Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Anhydrous Hybrid Cement (30% OPC + 70% FA) and Hydrated Paste Preparation
- Nature of the alkaline activator: sodium hydroxide (NaOH=N) or sodium hydroxide + hydrated sodium silicate, commonly called waterglass (NaOH + WG = N-WG). The NaOH (Scharlab,, Spain) pellets used were 98% pure; the Na2SiO3 (Merck, Germany), which contained 25.5% SiO2, 7.5% Na2O and 67% H2O, had a density of 1.365 g cm−3.
- Reaction time: 2 days or 28 days.
- Curing temperature: (a) curing at 80 °C for 20 h plus chamber curing at 21 ± 2 °C and 99% RH; or (b) humidity chamber curing only from the outset at 21 ± 2 °C and 99% RH.
2.3. Tests Conducted
2.3.1. Compressive Strength and Mean Pore Size
2.3.2. Paste Mineralogical and Microstructural Characterization
2.3.3. Radiological Characterization of the Hardened Intact Hybrid Cement Pastes and Solid Powder Samples
- (a)
- Anhydrous 30%OPC + 70%FA powder samples with a particle size of under 63 µm dried to a constant weight, stored for 21 days in the aforementioned sealed plastic container to ensure secular equilibrium and subsequently measured in the same container. The activity concentration for each gamma emitter in the natural radioactive series, corrected for their L/S ratio, was denominated ‘calculated activity’.
- (b)
- Hardened (30%OPC + 70%FA) hybrid cement pastes prepared with different alkaline activators and molded in 5 cm cubic specimens, cured under the two temperature regimes specified above for 2 days or 28 days.
- (c)
- Solid hybrid cement (30%OPC + 70%FA) paste powder, ground from the cubic specimens described in b) to a particle size of 63 µm and packed in cylindrical plastic containers for analysis.
- (d)
- The liquid solutions, likewise in cylindrical plastic containers, used to prepare the hardened hybrid cement pastes: (a) water; (b) waterglass and (c) 8 M NaOH.
3. Results and Discussion
3.1. Hybrid Cement Paste Compressive Strength and Mean Size Pore
3.2. Hybrid Cement Paste Mineralogical and Microstructural Characterisation
- In all cases, the spectra showed a substantial decline in the anhydrous fly ash signal, including the area that overlaps with the N-A-S-H gel signals.
- The reactions were faster in the pastes prepared with N-WG, as attested to by the scant differences in the spectra over time.
- In the N pastes, the FA signals declined with reaction time.
3.3. Hybrid Cement Paste Radioactivity
4. Conclusions
- The three variables studied affected hybrid cement reactions. Although the reaction products formed were the same, their microstructures were not. The products identified were C-S-H, C-A-S-H and (N,C)-A-S-H. Hydroxysodalite and chabazite-Na-like zeolites were also identified in the thermally cured specimens. The amount of product formed also depended on activation variables.
- The microstructures developed in the hybrid cement pastes differed significantly with the values chosen for each variable. NaOH-activated, thermally cured pastes exhibited a denser microstructure than the NaOH-WG-activated materials due to the formation of more reaction product, as attested to by the high mechanical strength values and smaller mean pore sizes in the former. In the pastes not thermally cured, however, the reactions were favored by the Si in the medium released by the waterglass activator, resulting in greater strength in the N-WG tan in the non-cured N pastes. Denser microstructures were observed at longer reaction times.
- Thermal curing raised both the silicate hydration rate in the cement and fly ash reactivity and its dissolution rate. That in turn generated more cement hydration product and geopolymerization.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P. A scientometric review of waste material utilization in concrete for sustainable construction. Case Stud. Constr. Mater. 2021, 15, e00683. [Google Scholar] [CrossRef]
- Aprianti S, E. A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production—A review part II. J. Clean. Prod. 2017, 142, 4178–4194. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Ling, T.-C. Potential use of brick waste as alternate concrete-making materials: A review. J. Clean. Prod. 2018, 195, 226–239. [Google Scholar] [CrossRef]
- Schneider, M. The cement industry on the way to a low-carbon future. Cem. Concr. Res. 2019, 124, 105792. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Puertas, F. Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 2015, 90, 397–408. [Google Scholar] [CrossRef]
- Miller, S.A.; Moore, F.C. Climate and health damages from global concrete production. Nat. Clim. Chang. 2020, 10, 439–443. [Google Scholar] [CrossRef]
- Angulo-Ramírez, D.E.; Mejía de Gutiérrez, R.; Puertas, F. Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Const. Build. Mater. 2017, 140, 119–128. [Google Scholar] [CrossRef]
- Xhixha, G.; Trinidad, J.A.; Gascó, C.; Mantovani, F. First intercomparison among laboratories involved in COST Action-TU1301 “NORM4Building”: Determination of natural radionuclides in ceramics. J. Environ. Radioact. 2017, 168, 4–9. [Google Scholar] [CrossRef]
- Directive, C. Council Directive 2013/51/EURATOM of 22 October 2013: Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Off. J. Eur. Union 2013, 7, 56. [Google Scholar]
- Nuccetelli, C.; Leonardi, F.; Trevisi, R. A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure. J. Environ. Radioact. 2015, 143, 70–75. [Google Scholar] [CrossRef]
- Suárez-Navarro, J.A.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Puertas, F. Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Radiat. Phys. Chem. 2020, 171, 108709. [Google Scholar] [CrossRef]
- Moreno de los Reyes, A.M.; Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C.; Sobrados, I.; Puertas, F. New Approach for the Determination of Radiological Parameters on Hardened Cement Pastes with Coal Fly Ash. Materials 2021, 14, 475. [Google Scholar] [CrossRef]
- Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüe, L.; Suárez-Navarro, J.A.; Navarro, N. Radiological characterization of anhydrous/hydrated cements and geopolymers. Const. Build. Mater. 2015, 101, 1105–1112. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Maltseva, O.; Palomo, A.; Fernández-Jiménez, A. Cimenturi hibride alcaline. Partea I: Fundamente*/hybrid alkaline cements. Part I: Fundamentals. Rom. J. Mater. 2012, 42, 330–335. [Google Scholar]
- Palomo, A.; Kavalerova, E.; Fernandez-Jiménez, A.; Krivenko, P.; Garcia-Lodeiro, I.; Maltseva, O. A review on alkaline activation: New analytical perspectives. Mat. Const. 2014, 64, 1–24. [Google Scholar] [CrossRef] [Green Version]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends. Cem. Concr. Res. 2013, 52, 112–122. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Fernandez-Jimenez, A.; Palomo, A. Hydration kinetics in hybrid binders: Early reaction stages. Cem. Concr. Compos. 2013, 39, 82–92. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Puertas, F. La activación alcalina de diferentes aluminosilicatos como una alternativa al Cemento Portland: Cementos activados alcalinamente o geopolímeros. Rev. Ing. Const. 2017, 32, 05–12. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Zhao, Y.; Bai, H.; Kang, S.; Zhang, T.; Song, S. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 2021, 267, 128900. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Const. Build. Mater. 2008, 22, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Alonso, S.; Palomo, A. Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio. Mater. Lett. 2001, 47, 55–62. [Google Scholar] [CrossRef]
- Higuera, I.; Varga, C.; Palomo, J.G.; Gil-Maroto, A.; Vázquez, T.; Puertas, F. Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study. Mater. Const. 2012, 62, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Puertas, F.; Fernández-Jiménez, A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 2003, 25, 287–292. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A.; Macphee, D.E. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 2010, 40, 27–32. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.; Macphee, D.E. Effect of Calcium Additions on N–A–S–H Cementitious Gels. J. Am. Ceram. Soc. 2010, 93, 1934–1940. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Torres-Carrasco, M.; Alonso, M.M.; Guarner, P.; Zamora, A.; Puertas, F. Hormigones de escorias activadas alcalinamente. Comportamiento mecánico y durable. Hormigón Y Acero. 2018, 69, 163–168. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, J.G.; Puertas, F. Alkali-activated slag mortars: Mechanical strength behaviour. Cem. Concr. Res. 1999, 29, 1313–1321. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos. B. Eng. 2014, 57, 166–172. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer. Const. Build. Mater. 2013, 47, 29–55. [Google Scholar] [CrossRef]
- Puertas, F.; Alonso, M.M.; Palacios, M. Construcción sostenible. El papel de los materiales. Mater. ES 2020, 4, 54–77. [Google Scholar]
- Chi, M. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Const. Build. Mater. 2012, 35, 240–245. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Trevisi, R.; Ignjatović, I.; Dragaš, J. Alkali-activated concrete with Serbian fly ash and its radiological impact. J. Environ. Radioact. 2017, 168, 30–37. [Google Scholar] [CrossRef]
- Alonso, M.M.; Pasko, A.; Gascó, C.; Suárez-Navarro, J.A.; Kovalchuk, O.; Krivenko, P.; Puertas, F. Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Const. Build. Mater. 2018, 159, 745–754. [Google Scholar] [CrossRef]
- Puertas, F.; Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C. NORM waste, cements, and concretes. A review. Mater. Const. 2021, 71, e259. [Google Scholar] [CrossRef]
- UNE-EN 196-2; Method of Testing Cement-Part 2: Chemical Analysis of Cement. AENOR: Madrid, Spain, 2014. (In Spanish)
- Arjuman, P.; Silsbee, M.R.; Roy, D.M. Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In Proceedings of the 10th International Congress on the Chemistry of Cement, Gotherberg, Sweden, 2–6 June 1997; Volume 3v 020, p. 4. [Google Scholar]
- UNE-EN 80-225; Methods of Testing Cement. Chemical Analysis. Determinaion of Reactive SiO2 Content in Cements, Puzzolanas and Fly Ash. AENOR: Madrid, Spain, 2012. (In Spanish)
- UNE-EN 196-6:2010; Method of Testing Cement-Part 6: Determination of Fineness. AENOR: Madridm Spain, 2010. (In Spanish)
- UNE-EN 197-1; Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. AENOR: Madrid, Spain, 2018. (In Spanish)
- UNE-EN 196-3:2017; Methods of Testing Cement-Part 3: Determination of Setting Times and Soundness. AENOR: Madrid, Spain, 2017. (In Spanish)
- Palacios, M.; Gismera, S.; Alonso, M.M.; d’Espinose de Lacaillerie, J.B.; Lothenbach, A.F.; Brumaud, C.; Puertas, F. Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cem. Concr. Res. 2021, 140, 106302. [Google Scholar] [CrossRef]
- UNE-EN ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. AENOR: Madrid, Spain, 2017. (In Spanish)
- Suárez-Navarro, J.A.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Lanzon, M.; Puertas, F. Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl. Radiat Isot. 2018, 142, 1–7. [Google Scholar] [CrossRef]
- Suarez-Navarro, J.A.; Pujol, L.l.; Suarez-Navarro, M.J. Sample pretreatment in the determination of specific alpha emitters in drinking water using [Ba + Fe]-coprecipitation method. Appl. Radiat. Isot. 2015, 96, 36–44. [Google Scholar] [CrossRef]
- Bambynek, W. Uncertainty Assignment in Radionuclide Metrology. In Proceedings of the of the First International Summer School La Rabida, Huelva, Spain, 17–29 June 1991; Garcia-Leon, M., Madurga, G., Eds.; World Scientific: Hackensack, NJ, USA, 1987. [Google Scholar]
- Pakou, A.A.; Assimakopoulos, P.A.; Prapidis, M. Natural radioactivity and radon emanation factors in building material used in Epirus (north-western Greece). Sci. Total Enviro. 1994, 144, 255–260. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Garcia-Lodeiro, I.; Maltseva, O.; Palomo, A. Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals. J. Am. Ceram. Soc. 2019, 102, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Palomo, A.; Monteiro, P.; Martauz, P.; Bilek, V.; Fernandez-Jimenez, A. Hybrid binders: A journey from the past to a sustainable future (opus caementicium futurum). Cem. Concr. Res. 2019, 124, 105829. [Google Scholar] [CrossRef]
- İlkentapar, S.; Atiş, C.D.; Karahan, O.; Görür Avşaroğlu, E.B. Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar. Const. Build. Mater. 2017, 151, 363–369. [Google Scholar] [CrossRef]
- Singh, G.V.P.B.; Subramaniam, K.V.L. Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash. Cem. Concr Compos. 2019, 95, 10–18. [Google Scholar] [CrossRef]
- Panias, D.; Giannopoulou, I.P.; Perraki, T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 246–254. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Zhang, G.; Sietins, J.M.; Granados-Focil, S.; Pepi, M.S.; Xu, Y.; Tao, M. Reaction kinetics of red mud-fly ash based geopolymers: Effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cem. Concr. Compos. 2018, 93, 175–185. [Google Scholar] [CrossRef]
- Sanchindapong, S.; Narattha, C.; Piyaworapaiboon, M.; Sinthupinyo, S.; Chindaprasirt, P.; Chaipanich, A. Microstructure and phase characterizations of fly ash cements by alkali activation. J. Therm. Anal. Calorim. 2020, 142, 167–174. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; Querol, X.; Plana, F.; Alastuey, A.; Moreno, N.; Izquierdo, M.; Font, O.; Moreno, T.; Diez, S.; Vázquez, E.; et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 2008, 154, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Martín, A.; Pastor, J.Y.; Palomo, A.; Fernández Jiménez, A. Microstructural characterisation of hybrid cement after exposure to high temperatures. Const. Build. Mater. 2020, 262, 120843. [Google Scholar] [CrossRef]
- Asensio, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. Fired clay-based construction and demolition waste as pozzolanic addition in cements. Design of new eco-efficient cements. J. Clean. Prod. 2020, 265, 121610. [Google Scholar] [CrossRef]
- Guo, G.; Wei, M.; Wu, H.; Gu, Y. Strength and micro-mechanism of MK-blended alkaline cement treated high plasticity clay. Const. Build. Mater. 2007, 236, 117567. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study. Microporous Mesoporous Mater. 2007, 106, 180–191. [Google Scholar] [CrossRef]
- Bhagath Singh, G.V.P.; Subramaniam, K.V.L. Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash. Cem. Concr. Compos. 2017, 81, 122–132. [Google Scholar] [CrossRef]
- Perez-Cortes, P.; Escalante-Garcia, J.I. Design and optimization of alkaline binders of limestone-metakaolin—A comparison of strength, microstructure and sustainability with portland cement and geopolymers. J. Clean. Prod. 2020, 273, 123118. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; de la Torre, A.G.; Aranda, M.A.G.; Palomo, A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 2007, 37, 671–679. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Walkley, B.; San Nicolas, R.; Gehman, J.D.; Brice, D.G.; Kilcullen, A.R.; Duxson, P.; van Deventer, J.S.J. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 2013, 53, 127–144. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Aguirre-Guerrero, A.M.; Mejía de Gutiérrez, R. Carbonation-induced corrosion of alkali-activated binary concrete based on natural volcanic pozzolan. Const. Build. Mater. 2020, 232, 117189. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Zhang, Z.; Ou, Z. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Const. Build. Mater. 2017, 152, 598–613. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Vázquez, T. Carbonation process of alkali-activated slag mortars. J. Mater. Sci. 2006, 41, 3071–3082. [Google Scholar] [CrossRef]
- Dueramae, S.; Tangchirapat, W.; Sukontasukkul, P.; Chindaprasirt, P.; Jaturapitakkul, C. Investigation of compressive strength and microstructures of activated cement free binder from fly ash—Calcium carbide residue mixture. J. Mater. Res. Technol. 2019, 8, 4757–4765. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A. Cementos híbridos de bajo impacto ambiental: Reducción del factor clinker. Rev. ALCONPAT. 2015, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Ye, G. Development of porosity of cement paste blended with supplementary cementitious materials after carbonation. Const. Build. Mater. 2017, 145, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Nedeljković, M.; Ghiassi, B.; Melzer, S.; Kooij, C.; van der Laan, S.; Ye, G. CO2 binding capacity of alkali-activated fly ash and slag pastes. Ceram. Int. 2018, 44, 19646–19660. [Google Scholar] [CrossRef]
- Heikal, M.; Zaki, M.E.A.; Ibrahim, S.M. Preparation, physico-mechanical characteristics and durability of eco-alkali-activated binder from blast-furnace slag, cement kiln-by-pass dust and microsilica ternary system. Const. Build. Mater. 2020, 260, 119947. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Gordillo, M.; Provis, J.L. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 2011, 46, 5477–5486. [Google Scholar] [CrossRef]
- Stakebake, J.L. Characterization of natural chabazite and 5A synthetic zeolites: Part I. Thermal and outgassing properties. J. Colloid Interface Sci. 1984, 99, 41–49. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Xiao, R.; Polaczyk, P.; Zhang, M.; Hu, W.; Bai, Y.; Huang, B. A comparative study on geopolymers synthesized by different classes of fly ash after exposure to elevated temperatures. J. Clean. Prod. 2020, 270, 122500. [Google Scholar] [CrossRef]
- Long, W.-J.; Gu, Y.; Xing, F.; Khayat, K.H. Microstructure development and mechanism of hardened cement paste incorporating graphene oxide during carbonation. Cem. Concr. Compos. 2018, 94, 72–84. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Castel, A.; Sanjayan, J.; Pathmanathan, R. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Const. Build. Mater. 2016, 125, 661–669. [Google Scholar] [CrossRef]
- Heikal, M.; Nassar, M.Y.; El-Sayed, G.; Ibrahim, S.M. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Const. Build. Mater. 2014, 69, 60–72. [Google Scholar] [CrossRef]
- Wilińska, I.; Pacewska, B. Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash. J. Therm. Anal. Calorim. 2018, 133, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Tashima, M.M.; Akasaki, J.L.; Castaldelli, V.N.; Soriano, L.; Monzó, J.; Payá, J.; Borrachero, M.V. New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater. Lett. 2012, 80, 50–52. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Martinez-Ramirez, S.; Palomo, A. Microstructure studies on Portland cement pastes obtained in highly alkaline environments. Cem. Concr. Res. 2001, 31, 1581–1585. [Google Scholar] [CrossRef]
- Perez-Cortes, P.; Escalante-Garcia, J.I. Gel composition and molecular structure of alkali-activated metakaolin-limestone cements. Cem. Concr. Res. 2020, 137, 106211. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Di Maria, A.; Kinnunen, P.; Illikainen, M. Alternative alkali-activator from steel-making waste for one-part alkali-activated slag. J. Clean. Prod. 2020, 274, 123020. [Google Scholar] [CrossRef]
- Myers, R.J.; Bernal, S.A.; San Nicolas, R.; Provis, J.L. Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir. 2013, 29, 5294–5306. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Hamdan, S.; van Deventer, J.S.J. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 2014, 45, 125–135. [Google Scholar] [CrossRef]
- Walkley, B.; San Nicolas, R.; Sani, M.A.; Rees, G.J.; Hanna, J.V.; van Deventer, J.S.J. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 2016, 89, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, L.; Ma, X.; Wang, H. Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Const. Build. Mater. 2016, 113, 237–245. [Google Scholar] [CrossRef]
- Elkhadiri, I.; Palacios, M.; Puertas, F. Effect of curing temperature on cement hydration. Ceram. Silik. 2009, 53, 65–75. [Google Scholar]
- Cong, X.; James Kirkpatrick, R. 17O and 29Si MAS NMR study of β–C2S hydration and the structure of calcium-silicate hydrates. Cem. Concr. Res. 1993, 23, 1065–1077. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2004, 34, 857–868. [Google Scholar] [CrossRef]
- Gomes, S.; François, M. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR. Cem. Concr. Res. 2000, 30, 175–181. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Zhou, Y.; Tyrer, M.; Yu, Y. Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Manag. 2014, 34, 2494–2504. [Google Scholar] [CrossRef]
- L’Hôpital, E.; Lothenbach, B.; Le Saout, G.; Kulik, D.; Scrivener, K. Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 2015, 75, 91–103. [Google Scholar] [CrossRef]
- Myers, R.J.; Bernal, S.A.; Gehman, J.D.; van Deventer, J.S.J.; Provis, J.L. The Role of Al in Cross-Linking of Alkali-Activated Slag Cements. J. Am. Ceram. Soc. 2015, 98, 996–1004. [Google Scholar] [CrossRef]
- Pardal, X.; Brunet, F.; Charpentier, T.; Pochard, I.; Nonat, A. 27Al and 29Si Solid-State NMR Characterization of Calcium-Aluminosilicate-Hydrate. Inorg. Chem. 2012, 51, 1827–1836. [Google Scholar] [CrossRef]
- Qu, B.; Martin, A.; Pastor, J.Y.; Palomo, A.; Fernández-Jiménez, A. Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature. Cem. Concr. Compos. 2016, 73, 281–288. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Incorporation of Aluminum in the Calcium Silicate Hydrate (C−S−H) of Hydrated Portland Cements: A High-Field 27Al and 29Si MAS NMR Investigation. Inorg. Chem. 2003, 42, 2280–2287. [Google Scholar] [CrossRef]
- Fang, G.; Zhang, M. Multiscale micromechanical analysis of alkali-activated fly ash-slag paste. Cem. Concr. Res. 2020, 135, 106141. [Google Scholar] [CrossRef]
- Pérez Cortes, P. Sustainable alkali activated cements of limestone and metakaolin-Design, Optimization, Characterization and Durability. Doctoral Program in Metallurgic and Ceramic Engineering; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional: Ciudad de México, Mexico, 2021. [Google Scholar]
- Palomo, A.; Alonso, S.; Fernandez-Jiménez, A.; Sobrados, I.; Sanz, J. Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products. J. Am. Ceram. Soc. 2004, 87, 1141–1145. [Google Scholar] [CrossRef]
- Skibsted, J.; Henderson, E.; Jakobsen, H.J. Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy. Inorg. Chem. 1993, 32, 1013–1027. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Engelhardt, G.; Michel, D. High-Resolution Solid-State NMR of Silicates and Zeolites; From review in Analytical Chemistry; U.S. Department of Energy: Washington, DC, USA, 1987; Volume 60, p. 18.
- Garcia-Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A. Cements with a low clinker content: Versatile use of raw materials. J. Sustain. Cem.-Based Mater. 2015, 4, 140–151. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. J. Am. Ceram. Soc. 2003, 86, 1389–1394. [Google Scholar] [CrossRef]
- Puertas, F.; Suárez-Navarro, J.A.; Gil-Maroto, A.; Moreno de los Reyes, A.M.; Gascó, C.; Pachón, A.; Alonso, M.M. Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand. Materials 2021, 14, 5656. [Google Scholar] [CrossRef]
- Arafa, W. Permeability of radon-222 through some materials. Radiat. Meas. 2002, 35, 207–211. [Google Scholar] [CrossRef]
- Mauring, A.; Gäfvert, T. Radon tightness of different sample sealing methods for gamma spectrometric measurements of 226Ra. Appl. Radiat. Isot. 2013, 81, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ungar, K.; Chen, J.; St-Amant, N.; Tracy, B.L. An accurate method for the determination of 226Ra activity concentrations in soil. J. Radioanal. Nucl. Chem. 2009, 280, 561–567. [Google Scholar] [CrossRef]
- Sakoda, A.; Ishimori, Y.; Yamaoka, K. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl. Radiat. Isot. 2011, 69, 1422–1435. [Google Scholar] [CrossRef]
- Sakoda, A.; Ishimori, Y.; Hanamoto, K.; Kataoka, T.; Kawabe, A.; Yamaoka, K. Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat. Meas. 2010, 45, 204–210. [Google Scholar] [CrossRef]
- Alonso, M.M.; Suárez-Navarro, J.A.; Pérez-Sanz, R.; Gascó, C.; Moreno-Reyes, A.M.; Lanzón, M.; Blanco-Varela, M.T.; Puertas, F. Data on natural radionuclide’s activity concentration of cement-based materials. Data Brief. 2020, 33, 106488. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Quintana, B.; Argiz, C. Coal bottom ash natural radioactivity in building materials. J. Radioanal. Nucl. Chem. 2019, 319, 91–99. [Google Scholar] [CrossRef]
Materials | CaO | SiO2 | Al2O3 | Fe2O3 | K2O | MgO | Na2O | P2O5 | SO3 | TiO2 | Otros | LoI | I.R | SiO2S (1) | Al2O3S (1) | SiO2R (2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OPC | 64.47 | 20.29 | 5.67 | 2.35 | 0.97 | 0.84 | 0.11 | 0.14 | 2.91 | 0.24 | 0.17 | 2.97 | 1.07 | - | - | - |
FA | 4.78 | 42.44 | 26.95 | 18.40 | 1.53 | 0.80 | 0.50 | 0.20 | 1.44 | 1.07 | 0.03 | 1.63 | 7.78 | 29.14 | 13.02 | 39.83 |
OPC | ||||||||
---|---|---|---|---|---|---|---|---|
Component | Alite | Belite | Tricalcium aluminate | Ferrite | Gypsum | Basanite | Calcite | |
(wt%) | 64.2 | 13.2 | 9.0 | 5.8 | 1.8 | 1.6 | 4.4 | |
FA | ||||||||
Component | Amorphous phase | Quartz | Mullite | Hematite | Magnesium ferrite | Magnetite | Maghemite | Calcite |
(wt%) | 69.4 | 6.4 | 16.5 | 1.9 | 3.2 | 1.3 | 0.7 | 0.5 |
Material | Dv10 (µm) | Dv50 (µm) | Dv90 (µm) | Blaine (m2 kg−1) |
---|---|---|---|---|
OPC | 2.3 | 9.3 | 27.0 | 404.7 |
FA | 1.9 | 16.1 | 51.5 | 451.9 |
Sample | Activator | * L/S | Curing Conditions | Reaction Time (days) |
---|---|---|---|---|
HN T80-2 | NaOH 8M | 0.41 | 80 ± 1 °C 20 h, 21 ± 2 °C + 99% RH | 2 |
HN T80-28 | NaOH 8M | 0.41 | 80 ± 1 °C 20 h, 21 ± 2 °C + 99% RH | 28 |
HN T25-2 | NaOH 8M | 0.41 | 21 ± 2 °C + 99% RH | 2 |
HN T25-28 | NaOH 8M | 0.41 | 21 ± 2 °C + 99% RH | 28 |
H-WG T80-2 | 85%NaOH + 15%Na2SiO3 | 0.36 | 80 ± 1 °C 20 h, 21 ± 2 °C + 99% RH | 2 |
H-WG T80-28 | 85%NaOH + 15%Na2SiO3 | 0.36 | 80 ± 1 °C 20 h, 21 ± 2 °C + 99% RH | 28 |
H-WG T25-2 | 85%NaOH + 15%Na2SiO3 | 0.36 | 21 ± 2 °C + 99% RH | 2 |
H-WG T25-28 | 85%NaOH + 15%Na2SiO3 | 0.36 | 21 ± 2 °C + 99% RH | 28 |
Samples | Compressive Strength (MPa) | Mean Pore Size (µm) |
---|---|---|
HN T80-2 | 50.0 ± 0.7 | 0.012 |
HN T80-28 | 48.8 ± 0.8 | 0.013 |
HN T25-2 | 3.2 ± 0.1 | 0.081 |
HN T25-28 | 45.6 ± 0.8 | 0.013 |
H-WG T80-2 | 36.3 ± 0.4 | 0.017 |
H-WG T80-28 | 44.4 ± 1.6 | 0.015 |
H-WG T25-2 | 15.7 ± 0.4 | 0.050 |
H-WG T25-28 | 32.0 ± 0.4 | 0.020 |
Samples | 80 °C–350 °C | 350 °C–500 °C | 500 °C–1000 °C |
---|---|---|---|
HN T80-2 | 5.1 | - | 3.8 |
HN T80-28 | 5.1 | - | 4.1 |
HN T25-2 | 3.1 | 0.8 | 3.8 |
HN T25-28 | 4.9 | 0.9 | 3.3 |
H-WG T80-2 | 3.9 | - | 3.5 |
H-WG T80-28 | 4.1 | - | 3.6 |
H-WG T25-2 | 3.3 | 0.7 | 3.1 |
H-WG T25-28 | 4.4 | 1.0 | 2.7 |
Sample | Q0 | Q1 | Q2(1Al) | Q2 | Q3(1Al) | Q4(4Al) | Q4(3Al) | Q4(2Al) | Q4(1Al) | Q4(0Al) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HN T80 | −70.75ppm I = 10.42% | − | − | −74.38ppm I = 12.25% | −78.87 ppm I = 1.86% | −81.27 ppm I = 4.44% | −83.97 ppm I = 6.37% | −87.95 ppm I = 12.03% | −90.69 ppm I = 2.10% | −93.20 ppm I = 11.10% | −97.86 ppm I = 7.68% | −102.06 ppm I = 6.77% | −106.74 ppm I = 12.28% | −116,83 ppm I = 12.71% |
HN T25 | −70.66 ppm I = 5.68% | −71.60 ppm I = 2.55% | −73.49 ppm I = 15.05% | −74.90 ppm I = 0.10% | −79.02 ppm I = 5.53% | −81.37 ppm I = 5.69% | −84.38 ppm I = 11.01% | −87.61 ppm I = 12.19% | −90.82 ppm I = 7.12% | −94,60 ppm I = 5.86% | −98,15 ppm I = 3.78% | −101.63 ppm I = 3.64% | −105,39 ppm I = 6.10% | −113,01 ppm I = 15.69% |
H−WG T80 | − | −71.70 ppm I = 20.65% | − | −74.20 ppm I = 11.64% | −78.70 ppm I = 1.54% | −81.87 ppm I = 7.02% | −85.41 ppm I = 13.46% | −88.40 ppm I = 6.16% | −90.20 ppm I = 4.62% | −93.27 ppm I = 8.32% | −98.09 ppm I = 6.77% | −102.10 ppm I = 3.76% | −105.77 ppm I = 4.72% | −113.01 ppm I = 11.33% |
H−WG T25 | − | −71.70 ppm I = 15.95% | − | −74.20 ppm I = 10.44% | −77.76 ppm I = 3.31% | −81.44 ppm I = 7.56% | −84.36 ppm I = 11.50% | −87.15 ppm I = 13.89% | −91.16 ppm I = 7.91% | −94.90 ppm I = 5.36% | −98.52 ppm I = 3.97% | −102.84 ppm I = 3.75% | −106.84 ppm I = 6.85% | −113.01 ppm I = 9.51% |
Sample | Q0 | Q1 | Q2(1Al) | Q2 | Q3(1Al) | Q4(4Al) | Q4(3Al) | Q4(2Al) | Q4(1Al) | Q4(0Al) | |
---|---|---|---|---|---|---|---|---|---|---|---|
HN T80 | −71.05 ppm I = 22.94% | −74.32 ppm I = 8.19% | −78.54 ppm I = 2.27% | −80.92 ppm I = 9.30% | −84.61 ppm I = 18.04% | −87.98 ppm I = 13.36% | −92.34 ppm I = 9.73% | −95.15 ppm I = 3.74% | −98.66 ppm I = 4.44% | −102.50 ppm I = 2.87% | −109.00 ppm I = 5.13% |
HN T25 | −71.68 ppm I = 19.44% | −74.80 ppm I = 9.13% | −79,09 ppm I = 8,80% | −82.31 ppm I = 15.44% | −85.42 ppm I = 15.49% | −88.62 ppm I = 10.53% | −91,77 ppm I = 4.40% | −94.81 ppm I = 2.86% | −97.20 ppm I = 2.88% | −101.50 ppm I = 2.46% | −107.31 ppm I = 8.59% |
H−WG T80 | −71.21 ppm I = 17.21% | −74.02 ppm I = 11.86% | −79.10 ppm I = 4.43% | −82.26 ppm I = 12.86% | −85.20 ppm I = 14.78% | −87.66 ppm I = 7.49% | −89.71 ppm I = 8.06% | −93.31 ppm I = 9.23% | −97.64 ppm I = 6.91% | −102.50 ppm I = 3.60% | −109.00 ppm I = 3.58% |
H−WG T25 | −71.36 ppm I = 18.79% | −74.02 ppm I = 8.65% | −78.32 ppm I = 5.99% | −81.35 ppm I = 10.60% | −84.45 ppm I = 15.14% | −87.20 ppm I = 8.62% | −90.75 ppm I = 6.42% | −94.83 ppm I = 4.00% | −98.59 ppm I = 2.57% | −101.49 ppm I = 3.60% | −109.00 ppm I = 15.62% |
Samples | Curing Time (days) | Type | Uranium Series | Thorium Series | Actinium Series | 40K | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
234Th | 226Ra | 214Pb | 214Bi | 210Pb | 228Ac | 212Pb | 208Tl | 235U | ||||
HN T80 | 2 | Cubic specimens | 93.1 ± 5.3 | 93 ± 10 | 83.0 ± 4.7 | 78.3 ± 5.2 | 64.2 ± 7.5 | 35.7 ± 2.7 | 37.8 ± 2.3 | 13.7 ± 1.0 | 4.89 ± 0.66 | 186.9 ± 4.3 |
Ground samples | 100.0 ± 6.5 | 96 ± 16 | 40.7 ± 3.2 | 37.6 ± 2.7 | 61.8 ± 4.6 | 37.1 ± 1.8 | 38.1 ± 1.8 | 14.0 ± 1.0 | 3.3 ± 1.4 | 208 ± 20 | ||
28 | Cubic specimens | 97.8 ± 5.3 | 98.8 ± 6.3 | 91.7 ± 5.3 | 85.9 ± 4.8 | 63.4 ± 4.9 | 38.54 ± 0.79 | 40.9 ± 1.7 | 14.93 ± 0.50 | 5.33 ± 0.42 | 178.1 ± 4.3 | |
Ground samples | 103.5 ± 7.4 | 93.0 ± 5.9 | 42.5 ± 4.4 | 38.3 ± 4.2 | 63.7 ± 4.8 | 38.6 ± 1.9 | 39.0 ± 2.1 | 14.99 ± 0.95 | 4.58 ± 0.45 | 192 ± 10 | ||
HN T25 | 2 | Cubic specimens | 103.2 ± 5.5 | 99.1 ± 6.2 | 101.6 ± 3.9 | 96.2 ± 2.2 | 63.0 ± 4.8 | 39.72 ± 0.80 | 42.0 ± 1.7 | 16.09 ± 0.51 | 3.49 ± 0.46 | 212 ± 14 |
Ground samples | 99.4 ± 8.5 | 88.5 ± 5.8 | 50.4 ± 6.9 | 45.7 ± 5.8 | 61.7 ± 5.4 | 37.2 ± 2.1 | 38.1 ± 1.8 | 14.39 ± 0.64 | 2.79 ± 0.84 | 193 ± 12 | ||
28 | Cubic specimens | 97.6 ± 5.5 | 96 ± 14 | 96.3 ± 7.5 | 90.6 ± 8.4 | 62.3 ± 4.9 | 37.3 ± 2.7 | 39.5 ± 2.2 | 14.96 ± 0.78 | 6.34 ± 0.63 | 156.7 ± 9.5 | |
Ground samples | 104.1 ± 5.7 | 91.7 ± 6.2 | 50.5 ± 1.9 | 47.3 ± 2.5 | 64.1 ± 4.8 | 38.18 ± 0.82 | 39.8 ± 1.6 | 15.03 ± 0.50 | 5.37 ± 0.82 | 188 ± 15 | ||
H-WG T25 | 2 | Cubic specimens | 95.8 ± 6.3 | 85.3 ± 7.7 | 94.3 ± 6.7 | 88.7 ± 6.5 | 64.2 ± 4.9 | 36.9 ± 2.1 | 38.3 ± 2.2 | 14.90 ± 0.88 | 5.01 ± 0.27 | 187.9 ± 4.9 |
Ground samples | 99.0 ± 7.4 | 83.8 ± 6.8 | 55.0 ± 4.9 | 51.0 ± 4.9 | 59.0 ± 5.0 | 36.2 ± 2.0 | 38.6 ± 2.3 | 14.78 ± 0.75 | 4.76 ± 0.46 | 201.7 ± 8.8 | ||
28 | Cubic specimens | 105.1 ± 6.0 | 97 ± 11 | 104.9 ± 4.0 | 99.6 ± 1.6 | 64.7 ± 5.0 | 39.13 ± 0.85 | 41.4 ± 1.7 | 16.20 ± 0.55 | 3.93 ± 0.68 | 204 ± 15 | |
Ground samples | 96.1 ± 7.0 | 82.2 ± 5.9 | 56.9 ± 3.7 | 51.5 ± 3.5 | 62.4 ± 4.7 | 36.1 ± 1.9 | 38.0 ± 2.2 | 14.49 ± 0.76 | 5.59 ± 0.28 | 180 ± 12 | ||
HN T25 | 2 | Cubic specimens | 98.5 ± 5.5 | 99.9 ± 6.2 | 96.5 ± 3.7 | 91.4 ± 1.8 | 61.6 ± 4.7 | 38.08 ± 0.76 | 40.6 ± 1.7 | 14.59 ± 0.48 | 5.55 ± 0.35 | 185.9 ± 4.4 |
Ground samples | 98.3 ± 7.2 | 89.9 ± 8.6 | 64.9 ± 5.4 | 60.9 ± 5.7 | 64.1 ± 4.8 | 36.8 ± 2.3 | 39.1 ± 2.2 | 15.11 ± 0.78 | 5.3 ± 1.9 | 191 ± 16 | ||
28 | Cubic specimens | 96.8 ± 5.0 | 85.7 ± 8.9 | 91.4 ± 5.3 | 85.6 ± 5.5 | 63.4 ± 4.9 | 36.0 ± 1.9 | 37.7 ± 1.9 | 13.86 ± 0.77 | 5.06 ± 0.43 | 182.7 ± 6.7 | |
Ground samples | 98.1 ± 5.8 | 91.6 ± 6.9 | 57.0 ± 4.2 | 53.1 ± 4.6 | 58.4 ± 4.9 | 37.4 ± 2.1 | 39.0 ± 2.4 | 15.6 ± 1.1 | 4.20 ± 0.43 | 188 ± 24 | ||
(*) MAIC | − | Powder | 104.4 ± 9.3 | 84.9 ± 7.8 | 100.6 ± 6.1 | 93.3 ± 6.2 | 60.8 ± 6.0 | 37.2 ± 1.9 | 38.9 ± 2.2 | 15.41 ± 0.69 | 4.50 ± 0.66 | 196 ± 19 |
Samples | 226Ra (Rq) (Bq kg−1) | Initial Gamma Activity Concentration (Bq kg−1) | Final Gamma (7 Month) Activity Concentration (Bq kg−1) | ε (%) | ||||
---|---|---|---|---|---|---|---|---|
226Ra | 214Pb | 214Bi | 226Ra | 214Pb | 214Bi | |||
HN T80-28 | 93.0 ± 7.1 | 90 ± 11 | 39.2 ± 8.0 | 36.6 ± 7.4 | 104 ± 10 | 48.0 ± 3.0 | 44.3 ± 4.0 | 52.0 ± 7.1 |
HN T25-2 | 94 ± 7 | 86.3 ± 5.5 | 56.2 ± 5.3 | 51.0 ± 3.0 | 82.3 ± 10.0 | 45.2 ± 10.0 | 43.6 ± 10.0 | 57.1 ± 12.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno de los Reyes, A.M.; Suárez-Navarro, J.A.; Alonso, M.d.M.; Gascó, C.; Sobrados, I.; Puertas, F. Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior. Molecules 2022, 27, 498. https://doi.org/10.3390/molecules27020498
Moreno de los Reyes AM, Suárez-Navarro JA, Alonso MdM, Gascó C, Sobrados I, Puertas F. Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior. Molecules. 2022; 27(2):498. https://doi.org/10.3390/molecules27020498
Chicago/Turabian StyleMoreno de los Reyes, Ana María, José Antonio Suárez-Navarro, María del Mar Alonso, Catalina Gascó, Isabel Sobrados, and Francisca Puertas. 2022. "Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior" Molecules 27, no. 2: 498. https://doi.org/10.3390/molecules27020498
APA StyleMoreno de los Reyes, A. M., Suárez-Navarro, J. A., Alonso, M. d. M., Gascó, C., Sobrados, I., & Puertas, F. (2022). Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior. Molecules, 27(2), 498. https://doi.org/10.3390/molecules27020498