed, M.; Mansoure, T.; Yu, H.; Chen, T.; Kuo, S. Ultrastable tetraphenyl-pphenylenediamine-based covalent organic frameworks as platforms for high-performance electrochemical supercapacitors. Chem. Commun. 2019, 55, 14890–14893. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Kurata, R.; Sakamaki, D.; Yano, S.; Kono, Y.; Nakano, Y.; Furukawa, K.; Kato, T.; Tanaka, K. Redox modulation of para-phenylenediamine by substituted nitronyl nitroxide groups and their spin states. J. Phys. Chem. 2013, 117, 12858–12867. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Q.; Lu, Y.; Zhang, B.; Nie, G. Ultrasensitive "signal-on" electrochemiluminescence immunosensor for prostate-specific antigen detection based on novel nanoprobe and poly (indole-6-carboxylic acid)/flower-like Au nanocomposite. Sens. Actuators B Chem. 2020, 303, 127246. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, F.; Shi, L.; Liu, H.; Ke, W. Autoluminescence-Free Prostate-Specific Antigen Detection by Persistent Luminous Nanorods and Au@Ag@SiO2 Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 40669–40676. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, L.; Sun, Y.; Zheng, F.; Ke, W. Ag/CdO NP-Engineered Magnetic Electrochemical Aptasensor for Prostatic Specific Antigen Detection. ACS Appl. Mater. Interfaces 2019, 11, 3474–3481. [Google Scholar] [CrossRef]
- Fan, D.; Li, N.; Ma, H.; Li, Y.; Hu, L.; Du, B.; Wei, Q. Electrochemical immunosensor for detection of prostate specific antigen based on an acid cleavable linker into MSN-based controlled release system. Biosens. Bioelectron. 2016, 85, 580–586. [Google Scholar] [CrossRef]
- Dai, L.; Li, Y.; Wang, Y.; Luo, X.; Wei, D.; Feng, R.; Yan, T.; Ren, X.; Du, B.; Wei, Q. A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosens. Bioelectron. 2019, 132, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Dong, Y.; Ma, Y.; Wang, B.; Ma, S.; Liu, Y. A ternary CdS@Au-g-C3N4 heterojunction-based photoelectrochemical immunosensor for prostate specific antigen detection using graphene oxide-CuS as tags for signal amplification. Anal. Chim. Acta. 2020, 1106, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, S.; Zhang, S.; Zhao, P.; Wang, J.; Yan, M.; Ge, S.; Yu, J. Peptide cleavage-mediated photoelectrochemical signal on-off via CuS electronic extinguisher for PSA detection. Biosens. Bioelectron. 2020, 150, 111958. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, C.; Zhu, Q.; Chen, J.; Li, J.; Ding, H.; Sang, F.; Kong, L.; Chen, Z.; Wei, Q. A novel ultrasensitive sandwich-type photoelectrochemical immunoassay for PSA detection based on dual inhibition effect of Au/MWCNTs nanohybrids on N-GQDs/CdS QDs dual sensitized urchin-like TiO2. Electrochim. Acta 2019, 333, 135480. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Wang, C.; Chen, L.; Ye, C.; Peng, Y. Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. Molecules 2022, 27, 6732. https://doi.org/10.3390/molecules27196732
Li N, Wang C, Chen L, Ye C, Peng Y. Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. Molecules. 2022; 27(19):6732. https://doi.org/10.3390/molecules27196732
Chicago/Turabian StyleLi, Nanjun, Chongyang Wang, Liangjun Chen, Cui Ye, and Yongwu Peng. 2022. "Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen" Molecules 27, no. 19: 6732. https://doi.org/10.3390/molecules27196732
APA StyleLi, N., Wang, C., Chen, L., Ye, C., & Peng, Y. (2022). Ultrathin Covalent Organic Framework Nanosheets/Ti3C2Tx-Based Photoelectrochemical Biosensor for Efficient Detection of Prostate-Specific Antigen. Molecules, 27(19), 6732. https://doi.org/10.3390/molecules27196732