A Double-Site Chemodosimeter for Selective Fluorescence Detection of a Nerve Agent Mimic
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Photoproperties of SWJT-4
Fluorescence Response of SWJT-4 to DCP
2.2. Competition Experiments
2.3. Response Mechanism
2.4. Computational Studies
2.5. Gas-Phase Detection of DCP
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of Probe SWJT-4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Walton, I.; Davis, M.; Munro, L.; Catalano, V.J.; Cragg, P.J.; Huggins, M.T.; Wallace, K.J. A Fluorescent Dipyrrinone Oxime for the Detection of Pesticides and Other Organophosphates. Org. Lett. 2012, 14, 2686–2689. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Muñoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M.; et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Stone, R. How to defeat a nerve agent. Science 2018, 359, 23. [Google Scholar] [CrossRef]
- Manco, G.; Porzio, E.; Suzumoto, Y. Enzymatic detoxification: A sustainable means of degrading toxic organophosphate pesticides and chemical warfare nerve agents. J. Chem. Technol. Biotechnol. 2018, 93, 2064–2082. [Google Scholar] [CrossRef]
- Chen, L.; Wu, D.; Yoon, J. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene. ACS Sens. 2018, 3, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Weis, J.G.; Swager, T.M. Thiophene-Fused Tropones as Chemical Warfare Agent-Responsive Building Blocks. ACS Macro Lett. 2015, 4, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Gharami, S.; Aich, K.; Das, S.; Patra, L.; Mondal, T.K. Facile detection of organophosphorus nerve agent mimic (DCP) through a new quinoline-based ratiometric switch. New J. Chem. 2019, 43, 8627–8633. [Google Scholar] [CrossRef]
- Goswami, S.; Manna, A.; Paul, S. Rapid ‘naked eye’ response of DCP, a nerve agent simulant: From molecules to low-cost devices for both liquid and vapour phase detection. RSC Adv. 2014, 4, 21984–21988. [Google Scholar] [CrossRef]
- Zhou, X.; Zeng, Y.; Liyan, C. A Fluorescent Sensor for Dual-Channel Discrimination between Phosgene and a Nerve-Gas Mimic. Angew. Chem. 2016, 128, 4807–4811. [Google Scholar] [CrossRef]
- Xuan, W.; Cao, Y.; Zhou, J.; Wang, W. A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP. Chem. Commun. 2013, 49, 10474–10476. [Google Scholar] [CrossRef]
- Lu, Z.; Fan, W.; Shi, X.; Black, C.A.; Fan, C.; Wang, F. A highly specific BODIPY-based fluorescent probe for the detection of nerve-agent simulants. Sens. Actuators B Chem. 2018, 255, 176–182. [Google Scholar] [CrossRef]
- Sarkar, H.S.; Ghosh, A.; Das, S.; Maiti, P.K.; Maitra, S.; Mandal, S.; Sahoo, P. Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor. Sci. Rep. 2018, 8, 3402. [Google Scholar] [CrossRef]
- Singh, J.; Thakur, S.; Singh, R.; Kaur, V. Schiff base—Zn2+ ion combo as ‘pick and degrade’ probe for selected organophosphorus chemical weapon mimics and flame retardant analog: Detoxification of fruits and vegetables in aqueous media. Food Chem. 2020, 327, 127080. [Google Scholar] [CrossRef]
- Jang, Y.J.; Mulay, S.V.; Kim, Y.; Jorayev, P.; Churchill, D.G. Nerve agent simulant diethyl chlorophosphate detection using a cyclization reaction approach with high stokes shift system. New J. Chem. 2017, 41, 1653–1658. [Google Scholar] [CrossRef]
- Jang, Y.J.; Murale, D.P.; Churchill, D.G. Novel reversible and selective nerve agent simulant detection in conjunction with superoxide “turn-on” probing. Analyst 2014, 139, 1614–1617. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.I.; Maity, S.B.; Bouffard, J.; Kim, Y. Molecular Rotors for the Detection of Chemical Warfare Agent Simulants. Anal. Chem. 2016, 88, 9259–9263. [Google Scholar] [CrossRef]
- Huo, B.; Du, M.; Shen, A.; Li, M.; Lai, Y.; Bai, X.; Gong, A.; Yang, Y. “Covalent-Assembly”-Based Fluorescent Probe for Detection of a Nerve-Agent Mimic (DCP) via Lossen Rearrangement. Anal. Chem. 2019, 91, 10979–10983. [Google Scholar] [CrossRef]
- Ali, S.S.; Gangopadhyay, A.; Pramanik, A.K.; Guria, U.N.; Samanta, S.K.; Mahapatra, A.K. Ratiometric sensing of nerve agent mimic DCP through in situ benzisoxazole formation. Dyes. Pigm. 2019, 170, 107585. [Google Scholar] [CrossRef]
- Cai, Y.C.; Li, C.; Song, Q.H. Selective and visual detection of a nerve agent mimic by phosphorylation and protonation of quinolin oximes. J. Mater. Chem. C 2017, 5, 7337–7343. [Google Scholar] [CrossRef]
- Guria, U.N.; Maiti, K.; Ali, S.S.; Gangopadhyay, A.; Samanta, S.K.; Roy, K.; Mandal, D.; Mahapatra, A.K. An Organic Nanofibrous Polymeric Composite for Ratiometric Detection of Diethyl Chlorophosphate (DCP) in Solution and Vapor. ChemistrySelect 2020, 5, 3770–3777. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, Y.J.; Mulay, S.V.; Nguyen, T.T.T.; Churchill, D.G. Fluorescent Sensing of a Nerve Agent Simulant with Dual Emission over Wide pH Range in Aqueous Solution. Chem. Eur. J. 2017, 23, 7785–7790. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, Y.J.; Lee, D.; Kim, B.S.; Churchill, D.G. Real nerve agent study assessing pyridyl reactivity: Selective fluorogenic and colorimetric detection of Soman and simulant. Sens. Actuators B 2017, 238, 145–149. [Google Scholar] [CrossRef]
- Cai, Y.C.; Li, C.; Song, Q.H. Fluorescent Chemosensors with Varying Degrees of Intramolecular Charge Transfer for Detection of a Nerve Agent Mimic in Solutions and in Vapor. ACS Sens. 2017, 2, 834–841. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Y.; Zeng, F.; Sun, L.; Wu, S. Handy ratiometric detection of gaseous nerve agents with AIE-fluorophore-based solid test strips. J. Mater. Chem. C 2016, 4, 10105–10110. [Google Scholar] [CrossRef]
- Wu, W.H.; Dong, J.J.; Wang, X.; Li, J.; Sui, S.H.; Chen, G.Y.; Liu, J.W.; Zhang, M. Fluorogenic and chromogenic probe for rapid detection of a nerve agent simulant DCP. Analyst 2012, 137, 3224–3226. [Google Scholar] [CrossRef]
- Barba-Bon, A.; Costero, A.M.; Gil, S.; Harriman, A.; Sancenón, F. Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chem. Eur. J. 2014, 20, 6339–6347. [Google Scholar] [CrossRef]
- Hu, X.X.; Su, Y.T.; Ma, Y.W.; Zhan, X.Q.; Zheng, H.; Jiang, Y.-B. A near infrared colorimetric and fluorometric probe for organophosphorus nerve agent mimics by intramolecular amidation. Chem. Commun. 2015, 51, 15118–15121. [Google Scholar] [CrossRef]
- So, H.S.; Angupillai, S.; Son, Y.A. Prompt liquid-phase visual detection and low-cost vapor-phase detection of DCP, a chemical warfare agent mimic. Sens. Actuators B 2016, 235, 447–456. [Google Scholar] [CrossRef]
- Mahapatra, A.K.; Maiti, K.; Manna, S.K.; Maji, R.; Mondal, S.; Das Mukhopadhyay, C.; Sahoo, P.; Mandal, D. A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP. Chem. Commun. 2015, 51, 9729–9732. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Das, S.; Aich, K. Fluorescent chemodosimeter based on spirobenzopyran for organophosphorus nerve agent mimics (DCP). RSC Adv. 2015, 5, 28996–29001. [Google Scholar] [CrossRef]
- Patra, L.; Ghosh, P.; Das, S.; Gharami, S.; Murmu, N.; Mondal, T.K. A selective fluorogenic chemosensor for visual detection of chemical warfare reagent mimic diethylchlorophosphate. J. Photochem. Photobiol. A Chem. 2020, 388, 112188. [Google Scholar] [CrossRef]
- Heo, G.; Manivannan, R.; Kim, H.; Son, Y.A. Liquid and gaseous state visual detection of chemical warfare agent mimic DCP by optical sensor. Dyes. Pigm. 2019, 171, 107712. [Google Scholar] [CrossRef]
- Ali, S.S.; Gangopadhyay, A.; Pramanik, A.K.; Samanta, S.K.; Guria, U.N.; Manna, S.; Mahapatra, A.K. Real time detection of the nerve agent simulant diethylchlorophosphate by nonfluorophoric small molecules generating a cyclization-induced fluorogenic response. Analyst 2018, 143, 4171–4179. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yu, J.; Wang, K.; Liu, H.; Yu, Y.; Liu, A.; Peng, X.; He, Q.; Cao, H.; Cheng, J. Simple and Efficient Chromophoric-Fluorogenic Probes for Diethylchlorophosphate Vapor. ACS Sens. 2018, 3, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Suhasini, R.; Karpagam, R.; Thirumoorthy, K.; Thiagarajan, V. “Turn-on” unsymmetrical azine based fluorophore for the selective detection of diethylchlorophosphate via photoinduced electron transfer to intramolecular charge transfer pathway. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 263, 120206. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, C.; Yang, B.; Zhao, Y.; Wang, L.; Yuan, B.; Li, H. Rhodamine phenol-based fluorescent probe for the visual detection of GB and its simulant DCP. New J. Chem. 2021, 45, 7564–7570. [Google Scholar] [CrossRef]
- Zheng, P.; Cui, Z.; Liu, H.; Cao, W.; Li, F.; Zhang, M. Ultrafast-response, highly-sensitive and recyclable colorimetric/fluorometric dual-channel chemical warfare agent probes. J. Hazard Mater. 2021, 415, 125619. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, S.; Ren, W.X.; Bartsch, R.A.; Sohn, H.; Kim, J.S. Imine-functionalized, turn-on fluorophore for DCP. Sens. Actuators B 2011, 153, 266–270. [Google Scholar] [CrossRef]
- Ali, S.S.; Gangopadhyay, A.; Maiti, K.; Mondal, S.; Pramanik, A.K.; Guria, U.N.; Uddin, M.R.; Mandal, S.; Mandal, D.; Mahapatra, A.K. A chromogenic and ratiometric fluorogenic probe for rapid detection of a nerve agent simulant DCP based on a hybrid hydroxynaphthalene–hemicyanine dye. Org. Biomol. Chem. 2017, 15, 5959–5967. [Google Scholar] [CrossRef]
- Khan, M.S.J.; Wang, Y.W.; Senge, M.O.; Peng, Y. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic. J. Hazard. Mater. 2018, 342, 10–19. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Y.; Feng, W.; Peng, Y. Development of BINOL-Si complexes with large stokes shifts and their application as chemodosimeters for nerve agent. Chin. Chem. Lett. 2020, 31, 2960–2964. [Google Scholar] [CrossRef]
- Xiong, X.; Song, F.; Sun, S.; Fan, J.; Peng, X. Red-Emissive Fluorescein Derivatives and Detection of Bovine Serum Albumin. Asian J. Org. Chem. 2013, 2, 145–149. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, X.T.; Zhang, S.T.; Chen, Q. Crystal structure of 1-(4-{[(E)-5-bromo-2-hydroxybenzylidene]-amino} phenyl) ethanone oxime, C15H13BrN2O2. Z. Kristallogr. NCS 2012, 227, 101–102. [Google Scholar] [CrossRef]
- Sjöback, R.; Nygren, J.; Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim Acta A Mol. Biomol. Spectrosc. 1995, 51, L7–L21. [Google Scholar] [CrossRef]
- Melhuish, W.H. Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute. J. Phys. Chem. 1961, 65, 229–235. [Google Scholar] [CrossRef]
- Sadik, O.A.; Land, W.H., Jr.; Wang, J. Targeting Chemical and Biological Warfare Agents at the Molecular Level. Electroanalysis 2003, 15, 1149–1159. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.-J. Novel fluorescent probe for the selective detection of organophosphorous nerve agents through a cascade reaction from oxime to nitrile via isoxazole. Tetrahedron 2014, 70, 2966–2970. [Google Scholar] [CrossRef]
- Radić, Z.; Dale, T.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitai, G.; Green, C.; Radić, B.; Duggan, B.M.; et al. Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem. J. 2013, 450, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, C.-X.; Lu, Y.; Wang, Y.-W.; Peng, Y. A Double-Site Chemodosimeter for Selective Fluorescence Detection of a Nerve Agent Mimic. Molecules 2022, 27, 489. https://doi.org/10.3390/molecules27020489
Guo X, Liu C-X, Lu Y, Wang Y-W, Peng Y. A Double-Site Chemodosimeter for Selective Fluorescence Detection of a Nerve Agent Mimic. Molecules. 2022; 27(2):489. https://doi.org/10.3390/molecules27020489
Chicago/Turabian StyleGuo, Xin, Chang-Xiang Liu, Yuan Lu, Ya-Wen Wang, and Yu Peng. 2022. "A Double-Site Chemodosimeter for Selective Fluorescence Detection of a Nerve Agent Mimic" Molecules 27, no. 2: 489. https://doi.org/10.3390/molecules27020489
APA StyleGuo, X., Liu, C. -X., Lu, Y., Wang, Y. -W., & Peng, Y. (2022). A Double-Site Chemodosimeter for Selective Fluorescence Detection of a Nerve Agent Mimic. Molecules, 27(2), 489. https://doi.org/10.3390/molecules27020489