Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Application of CQVP/MA and CQVP/MA-Fe3O4 as CR-R250 Dye Adsorbents
2.3. Adsorption Kinetics and Isotherms of CBB Dye, Adsorption Mechanism of CQVP-MA and CQVP/MA-Fe3O4
2.4. Reusability Study
3. Materials and Methods
3.1. Materials
3.2. Synthesis Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Desore, A.; Narula, S.A. An overview on corporate response towards sustainability issues in textile industry. Environ. Dev. Sustain. 2018, 20, 1439–1459. [Google Scholar] [CrossRef]
- Xie, L.; Liu, D.; Huang, H.; Yang, Q.; Zhong, C. Efficient capture of nitrobenzene from waste water using metal–organic frameworks. Chem. Eng. J. 2014, 246, 142–149. [Google Scholar] [CrossRef]
- Joseph, J.; Nagashri, K.; Rani, G.A.B. Synthesis, characterization and antimicrobial activities of copper complexes derived from 4-aminoantipyrine derivatives. J. Saudi Chem. Soc. 2013, 17, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.-Z.; Sun, S.-P.; Li, F.-Y.; Ong, Y.-K.; Chung, T.-S. Treatment of highly concentrated wastewater containing multiple syn-thetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [Google Scholar] [CrossRef]
- Li, H.; Niu, Y.; Xue, Z.; Mu, Q.; Wang, K.; Qu, R.; Chen, H.; Bai, L.; Yang, H.; Wei, D. Adsorption property and mechanism of PAMAM dendrimer/silica gel hybrids for Fe (III) and Ag (I) from N, N-dimethylformamide. J. Mol. Liq. 2019, 273, 305–313. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Peng, C.; Shi, J.; Wang, Q.; He, L.; Shi, L. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation. Appl. Surf. Sci. 2018, 436, 981–988. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sharma, G.C.; Gautam, R.K.; Chattopadhyaya, M.; Upadhyay, S.N.; Sharma, Y.C. Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. J. Mol. Liq. 2016, 213, 162–172. [Google Scholar] [CrossRef]
- Yu, Y.; Murthy, B.N.; Shapter, J.; Constantopoulos, K.T.; Voelcker, N.; Ellis, A. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J. Hazard Mater. 2013, 260, 330–338. [Google Scholar] [CrossRef]
- Gao, L.; Li, Q.; Hu, X.; Wang, X.; Song, H.; Yan, L.; Xiao, H. One-pot synthesis of biomorphic Mg-Al mixed metal oxides with en-hanced methyl orange adsorption properties. Appl. Clay Sci. 2016, 126, 299–305. [Google Scholar] [CrossRef]
- Hajjaji, W.; Pullar, R.; Labrincha, J.; Rocha, F. Aqueous Acid Orange 7 dye removal by clay and red mud mixes. Appl. Clay Sci. 2016, 126, 197–206. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Li, K.; Ning, P.; Peng, J.; Jin, X.; Tang, L. Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe3O4/MIL-101 (Al0. 9Fe0. 1)/NH2) for efficient removal of methyl orange from aqueous solution. J. Taiwan Inst. Chem. Eng. 2018, 87, 64–72. [Google Scholar] [CrossRef]
- Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A. Demulsification of stable seawater/Arabian heavy crude oil emulsions using star-like tricationic pyridinium ionic liquids. Fuel 2021, 304, 121436. [Google Scholar] [CrossRef]
- Naseeruteen, F.; Hamid, N.S.A.; Suah, F.B.M.; Ngah, W.S.W.; Mehamod, F.S. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int. J. Biol. Macromol. 2018, 107, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, V.; Bhaskarapillai, A. Crosslinked poly (ionic liquid) s as selective receptors for Cr (VI)–Counter anion effect and ap-plication in treating drinking water and tannery effluents. Chemosphere 2022, 286, 131922. [Google Scholar] [CrossRef]
- Sabeela, N.I.; Almutairi, T.M.; Al-Lohedan, H.A.; Ezzat, A.O.; Atta, A.M. New Smart Magnetic Ionic Liquid Nanocomposites Based on Chemically Bonded Imidazole Silica for Water Treatment. ACS Omega 2019, 4, 21288–21301. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, M.M.S.; Al-Lohedan, H.A. Fabrication of Environmental-Friendly Magnetite Nanoparticle Surface Coatings for the Efficient Collection of Oil Spill. Nanomater 2021, 11, 3081. [Google Scholar] [CrossRef]
- Hasany, S.M.; Akram, S.; Mushtaq, M.; Adnan, A. Ionic Liquid for Water Purification. In Nanotechnology-Based Industrial Applications of Ionic Liquids; Springer: Cham, Switzerland, 2020; pp. 153–176. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Zheng, L. Hydroxyl-functionalized ionic liquid-based cross-linked polymer as highly efficient adsorbent for anionic azo dyes removal. Chem. Eng. J. 2013, 234, 372–379. [Google Scholar] [CrossRef]
- Dharaskar, S.A.; Varma, M.N.; Shende, D.Z.; Yoo, C.K.; Wasewar, K.L. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel. Sci. World J. 2013, 2013, 395274. [Google Scholar] [CrossRef]
- Atta, A.M.; Ezzat, A.O.; Moustafa, Y.M.; Sabeela, N.I.; Tawfeek, A.M.; Al-Lohedan, H.A.; Hashem, A.I. Synthesis of New Magnetic Crosslinked Poly (Ionic Liquid) Nanocomposites for Fast Congo Red Removal from Industrial Wastewater. Nanomaterials 2019, 9, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavyasree, P.; Xavier, T. Adsorption studies of Methylene Blue, Coomassie Brilliant Blue, and Congo Red dyes onto CuO/C nanocomposites synthesized via Vitex negundo Linn leaf extract. Curr. Res. Green Sustain. Chem. 2021, 4, 100161. [Google Scholar] [CrossRef]
- Atta, A.M.; Al-Lohedan, H.A.; Ezzat, A.O.; Issa, Z.A.; Oumi, A.B. Synthesis and application of magnetite polyacrylamide ami-no-amidoxime nano-composites as adsorbents for water pollutants. J. Polym. Res. 2016, 23, 69. [Google Scholar] [CrossRef]
- Nagaraj, S.K.; Shivanna, S.; Subramani, N.K.; Siddaramaiah, H. Revisiting powder X-ray diffraction technique: A powerful tool to characterize polymers and their composite films. J. Mater. Sci. 2016, 4, 1–5. [Google Scholar]
- Monteiro, B.; Maria, L.; Cruz, A.; Carretas, J.M.; Marçalo, J.; Leal, J.P. Thermal stability and specific heats of coordinating ionic liquids. Thermochim. Acta 2019, 684, 178482. [Google Scholar] [CrossRef]
- Atta, A.M.; Al-Lohedan, H.A.; Tawfeek, A.M.; Sabeela, N.I. Magnetic Ionic Liquid Nanocatalyst to Improve Mechanical and Thermal Properties of Epoxy Nanocomposites. Nanomaterials 2020, 10, 2325. [Google Scholar] [CrossRef]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Maton, C.; De Vos, N.; Stevens, C.V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977. [Google Scholar] [CrossRef]
- Tong, B.; Liu, Q.-S.; Tan, Z.-C.; Welz-Biermann, U. Thermochemistry of alkyl pyridinium bromide ionic liquids: Calorimetric meas-urements and calculations. J. Phys. Chem. A 2010, 114, 3782–3787. [Google Scholar] [CrossRef]
- Hu, H.; Yang, H.; Huang, P.; Cui, D.; Peng, Y.; Zhang, J.; Lu, F.; Lian, J.; Shi, D. Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Chem. Commun. 2010, 46, 3866–3868. [Google Scholar] [CrossRef] [PubMed]
- Thamer, B.M.; Aldalbahi, A.; Moydeen, A.M.; El-Hamshary, H.; Al-Enizi, A.M.; El-Newehy, M.H. Effective adsorption of Coomassie brilliant blue dye using poly(phenylene diamine)grafted electrospun carbon nanofibers as a novel adsorbent. Mater. Chem. Phys. 2019, 234, 133–145. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Su, P.; Huang, J.; Wang, Q.-R.; Zhao, B.-X. A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water. Chem. Eng. J. 2015, 262, 313–318. [Google Scholar] [CrossRef]
- Ozcan, A.S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. J. Colloid Interface Sci. 2004, 280, 44–54. [Google Scholar] [CrossRef]
- Guo, X.-Z.; Han, S.-S.; Yang, J.-M.; Wang, X.-M.; Chen, S.-S.; Quan, S. Effect of synergistic interplay between surface charge, crys-talline defects, and pore volume of MIL-100 (Fe) on adsorption of aqueous organic dyes. Ind. Eng. Chem. Res. 2020, 59, 2113–2122. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl. 1898, 24, 1–39. [Google Scholar]
- Wingenfelder, U.; Hansen, C.; Furrer, G.; Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environ. Sci. Technol. 2005, 39, 4606–4613. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kaur, Y.; Umar, A.; Chaudhary, G.R. Ionic liquid and surfactant functionalized ZnO nanoadsorbent for Recyclable Proficient Adsorption of toxic dyes from waste water. J. Mol. Liq. 2016, 224, 1294–1304. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kaur, Y.; Umar, A.; Chaudhary, G.R. 1-butyl-3-methylimidazolium tetrafluoroborate functionalized ZnO nano-particles for removal of toxic organic dyes. J. Mol. Liq. 2016, 220, 1013–1021. [Google Scholar] [CrossRef]
- Khan, M.A.; Alam, M.M.; Naushad, M.; Alothman, Z.A.; Kumar, M.; Ahamad, T. Sol–gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: An ecofriendly and economical approach. Chem. Eng. J. 2015, 279, 416–424. [Google Scholar] [CrossRef]
- Lai, B.-H.; Yeh, C.-C.; Chen, D.-H. Surface modification of iron oxide nanoparticles with polyarginine as a highly positively charged magnetic nano-adsorbent for fast and effective recovery of acid proteins. Process. Biochem. 2012, 47, 799–805. [Google Scholar] [CrossRef]
- Priscila, F.; Magriotis, Z.M.; Rossi, M.A.; Resende, R.F.; Nunes, C.A. Optimization by Response Surface Methodology of the ad-sorption of Coomassie Blue dye on natural and acid-treated clays. J. Environ. Manag. 2013, 130, 417–428. [Google Scholar]
Element | (wt.%) | (at.%) | ||
---|---|---|---|---|
CQVP-MA | CQVP-MA/Fe3O4 | CQVP-MA | CQVP-MA/Fe3O4 | |
C | 38.58 | 20.4 | 53.22 | 44.88 |
O | 12.35 | 15.84 | 12.79 | 26.17 |
Br | 24.66 | 8.54 | 5.11 | 2.84 |
Fe | 0 | 55.17 | 0 | 26.17 |
System | qmax mg·g−1 | Equilibrium Time (min) | Reference |
---|---|---|---|
IL-functionalized ZnO NPs | 53.7 | 90 | [30] |
Zn/BTMF | 59.9 | 90 | [31] |
(PNCoFe) composite-120 | 46.06 | 50 | [32] |
Polyarginine iron oxide NPs | 67.6 | [33] | |
Acidified clays | 22.89 | [34] | |
Fe2O4-Si-IIL | 460.3 | 275 | [35] |
SiO2-1-IIL-Fe2O4 | 306.9 | 275 | [35] |
CQVP-MA Fe3O4 | 1198 | 40 | Current work |
CQVP-MA | 1040 | 40 | Current work |
qe,exp (mg·g−1) | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|
k1 (min−1) | R2 | qe,cal (mg·g−1) | k2 (g·mg−1·min−1) | R2 | qe,cal (mg·g−1) | ||
CQVP-MA | 1040 | 0.00667 | 0.717 | 691 | 0.000096 | 0.99 | 1111 |
CQVP-MA/Fe3O4 | 1198 | 0.0050 | 0.807 | 537 | 0.00017 | 0.99 | 1111 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qmax (mg·g−1) | KL (min−1) | R2 | 1/n | KF (mg·g−1) | R2 | |
CQVP-MA | 1111 | 0.0923 | 0.992 | 0.427 | 154.88 | 0.822 |
CQVP-MA/Fe3O4 | 1250 | 0.066 | 0.963 | 0.545 | 131.83 | 0.949 |
ΔH° (K·J·mol−1) | ΔS° (J·mol−1·K−1) | ΔG° (K·J·mol−1) | ||||
---|---|---|---|---|---|---|
298 K | 308 K | 318 K | 328 K | |||
CQVP-MA | 26.65 | 108.10 | −5.83 | −6.91 | −8.00 | −9.10 |
CQVP-MA/Fe3O4 | 27.67 | 123.27 | −9.043 | −10.28 | −11.51 | −12.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzat, A.O.; Tawfeek, A.M.; Rajabathar, J.R.; Al-Lohedan, H.A. Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium. Molecules 2022, 27, 441. https://doi.org/10.3390/molecules27020441
Ezzat AO, Tawfeek AM, Rajabathar JR, Al-Lohedan HA. Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium. Molecules. 2022; 27(2):441. https://doi.org/10.3390/molecules27020441
Chicago/Turabian StyleEzzat, Abdelrahman O., Ahmed M. Tawfeek, Jothi Ramalingam Rajabathar, and Hamad A. Al-Lohedan. 2022. "Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium" Molecules 27, no. 2: 441. https://doi.org/10.3390/molecules27020441
APA StyleEzzat, A. O., Tawfeek, A. M., Rajabathar, J. R., & Al-Lohedan, H. A. (2022). Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium. Molecules, 27(2), 441. https://doi.org/10.3390/molecules27020441