Evaluation of the Pharmacokinetics of the Pancreastatin Inhibitor PSTi8 Peptide in Rats: Integration of In Vitro and In Vivo Findings
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS/MS Bioanalytical Method
2.2. Solubility Study
2.3. Plasma Stability
2.4. Microsomal Metabolic Stability
2.5. Plasma Protein Binding
2.6. Blood–Plasma Partitioning
2.7. Evaluation of Preclinical PK Studies
2.7.1. Bioavailability Assessment in Different Routes of Administration
2.7.2. Dose Proportionality PK Studies
2.7.3. Gender Differences in PK
3. Materials and Methods
3.1. Chemicals
3.2. Animals
3.3. LC-MS/MS Analysis
3.4. Solubility Study
3.5. Plasma Stability Study
3.6. Microsomal Metabolic Stability Study
3.7. Plasma Protein Binding Study
3.8. Blood–Plasma Partitioning Study
3.9. Preclinical PK Evaluation
3.9.1. Bioavailability Assessment in Different Routes of Administration
3.9.2. Dose Proportionality in PK Studies
3.9.3. Gender Differences in PK
3.9.4. Sampling Schedule
3.9.5. PK Data Analysis
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Atlas, I.D. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium; Available online: https://diabetesatlas.org (accessed on 6 November 2021).
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tupas, G.D.; Otero, M.C.B.; Ebhohimen, I.E.; Egbuna, C.; Aslam, M. Antidiabetic lead compounds and targets for drug development. In Phytochemicals as Lead Compounds for New Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 127–141. [Google Scholar]
- Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic properties: A review. Int. J. Food Sci. Technol. 2019, 54, 1909–1919. [Google Scholar] [CrossRef] [Green Version]
- Hossain, Z.; Valicherla, G.R.; Gupta, A.P.; Syed, A.A.; Riyazuddin, M.; Chandra, S.; Siddiqi, M.I.; Gayen, J.R. Discovery of pancreastatin inhibitor PSTi8 for the treatment of insulin resistance and diabetes: Studies in rodent models of diabetes mellitus. Sci. Rep. 2018, 8, 8715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valicherla, G.R.; Riyazuddin, M.; Shahi, S.; Gupta, A.P.; Syed, A.A.; Husain, A.; Gayen, J.R. LC-ESI-MS/MS assay development and validation of a novel antidiabetic peptide PSTi8 in mice plasma using SPE: An application to pharmacokinetics. J. Pharm. Biomed. Anal. 2020, 180, 113074. [Google Scholar] [CrossRef] [PubMed]
- Valicherla, G.R.; Gupta, A.P.; Hossain, Z.; Riyazuddin, M.; Syed, A.A.; Husain, A.; Lahiri, S.; Dave, K.M.; Gayen, J.R. Pancreastatin inhibitor, PSTi8 ameliorates metabolic health by modulating AKT/GSK-3beta and PKClambda/zeta/SREBP1c pathways in high fat diet induced insulin resistance in peri-/post-menopausal rats. Peptides 2019, 120, 170147. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.P.; Singh, P.; Garg, R.; Valicherla, G.R.; Riyazuddin, M.; Syed, A.A.; Hossain, Z.; Gayen, J.R. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomed. Pharmacother. 2019, 116, 108959. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.P.; Syed, A.A.; Garg, R.; Goand, U.K.; Singh, P.; Riyazuddin, M.; Valicherla, G.R.; Husain, A.; Gayen, J.R. Pancreastatin inhibitor PSTi8 attenuates hyperinsulinemia induced obesity and inflammation mediated insulin resistance via MAPK/NOX3-JNK pathway. Eur. J. Pharmacol. 2019, 864, 172723. [Google Scholar] [CrossRef]
- Gupta, A.P.; Garg, R.; Singh, P.; Goand, U.K.; Syed, A.A.; Valicherla, G.R.; Riyazuddin, M.; Mugale, M.N.; Gayen, J.R. Pancreastatin inhibitor PSTi8 protects the obesity associated skeletal muscle insulin resistance in diet induced streptozotocin-treated diabetic mice. Eur. J. Pharmacol. 2020, 881, 173204. [Google Scholar] [CrossRef]
- Verma, P.; Vijayaraghavan, R. Preclinical investigation of the pharmacokinetics, metabolism, and protein and red blood cell binding of DRDE-07: A prophylactic agent against sulphur mustard. Acta Pharm. Sin. B 2014, 4, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Yang, D.C.; Birkmeier, J.; Stolzenbach, J. Determination of protein binding by in vitro charcoal adsorption. J. Pharmacokinet. Biopharm. 1995, 23, 41–55. [Google Scholar] [CrossRef]
- Bohnert, T.; Gan, L.S. Plasma protein binding: From discovery to development. J. Pharm. Sci. 2013, 102, 2953–2994. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Wahajuddin; Singh, S.P.; Jain, G.K. Gender differences in pharmacokinetics of lumefantrine and its metabolite desbutyl-lumefantrine in rats. Biopharm. Drug Dispos. 2012, 33, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Madla, C.M.; Gavins, F.K.H.; Merchant, H.A.; Orlu, M.; Murdan, S.; Basit, A.W. Let’s talk about sex: Differences in drug therapy in males and females. Adv. Drug Deliv. Rev. 2021, 175, 113804. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Guidance for Industry: Bioanalytical Method Validation US Department of Health and Human Services; CDER, Food and Drug Administration: Rockville, MD, USA, 2018. [Google Scholar]
- Riyazuddin, M.; Valicherla, G.R.; Husain, A.; Hussain, M.K.; Shukla, M.; Katekar, R.; Gupta, A.P.; Singh, P.; Banerjee, D.; Hajela, K.; et al. Elucidation of pharmacokinetics of novel DNA ligase I inhibitor, S012-1332 in rats: Integration of in vitro and in vivo findings. J. Pharm. Biomed. Anal. 2019, 162, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Valicherla, G.R.; Bikkasani, A.K.; Cheruvu, S.H.; Hossain, Z.; Taneja, I.; Ahmad, H.; Raju, K.S.R.; Sangwan, N.S.; Singh, S.K.; et al. Elucidation of plasma protein binding, blood partitioning, permeability, CYP phenotyping and CYP inhibition studies of Withanone using validated UPLC method: An active constituent of neuroprotective herb Ashwagandha. J. Ethnopharmacol. 2021, 270, 113819. [Google Scholar] [CrossRef] [PubMed]
- Issar, M.; Singh, S.K.; Mishra, B.; Gupta, R.C. Pharmacokinetics, in-situ absorption and protein binding studies of a new neuroleptic agent centbutindole in rats. Eur. J. Pharm. Sci. 2003, 19, 105–113. [Google Scholar] [CrossRef]
- Mehrotra, N.; Lal, J.; Puri, S.K.; Madhusudanan, K.P.; Gupta, R.C. In Vitro and In Vivo pharmacokinetic studies of bulaquine (analogue of primaquine), a novel antirelapse antimalarial, in rat, rabbit and monkey--highlighting species similarities and differences. Biopharm. Drug Dispos. 2007, 28, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, S.; Yang, H.; Lee, F.; Wu, J.T.; Qian, M.G. A novel liquid chromatography/tandem mass spectrometry based depletion method for measuring red blood cell partitioning of pharmaceutical compounds in drug discovery. Rapid Commun. Mass Spectrom. 2005, 19, 250–254. [Google Scholar] [CrossRef] [PubMed]
Time (min) | KRBC/PL | p-Value | |
---|---|---|---|
Conc. (0.206 µM) | Conc. (0.412 µM) | ||
0 | 1.83 ± 0.48 | 2.23 ± 0.02 | 0.22 |
15 | 2.56 ± 0.25 | 2.94 ± 0.62 | 0.38 |
30 | 1.88 ± 0.25 | 2.55 ± 0.65 | 0.17 |
45 | 2.05 ± 0.12 | 2.19 ± 0.12 | 0.22 |
60 | 2.46 ± 0.45 | 2.33 ± 0.77 | 0.81 |
Parameters | PSTi8 5 mg/kg | ||
---|---|---|---|
i.v. | i.p. | s.c. | |
AUC (h*µg/L) | 8525.66 ± 1604.03 | 8099.23 ± 1035.68 | 6690.13 ± 1510.57 |
Cmax (µg/L) | 30193.35 ± 14562.01 | 6047.77 ± 348.49 | 4105.49 ± 888.30 |
Tmax (h) | - | 0.48 | 0.60 |
CL/F (L/h/kg) | 0.60 ± 0.10 | 0.62 ± 0.08 | 0.77 ± 0.16 |
Vd/F (L/kg) | 0.20 ± 0.11 | 0.39 ± 0.06 | 0.46 ± 0.09 |
K01-HL (h) | - | 0.26 ± 0.09 | 0.41 ± 0.01 |
K10-HL (h) | 0.25 ± 0.18 | 0.44 ± 0.10 | 0.42 ± 0.004 |
K01 (1/h) | - | 2.90 ± 0.89 | 1.68 ± 0.02 |
K10 (1/h) | 3.79 ± 2.19 | 1.63 ± 0.33 | 1.66 ± 0.01 |
MRT (h) | 0.36 ± 0.26 | - | - |
Bioavailability (%) | - | 95.00 ± 12.15 | 78.47 ± 17.72 |
Parameter | i.p. PSTi8 10 mg/kg | i.p. PSTi8 20 mg/kg |
---|---|---|
AUC (h*µg/L) | 32,384.05 ± 3270.55 | 111,486.37 ± 30,126.00 |
Cmax (µg/L) | 24,272.74 ± 2681.30 | 85,606.83 ± 15,031.65 |
Tmax (h) | 0.38 | 0.38 |
CL/F (L/h/kg) | 0.31 ± 0.03 | 0.19 ± 0.06 |
Vd/F (L/kg) | 0.26 ± 0.09 | 0.15 ± 0.03 |
K01-HL (h) | 0.15 ± 0.05 | 0.14 ± 0.03 |
K10-HL (h) | 0.59 ± 0.23 | 0.56 ± 0.09 |
K01 (1/h) | 4.89 ± 1.74 | 4.94 ± 0.97 |
K10 (1/h) | 1.33 ± 0.60 | 1.26 ± 0.18 |
Parameter | i.v. PSTi8 5 mg/kg | i.p. PSTi8 5 mg/kg |
---|---|---|
AUC (h*µg/L) | 9590.04 ± 1747.10 | 8815.40 ± 588.58 |
Cmax (µg/L) | 42,585.13 ± 3706.02 | 7004.16 ± 216.23 |
Tmax (h) | - | 0.48 |
CL/F (L/h/kg) | 0.53 ± 0.10 | 0.57 ± 0.04 |
Vd/F (L/kg) | 0.12 ± 0.01 | 0.26 ± 0.01 |
K01-HL (h) | - | 0.32 ± 0.02 |
K10-HL (h) | 0.16 ± 0.02 | 0.32 ± 0.02 |
K01 (1/h) | - | 2.14 ± 0.12 |
K10 (1/h) | 4.50 ± 0.48 | 2.19 ± 0.18 |
MRT (h) | 0.22 ± 0.02 | - |
Bioavailability (%) | - | 91.92 ± 6.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valicherla, G.R.; Katekar, R.A.; Dadge, S.; Riyazuddin, M.; Syed, A.A.; Singh, S.K.; Husain, A.; Wahajuddin, M.; Gayen, J.R. Evaluation of the Pharmacokinetics of the Pancreastatin Inhibitor PSTi8 Peptide in Rats: Integration of In Vitro and In Vivo Findings. Molecules 2022, 27, 339. https://doi.org/10.3390/molecules27020339
Valicherla GR, Katekar RA, Dadge S, Riyazuddin M, Syed AA, Singh SK, Husain A, Wahajuddin M, Gayen JR. Evaluation of the Pharmacokinetics of the Pancreastatin Inhibitor PSTi8 Peptide in Rats: Integration of In Vitro and In Vivo Findings. Molecules. 2022; 27(2):339. https://doi.org/10.3390/molecules27020339
Chicago/Turabian StyleValicherla, Guru R., Roshan A. Katekar, Shailesh Dadge, Mohammed Riyazuddin, Anees A. Syed, Sandeep K. Singh, Athar Husain, Muhammad Wahajuddin, and Jiaur R. Gayen. 2022. "Evaluation of the Pharmacokinetics of the Pancreastatin Inhibitor PSTi8 Peptide in Rats: Integration of In Vitro and In Vivo Findings" Molecules 27, no. 2: 339. https://doi.org/10.3390/molecules27020339
APA StyleValicherla, G. R., Katekar, R. A., Dadge, S., Riyazuddin, M., Syed, A. A., Singh, S. K., Husain, A., Wahajuddin, M., & Gayen, J. R. (2022). Evaluation of the Pharmacokinetics of the Pancreastatin Inhibitor PSTi8 Peptide in Rats: Integration of In Vitro and In Vivo Findings. Molecules, 27(2), 339. https://doi.org/10.3390/molecules27020339