Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs
Abstract
:1. Introduction. Inverse Problems of Vibrational Spectroscopy
2. Results
2.1. Scaling of Molecular Force Fields in Cartesian Coordinates
2.2. Application of Second-Order Perturbation Theory Analysis to the Fock Matrix in NBO Basis for DNA Bases and Base Pairs at the B3LYP/6-31G* Level of Theory
2.3. Scaling of Molecular Force Fields in Cartesian Coordinates
2.3.1. Computational Details
2.3.2. The Short Protocol of Calculations
- Quantum mechanical calculations of optimized geometries and harmonic force fields of adenine, cytosine, guanine, and thymine, as well as of the two pairs adenine–thymine and cytosine–guanine at several levels of theory (B3LYP/6-31G*, B3LYP/6-311++G**, PBEPBE/DGDZVP, BVP86/TZVP).
- Analysis of various matrix scaling models in Cartesian coordinates based on the results obtained in the framework of the second-order perturbation theory analysis of the Fock matrix in the NBO basis for the DNA bases under consideration.
- Solving inverse problems and determining the scale factors sets in Cartesian coordinates for four DNA bases at the B3LYP/6-31G* level of theory.
- Solving inverse problems with a variation of possible sets of scale factors.
- Finally, scaling the force constant matrices for DNA pairs. Scale matrix for each pair was composed in block-diagonal form. Comparison to available experimental spectra if appropriate.
2.3.3. Results of Quantum Mechanical Calculations and Fitting Scale Factors for DNA Bases
2.3.4. Quantum Mechanical Calculations and Scaling of DNA Bases Canonic Pairs Hessians
3. Discussion
4. Conclusions
- (a)
- (b)
- Sets of scale factors in Cartesian coordinates (for the B3LYP/6-31G* level of theory) were calculated for four DNA bases within the model of correcting factor matrices based on the results of NBO analysis.
- (c)
- Optimized (regularized) sets of scale factors (for B3LYP/6-31G * level) of adenine, thymine, cytosine, and guanine ensure the reproduction of experimental frequencies within the specified error.
- (d)
- Calculated (regularized) sets of scale factors of DNA bases are applied for the “synthesis” (assembly) of correcting matrices of the corresponding DNA base pairs.
- (e)
- Fitting theoretical frequencies by correcting molecular force fields directly in Cartesian coordinates significantly reduces the difficulties related to the choice of internal coordinates in bulky, complex molecules. Such modeling is practically useful in the case of large biological molecules, associates, polymers, etc.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yagola, A.G.; Kochikov, I.V.; Kuramshina, G.M.; Pentin, Y.A. Inverse Problems of Vibrational Spectroscopy; VSP: Zeist, The Netherlands, 1999. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.N.; Leonov, A.S.; Yagola, A.G. Nonlinear Ill-Posed Problems, Applied Mathematics and Mathematical Computation; Chapman & Hall: London, UK, 1998. [Google Scholar] [CrossRef]
- Kochikov, I.V.; Kuramshina, G.M.; Pentin, I.A.; Iagola, A.G. Regularizing algorithm of the inverse vibrational problem solution. Dokl. Akad. Nauk. SSSR 1981, 261, 1104–1106. [Google Scholar]
- Kochikov, I.V.; Kuramshina, G.M. A complex of programs for the force-field calculations of polyatomic molecules by the Tikhonov regularization method. Vestn. Mosk. Univ. Ser. 2 Khimiia 1985, 26, 354–358. [Google Scholar]
- Kochikov, I.V.; Kuramshina, G.M.; Yagola, A.G. Stable numerical methods of solving certain inverse problems of vibrational spectroscopy. USSR Comp. Math. Math. Phys. 1987, 27, 33–40. [Google Scholar] [CrossRef]
- Kuramshina, G.M.; Weinhold, F.A.; Kochikov, I.V.; Pentin, Y.A.; Yagola, A.G. Joint treatment of ab initio and experimental data within Tikhonov regularization method. J. Chem. Phys. 1994, 100, 1414–1424. [Google Scholar] [CrossRef]
- Kuramshina, G.M.; Weinhold, F.; Kochikov, I.V.; Pentin, Y.A.; Yagola, A.G. Regularized force fields of molecules based on ab initio quantum chemical calculations. Russ. J. Phys. Chem. 1994, 68, 401–414. [Google Scholar]
- Kuramshina, G.M.; Weinhold, F.; Pentin, Y.A. Regularized ab initio force fields of 1,2-dichloroethane trans and gauche conformers. Russ. J. Phys. Chem. 1994, 68, 2015–2023. [Google Scholar]
- Kuramshina, G.M.; Weinhold, F. Constraints on the values of force constants for molecular force field models based on ab initio calculations. J. Mol. Struct. 1997, 410, 457–461. [Google Scholar] [CrossRef]
- Kuramshina, G.M.; Weinhold, F.; Pentin, Y.A. Ab initio and regularized force fields of haloethanes: CH3CH2Cl, CH3CHCl2, CH3CF2Cl, and CH3CFCl2. J. Chem. Phys. 1998, 109, 7286–7299. [Google Scholar] [CrossRef]
- Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J.E.; Vargha, A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J. Am. Chem. Soc. 1983, 105, 7037–7047. [Google Scholar] [CrossRef]
- Fogarasi, G.; Zhou, X.; Taylor, P.W.; Pulay, P. The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces. J. Am. Chem. Soc. 1992, 114, 8191–8201. [Google Scholar] [CrossRef]
- Pulay, P.; Zhou, X.; Fogarasi, G. Development of an ab Initio Based Database of Vibrational Force Fields for Organic Molecules. In Recent Experimental and Computational Advances in Molecular Spectroscopy; Fausto, R., Ed.; Kluver Academic Publishers: Amsterdam, The Netherlands, 1993; pp. 99–111. [Google Scholar] [CrossRef]
- Kochikov, I.V.; Kuramshina, G.M.; Stepanova, A.V.; Yagola, A.G. Regularized scaling factor method for calculating molecule force fields. Mosc. Univ. Phys. Bull. 1997, 52, 28–33. [Google Scholar]
- Kochikov, I.V.; Kuramshina, G.M.; Stepanova, A.V.; Yagola, A.G. Numerical aspects of the calculation of scaling factors from experimental data. Numer. Methods Program. 2004, 5, 281–290. [Google Scholar]
- Kochikov, I.V.; Kuramshina, G.M.; Stepanova, A.V. New approach for the correction of ab initio molecular force fields in Cartesian coordinates. Int. J. Quant. Chem. 2009, 109, 28–33. [Google Scholar] [CrossRef]
- Kochikov, I.V.; Stepanova, A.V.; Kuramshina, G.M. Ab initio molecular force fields fitted in Cartesian coordinates to experimental frequencies of isotopic species using symmetry constraints: Application to indole and pyrrole molecules. Struct. Chem. 2019, 30, 605–614. [Google Scholar] [CrossRef]
- Kuramshina, G.M.; Kochikov, I.V.; Sharapova, S.A. Regularized ab initio molecular force fields for key biological molecules: Melatonin and pyridoxal-5′-phosphate methylamine Shiff base (Vitamin B6). Inverse Probl. Sci. Eng. 2021, 29, 549–566. [Google Scholar] [CrossRef]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1; Gaussian Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. , Valency and Bonding—A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- ChemCraft (Version 1.8). Available online: http://www.chemcraftprog.com (accessed on 5 January 2022).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, UK, 2013.
- Roothaan, C.C.J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69–89. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Jensen, F. Introduction to Computational Chemistry; John Wiley and Sons: Chichester, UK, 1999; p. 446. [Google Scholar]
Adenine | Adenine–Thymine | ||||
---|---|---|---|---|---|
Donor (i) | Acceptor (j) | E2 | Donor (i) | Acceptor (j) | E2 |
LP N1 | σ*(C2-N3) | 12.61 | LPN10 | σ*(C11-N13) | 10.89 |
LPN10 | σ*(N1-C6) | 50.42 | LPN7 | σ*(N10-C19) | 21.59 |
Thymine | Adenine–Thymine | ||||
LP(2)O2 | σ*(N4-C9) | 27.59 | LP(2)O22) | σ*(N16-C18) | 25.43 |
Guanine and Cytosine | Guanine–Cytosine | ||||
---|---|---|---|---|---|
Donor (i) | Acceptor (j) | E2 a | Donor (i) | Acceptor (j) | E2 |
LP(2)O14 | σ*(C4-N1) | 33.18 | LPO7 | σ*(C6-N8) | 16.94 |
LP(2)O14 | σ*(C4-N1) | 12.61 | LP(2)O7 | σ*(C6 -N8) | 16.94 |
LPN9 | σ*(N1-C6) | 47.18 | LPN23 | σ*(C22-N26) | 61.91 |
N1 | 0.992 | ||||||||||||||
C2 | 0.003 | 1.015 | |||||||||||||
N3 | 0 | −0.011 | 0.97 | ||||||||||||
C4 | −0.011 | −0.002 | 0.006 | 0.991 | |||||||||||
C5 | −0.007 | −0.009 | 0.002 | −0.002 | 1.007 | ||||||||||
C6 | −0.002 | −0.006 | 0.009 | 0.002 | 0.002 | 0.946 | |||||||||
N7 | −0.002 | 0.001 | −0.005 | 0.005 | −0.002 | 0.008 | 0.952 | ||||||||
C8 | 0.007 | −0.001 | 0 | 0.005 | −0.002 | −0.007 | 0 | 1.007 | |||||||
N9 | −0.010 | −0.001 | 0.005 | 0 | −0.006 | −0.008 | −0.002 | 0.002 | 0.985 | ||||||
N10 | 0.008 | 0.002 | 0.007 | 0.007 | 0.003 | 0.012 | 0.01 | 0.015 | 0.003 | 0.909 | |||||
H11 | 0.005 | −0.001 | 0.008 | −0.005 | 0.006 | 0 | 0.01 | −0.013 | 0.003 | 0.008 | 0.985 | ||||
H12 | 0.007 | 0 | 0.005 | −0.004 | −0.002 | 0.008 | 0.013 | 0.003 | 0.002 | 0.012 | −0.025 | 0.954 | |||
H13 | 0.004 | 0 | −0.008 | 0.01 | 0.001 | 0.016 | 0.011 | −0.004 | 0.009 | −0.002 | 0.003 | 0.005 | 0.947 | ||
H14 | −0.001 | 0.006 | 0.006 | −0.003 | 0 | 0.013 | −0.001 | −0.001 | 0.006 | 0.006 | 0.013 | 0.014 | 0.002 | 0.93 | |
H15 | 0.003 | 0.001 | 0.004 | −0.001 | 0.008 | 0.005 | −0.001 | −0.012 | 0.009 | −0.002 | 0.001 | 0.007 | 0.002 | 0.009 | 0.966 |
N1 | C2 | N3 | C4 | C5 | C6 | N7 | C8 | N9 | N10 | H11 | H12 | H13 | H14 | H15 |
No | B3LYP/Scaled | No | B3LYP/Scaled | No | B3LYP/Scaled | No | B3LYP/Scaled | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3686 | 3489 | 22 | 1509 | 1459 | 43 | 996 | 976 | 64 | 534 | 514 |
2 | 3650 | 3443 | 23 | 1501 | 1456 | 44 | 991 | 973 | 65 | 520 | 501 |
3 | 3638 | 3430 | 24 | 1457 | 1428 | 45 | 946 | 929 | 66 | 472 | 468 |
4 | 3417 | 3331 | 25 | 1450 | 1423 | 46 | 912 | 897 | 67 | 409 | 388 |
5 | 3267 | 3097 | 26 | 1436 | 1389 | 47 | 912 | 886 | 68 | 408 | 383 |
6 | 3219 | 3046 | 27 | 1432 | 1385 | 48 | 839 | 823 | 69 | 391 | 363 |
7 | 3203 | 3043 | 28 | 1387 | 1368 | 49 | 810 | 808 | 70 | 314 | 298 |
8 | 3130 | 3001 | 29 | 1386 | 1343 | 50 | 803 | 797 | 71 | 303 | 294 |
9 | 3109 | 2997 | 30 | 1371 | 1334 | 51 | 766 | 784 | 72 | 299 | 286 |
10 | 3053 | 2967 | 31 | 1355 | 1297 | 52 | 751 | 773 | 73 | 288 | 277 |
11 | 3039 | 2927 | 32 | 1277 | 1259 | 53 | 745 | 747 | 74 | 228 | 227 |
12 | 1833 | 1776 | 33 | 1271 | 1244 | 54 | 741 | 730 | 75 | 171 | 179 |
13 | 1753 | 1700 | 34 | 1247 | 1225 | 55 | 730 | 702 | 76 | 166 | 158 |
14 | 1713 | 1670 | 35 | 1235 | 1197 | 56 | 688 | 655 | 77 | 150 | 147 |
15 | 1710 | 1635 | 36 | 1184 | 1162 | 57 | 668 | 646 | 78 | 116 | 111 |
16 | 1653 | 1626 | 37 | 1160 | 1131 | 58 | 637 | 618 | 79 | 111 | 111 |
17 | 1639 | 1606 | 38 | 1091 | 1058 | 59 | 615 | 604 | 80 | 103 | 101 |
18 | 1554 | 1533 | 39 | 1082 | 1051 | 60 | 582 | 568 | 81 | 67 | 65 |
19 | 1540 | 1497 | 40 | 1049 | 1022 | 61 | 574 | 554 | 82 | 63 | 61 |
20 | 1529 | 1493 | 41 | 1034 | 1015 | 62 | 553 | 527 | 83 | 34 | 32 |
21 | 1526 | 1474 | 42 | 1004 | 986 | 63 | 537 | 523 | 84 | 20 | 20 |
No | B3LYP/Scaled | No | B3LYP/Scaled | No | B3LYP/Scaled | No | B3LYP/Scaled | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3692 | 3563 | 22 | 1460 | 1425 | 43 | 862 | 880 | 64 | 446 | 422 |
2 | 3674 | 3540 | 23 | 1453 | 1415 | 44 | 837 | 872 | 65 | 414 | 382 |
3 | 3650 | 3513 | 24 | 1428 | 1393 | 45 | 806 | 803 | 66 | 396 | 375 |
4 | 3623 | 3471 | 25 | 1395 | 1362 | 46 | 787 | 796 | 67 | 389 | 367 |
5 | 3405 | 3447 | 26 | 1395 | 1351 | 47 | 774 | 789 | 68 | 378 | 352 |
6 | 3264 | 3351 | 27 | 1368 | 1315 | 48 | 770 | 756 | 69 | 346 | 333 |
7 | 3248 | 3299 | 28 | 1326 | 1280 | 49 | 763 | 747 | 70 | 343 | 328 |
8 | 3244 | 3196 | 29 | 1313 | 1252 | 50 | 733 | 712 | 71 | 214 | 235 |
9 | 3226 | 2903 | 30 | 1233 | 1224 | 51 | 724 | 701 | 72 | 198 | 208 |
10 | 3175 | 2855 | 31 | 1195 | 1193 | 52 | 705 | 683 | 73 | 178 | 199 |
11 | 1784 | 1687 | 32 | 1178 | 1180 | 53 | 691 | 674 | 74 | 160 | 167 |
12 | 1756 | 1647 | 33 | 1148 | 1115 | 54 | 663 | 640 | 75 | 138 | 140 |
13 | 1732 | 1618 | 34 | 1129 | 1109 | 55 | 648 | 621 | 76 | 135 | 137 |
14 | 1714 | 1595 | 35 | 1121 | 1098 | 56 | 644 | 616 | 77 | 131 | 106 |
15 | 1690 | 1570 | 36 | 1078 | 1059 | 57 | 611 | 614 | 78 | 95 | 87 |
16 | 1670 | 1564 | 37 | 1065 | 1044 | 58 | 592 | 576 | 79 | 68 | 62 |
17 | 1629 | 1556 | 38 | 1005 | 1017 | 59 | 562 | 527 | 80 | 34 | 27 |
18 | 1577 | 1529 | 39 | 969 | 972 | 60 | 549 | 509 | 81 | 20 | 18 |
19 | 1567 | 1497 | 40 | 958 | 964 | 61 | 539 | 506 | |||
20 | 1549 | 1467 | 41 | 946 | 937 | 62 | 517 | 473 | |||
21 | 1540 | 1459 | 42 | 915 | 926 | 63 | 499 | 455 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochikov, I.; Stepanova, A.; Kuramshina, G. Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs. Molecules 2022, 27, 427. https://doi.org/10.3390/molecules27020427
Kochikov I, Stepanova A, Kuramshina G. Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs. Molecules. 2022; 27(2):427. https://doi.org/10.3390/molecules27020427
Chicago/Turabian StyleKochikov, Igor, Anna Stepanova, and Gulnara Kuramshina. 2022. "Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs" Molecules 27, no. 2: 427. https://doi.org/10.3390/molecules27020427
APA StyleKochikov, I., Stepanova, A., & Kuramshina, G. (2022). Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs. Molecules, 27(2), 427. https://doi.org/10.3390/molecules27020427