Phytochemistry and Biological Activities of Amburana cearensis (Allemão) ACSm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Exclusion and Inclusion Criteria
3. Results and Discussion
3.1. Botanical Aspects
3.2. Uses in Popular Medicine
3.3. Phytochemistry
3.3.1. Stem Bark
3.3.2. Seeds
3.3.3. Leaves
3.3.4. Resin
3.3.5. Cultivated Young Plants
Part Used | Solvents | Analytical Technique | Compounds | Citations |
---|---|---|---|---|
Stem bark | Petrol, CH2Cl2, and ethyl acetate | VLC | Coumarin and amburoside A and B | [19] |
Hexane, chloroform, ethyl acetate, acetone, and methanol | GC/EIMS | Dihydrocumarin; scopoletin; trans-methyl-3,4-dimethoxy cinnamate; methyl-3-methoxy-4-hydroxy benzoate; cathecol; guaiacol; chrysophanol; lupeol; amyrins; γ-sitosterol; methyl palmitate | [32] | |
Ethanol | HPLC | Coumarin; vanillic acid and protocatechuic acid; afrormosin; isokaempferide; kaempferol; quercetin; 4′-methoxy-fisetin; amburoside A; β-sitosterol and stigmasterol | [33] | |
Hexane | HPLC | Amburosides (A and C-H); 6-coumaryl protocatechuate; 6-hydroxycoumarin, isokaempferide, formononetin, vanillic acid, and (E)-o-coumaric acid | [34] | |
Chloroform | GC/MS | 4-methoxy-3-methylphenol; tricyclene; α-pinene; β-pinene and 4-hydroxybenzoic acid | [36] | |
Ethanol | HPLC | Protocatechuic acid; vanillic acid; coumarin and amburoside A | [35] | |
Seeds | Hexane, dichloromethane, ethyl acetate, and ethanol | GC/MS | Coumarin, gallic acid, and l-ascorbic acid | [37] |
Ethanol, hexane, dichloromethane and ethyl acetate | HPLC | Coumarin; 3-methyl-coumarin; methyl hexadecanoate; methyl 9-cis-11-trans-octadecadienoate; methyl 13-trans-methyl-octadecanoate; methyl hexadecanoate; ethyl hexadecanoate; octadecanoate acetate; 9,12-cis-9-ethyl octadecanoate; ethyl octadecanoate; γ-sitosterol; campesterol; stigmasterol and β-amyrin | [39] | |
Ethanol | HPLC | Gallic acid; catechin; rutin; ellagic acid; naringin; myricetin and morin | [38] | |
Leaves | Ethanol | HPLC/DAD | Protocatechuic acid; Epicatechin; p-coumaric acid; gallic acid; and kaempferol | [41] |
Resin | Methanol | UPLC-DAD-QTOF-MS/MS) | Dilmin; lulin; erycibenin D; 7,8,3′-trihydroxy-4′-methoxyisoflavone; 7,8,3′-trihydroxy-6,4′-dimethoxyisoflavone; 3′-dihydroxy-8,4′-dimethoxyisoflavone; calycosin; odoratin; butein; cladrastrin; pratensein; 3′,4′-dimethoxy-1′-(7-methoxy-4-oxo-4H-chromen-3-yl)benzo-2′,5′-quinone; isoliquiritigenin and homobutein | [42] |
Young cultivated plants | Ethanol | HPLC | -hydroxybenzoic acid; ayapin, (E/Z)-o-coumaric acids coumarin and isokaempferide; vanillic acid, protocatechuic acid; amburosides A and B | [43] |
Ethanol | HPLC | Vanillic acid and coumarin | [35] |
3.4. Bioactivities Attributed to Amburana Cearensis
3.4.1. Antimicrobial Activity
3.4.2. Anti-Inflammatory, Antinociceptive and Antiedematogenic Activities
3.4.3. Myorelaxant Activity
3.4.4. Antioxidant Activity
3.4.5. Neuroprotective Activity
3.4.6. Cytotoxic and Antiproliferative Activities
3.4.7. Allelopathic Activity
3.4.8. Other Bioactivities
Activity Tested | Extract/Part | Model Used | Concentrations/Dosage | Citations |
---|---|---|---|---|
Antibacterial | Ethanol/stem bark | Staphylococcus epidermidis; Staphylococcus aureus; Staphylococcus caprie; Staphylococcus intermedius; Klebsiella spp.; Salmonella spp., Pseudomonas aeruginosa; Escherichia coli; Enterococcus faecalis; Rhodococcus equi; Listeria spp.; Corynebacterium spp.; Aeromonas spp.; Proteus spp.; Yersinia enterocolitica; Streptococcus agalactiae; Streptococcus suis; Nocardia spp.; Vibrio spp.; Micrococcus spp.; Edwadisiella spp. | MBC—125; 145.8; 333.33; 31.25; 83.33; 145.8; 166.7; 166.7; 187.5; 187.5; 125; 41.67; 62.5; 281.3; 104.2; 250; 83.33; 125; 31.25; 125; 62.5 µL/mL, respectively | [44] |
Ethanol/leaves | S. aureus 25,923 | MIC—512 μg/mL | [45] | |
Hydroalcoholic | Acinetobacter spp. | MBC—9.375 μg/mL. | [46] | |
Ethanol | Enterobacter spp.; E. Coli; and Klebsiella spp. | MBC—390.6; 1.302; and 911.4 μg/mL, respectively | [46] | |
Ethanol/stem bark | Staphylococcus spp. | MBC—12.500 μg/mL | [47] | |
Chloroform/stem bark | P. aeruginosa and Bacillus cereus | MIC—6900 µg/mL | [36] | |
Ethanol/seeds | E. coli (25,922); S. aureus (29,213); P. aeruginosa (27,853); L. monocytogenes (35,152); Shigella flexneri (700,930) | MIC: 1000; 250; 250; 500; and 250 μg/mL, respectively | [38] | |
Crude and fractions (ammonium sulfate concentration: 0–30%, 30–60% and 60–90%/seeds | S. aureus (SA10) and E. coli (EC06) | MIC ≥ 1024 μg/mL | [48] | |
Antifungal | Proteic fractions/seeds | Colletotrichum lindemuthianum; Fusarium oxysporum; Fusarium solani; Candida albicans; and Saccharomyces cerevisiae | Filamentous fungi: 160 μg/mL; Yeasts: 80 and 160 μg/mL | [50] |
Antinociceptive and antiedematogenic | Hydroalcoholic/stem bark | Swiss mice and Wistar rats | 100 and 200 mg/kg | [52] |
Hydroalcoholic/stem bark | Swiss mice and Wistar rats | 100 and 200 mg/kg, respectively | [54] | |
Hydroalcoholic/stem bark | Mice BALB/c | 200 mg/kg and 400 mg/kg | [55] | |
Ethanol/stem bark | Swiss mice and Wistar rats | 100; 200 and 400 mg/kg | [57] | |
Aqueous/seeds | Rattus norvegicus | 10 and 20% w/v | [59] | |
Anti-inflammatory | Hydroalcoholic/stem bark | Wistar rats | 200 and 400 mg/kg | [56] |
Myorelaxant | Hydroalcoholic/stem bark | Guinea-pig isolated trachea | EC50: 3.64 ± 0.4 mg/mL | [54] |
Hydroalcoholic/stem bark | Guinea-pig isolated trachea | IC50 3.16 ± 0.55 mg/mL | [56] | |
Antioxidant | Ethanol/leaves and bark. Methanol and ethyl acetate fractions/leaves | DPPH | 0.1 and 1 mg/mL | [50] |
Ethanol/seeds | DPPH | IC50 17.95 μg/mL | [38] | |
Neuroprotective | Ethanolic, hexane, dichloromethane, and ethyl acetate/seeds | Neural PC12 cells | 0.1–1000 µg/mL | [39] |
Ethanol and dichloromethane/seeds | Cerebellar cells of wistar rats | 0.1 µg/mL | [40] | |
Dry extract and phenol fraction | Microglial cells | 5–200 mg/mL | [65] | |
Antiproliferative | Hydroalcoholic/stem powder | HaCaT; MDA-MB-231 and MCF7; 4T1 | 31.25; 62.5; 125; 250; 500; and 1000 μg/mL | [66] |
Hexane/seeds | Cerebellar cells of Wistar rats | 1000 µg/mL | [40] | |
Allelopathic | Aqueous and metanol/seeds | Lactuca sativa | 5, 10, and 15 g; 1; 5; 10; and 15 g, respectively | [69] |
Aqueous and methanol/seeds | Raphanus sativus L. | 15 g | [69] | |
Aqueous extract/leaves | Amaranthus deflexus | 50 and 100 g/L | [70] | |
Hydroalcoholic extract/seeds | Cucumis melo L. | 1; 0.5; and 0.25% w/v | [71] | |
Hydroalcoholic/leaves | Cucumis melo L. | 1; 0.5; and 0.25% w/v | [71] | |
Hexane and dichloromethane fracionas/seeds | Cucumis melo L. | 1 and 0.5% w/v | [48] | |
Survival of preantral follicles | Ethanol/leaves | Ovarian cortical tissues goats | 0.2 mg/ml | [41] |
Ethanol/leaves | Ovarian cortical tissues ovine (Ovis aries) | 0.1 mg/mL | [75] | |
Ethanol/leaves | Ovarian cortical tissues ovine | 0.2 mg/mL | [76] | |
Larvicidal | Aqueous/seeds | Aedes aegypti | LC50 8.10 ± 0. 27 mg/mL after 24 h of exposure | [77] |
Repellency | Powder/leaves and bark | Callosobruchus maculatus | 2 g | [78] |
Acaricidal | Hexane fraction/leaves | Rhipicephalus (Boophilus) microplus | 25 mg/mL | [79] |
Mutagenic | Aqueous/seeds | Meristematic cells of Allium cepa | 0.1 mg/mL and 0.5 mg/mL | [59] |
Photoprotective | Ethanol/leaves | - | SPF = 17.60 | [80] |
Phytochemicals | Activity Tested | Model Used | Concentraction /Dosage | Citations |
---|---|---|---|---|
Coumarin (1) | Antinociceptive and antiedematogenic | Swiss mice and Wistar rats | 5–20 mg/kg and 10 mg/kg | [52] |
Coumarin (1) | Anti-inflammatory, antinociceptive | Swiss mice and Wistar rats | 5; 10; and 20 mg/kg | [54] |
Coumarin (1) | Anti-inflammatory | Wistar rats | 20 and 40 mg/kg | [54] |
Coumarin (1) | Anti-inflammatory and antiedematogenic | BALB/c mice | 10 and 20 mg/mL | [55] |
Coumarin (1) | Myorelaxant | Guinea pig trachea | EC50 0.08 ± 0.01 mg/mL | [54] |
Coumarin (1) | Myorelaxant | Guinea pig trachea | IC50 0.045 ± 0.013; 0.084 ± 0.016 and 0.087 ± 0.006 mg/mL (carbachol, histamine and KCl) | [56] |
Coumarin (1) | Antileishmanial | Leishmania chagasi (promastigotes) | 25; 50; 100; 250; and 500 mg/mL | [81] |
Amburoside A (2) | Antiedematogenic and anti-inflammatory | Swiss mice and Wistar rats | 25 and 50 mg/kg | [60] |
Amburoside A (2) | Neuroprotective | Rat microglial cell cultures | 5-200 mg/mL | [65] |
Amburoside A (2) | Hepatoprotective | CCl4-induced hepatotoxicity in Wistar rats | 25 and 50 mg/kg | [82] |
Isokaempferide (3) | Cytotoxic | CEM; HL-60; HCT-8; MCF-7 and B-16 | IC50: 2.6 μg/mL (CEM); 3.0 μg/mL (HL-60); 5.4 μg/mL (HCT-8); 5.5 μg/mL (MCF-7); and 3.6 μg/mL (B-16) | [67] |
Amburanins A and B (4 and 5) | Anti-inflammatory | Human neutrophils | 25; 50 and 100 μg/mL | [61] |
Vanillic acid (6) | Antinociceptive, antiedematogenic and anti-inflammatory | Swiss mice and Wistar rats | 25 and 50 mg/kg | [35] |
Afrormosin (7) | Anti-inflammatory | Human neutrophils stimulated by fMLP or PMA | IC50 66.70 μM (fMLP) and 0.374 μM (PMA); 3.35–167.6 μM (inhibition of MPO); 16.76–335.2 μM (reduced TNF-a level) | [62] |
Afrormosin (7) | Antioxidant | Human neutrophils (chemiluminescent Probes-luminol and lucigenin | CL50: Lucigenin (>100 μg/mL) and luminol (19.09 μg/mL) | [62] |
Protecatechuic acid (8) | Cytotoxic | CEM; HL-60; HCT-8; MCF-7; and B-16 | IC50: >25.0 (CEM); 20.7 (HL-60); >25.0 (HCT-8); >25.0 (MCF-7); >25.0 μg/mL (B-16) | [67] |
Kaempferol (9) | Cytotoxic | CEM; HL-60; HCT-8; MCF-7; and B-16 | IC50 13.4 μg/mL (CEM); 22.7 μg/mL (HL-60); 15.2 μg/mL (HCT-8); 21.2 μg/mL (MCF-7); 11.5 μg/mL (B-16) | [67] |
2-methoxy-4-methylphenol | Antibacterial | Salmonella entérica; E. Coli; P. Aeruginosa; B. Cereus; L. Monocytogenes, S. Aureus and K. Pneumoniae | MIC—215; 215; 431; 431; 215; 215; and 215 µg/mL, respectively | [36] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020, 25, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Traditional Medicine Strategy: 2014–2023. 2014. Available online: https://www.who.int/publications/i/item/9789241506096 (accessed on 15 March 2020).
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Yao, H.; Song, J.; Liu, C.; Zhu, Y.; Ma, X.; Pang, X.; Xu, H.; Chen, S. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J. Ethnopharmacol. 2010, 130, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Dzoyem, J.P.; McGaw, L.J.; Eloff, J.N. In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity. BMC Complement. Altern. Med. 2014, 14, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleme, L.G.P.; Stirton, C.H.; Sartori, Â.L.B.; Mansano, V.F. A taxonomic review and a new species of the south american woody genus amburana (leguminosae, papilionoideae). Phytotaxa 2015, 212, 249. [Google Scholar] [CrossRef]
- Bitu, V.D.C.N.; Bitu, V.D.C.N.; Matias, E.F.F.; de Lima, W.P.; Portelo, A.D.C.; Coutinho, H.; de Menezes, I.R.A. Ethnopharmacological study of plants sold for therapeutic purposes in public markets in Northeast Brazil. J. Ethnopharmacol. 2015, 172, 265–272. [Google Scholar] [CrossRef]
- Macedo, J.G.F.; de Menezes, I.R.A.; Ribeiro, D.A.; de Oliveira Santos, M.; de Mâcedo, D.G.; Macêdo, M.J.F.; de Almeida, B.V.; de Oliveira, L.G.S.; Leite, C.P.; Souza, M.M.D.A. Analysis of the Variability of Therapeutic Indications of Medicinal Species in the Northeast of Brazil: Comparative Study. Evid.-Based Complementary Altern. Med. 2018, 2018, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, E.J. State-of-knowledge on Amburana cearensis (Fr. Allem.) A.C. Smith (Leguminosae: Papilionoideae) for genetic conservation in Brazil. J. Nat. Conserv. 2005, 13, 49–65. [Google Scholar] [CrossRef]
- Leite, V.G.; Teixeira, S.P.; Mansano, V.F.; Prenner, G. Floral Development of the Early-Branching Papilionoid Legume Amburana cearensis (Leguminosae) Reveals Rare and Novel Characters. Int. J. Plant Sci. 2015, 176, 94–106. [Google Scholar] [CrossRef]
- Da Silva, G.L.; Filho, S.M.; Zandavalli, R.B.; Pereira, D.D.S.; De Sousa, G.G. Biometria e emergência de Amburana cearensis (Allemão) A.C. Smith em função da coloração do fruto. Ciência Florestal 2013, 23, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, D.; São-Mateus, W.M.; da Cruz, D.T.; Zartman, C.E.; Komura, D.L.; Kite, G.; Prenner, G.; Wieringa, J.J.; Clark, A.; Lewis, G.; et al. Filling in the gaps of the papilionoid legume phylogeny: The enigmatic Amazonian genus Petaladenium is a new branch of the early-diverging Amburaneae clade. Mol. Phylogenetics Evol. 2015, 84, 112–124. [Google Scholar] [CrossRef]
- Loureiro, M.B.; Teles, C.A.S.; Virgens, I.O.; De Araújo, B.R.N.; Fernandez, L.G.; De Castro, R.D. Aspectos morfoanatômicos e fisiológicos de sementes e plântulas de Amburana cearensis (Fr. All.) A.C. Smith (Leguminosae—Papilionoideae). Revista Árvore 2013, 37, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.D.C.L.; Ferreira, R.A. Aspectos morfológicos da semente e do desenvolvimento da planta jovem de Amburana cearensis (Arr. Cam.) A.C. Smith—Cumaru—Leguminosae Papilionoideae. Rev. Bras. Sement 2003, 25, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, F.; Torbati, M.; Mahmoudi, J.; Valizadeh, H. Medicinal Plants as Potential Hemostatic Agents. J. Pharm. Pharm. Sci. 2020, 23, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Hajdu, Z.; Hohmann, J. An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. J. Ethnopharmacol. 2012, 139, 838–857. [Google Scholar] [CrossRef]
- De Morais, S.M.; Dantas, J.D.P.; Da Silva, A.R.A.; Magalhães, E.F. Plantas medicinais usadas pelos índios Tapebas do Ceará. Rev. Bras. Farm. 2005, 15, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Barboza Da Silva, N.C.; Delfino Regis, A.C.; Esquibel, M.A.; Santos, S.; do Espirito, J.; de Almeida, M.Z. Medicinal plants use in Barra II quilombola community—Bahia, Brazil. Bol. Latinoam. Caribe Plantas Med. Aromat. 2012, 11, 435–453. [Google Scholar]
- Bravo, J.A.; Sauvain, M.G.; Gimenez, A.T.; Muñoz, V.O.; Callapa, J.; Men-Olivier, L.L.; Massiot, G.; Lavaud, C. Bioactive phenolic glycosides from Amburana cearensis. Phytochemistry 1999, 50, 71–74. [Google Scholar] [CrossRef]
- Agra, M.; Baracho, G.; Nurit, K.; Basílio, I.; Coelho, V. Medicinal and poisonous diversity of the flora of “Cariri Paraibano”, Brazil. J. Ethnopharmacol. 2007, 111, 383–395. [Google Scholar] [CrossRef]
- Conceição, G.; Ruggieri, A.; Araujo, M.F.; Conceição, T.T.M.M.; Conceição, M.A.M.M. Plantas do cerrado: Comercialização, uso e indicação terapêutica fornecida pelos raizeiros e vendedores, Teresina, Piauí. Sci. Plena 2011, 7, 1–6. [Google Scholar]
- Melo, C.A.; Souza, P.O.; Damasceno, E. atividade farmacológica da planta Amburana cearensis (imburana). Rev. Bras. Pesqui. em Ciências da Saúde 2014, 1, 26–29. [Google Scholar]
- De Albuquerque, U.P.; de Medeiros, P.M.; de Almeida, A.L.S.; Monteiro, J.M.; Neto, E.M.D.F.L.; de Melo, J.G.; dos Santos, J.P. Medicinal plants of the caatinga (semiarid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 2007, 114, 325–354. [Google Scholar] [CrossRef] [PubMed]
- Baptistel, A.; Coutinho, J.; Neto, E.L.; Monteiro, J. Plantas medicinais utilizadas na Comunidade Santo Antônio, Currais, Sul do Piauí: Um enfoque etnobotânico. Rev. Bras. Plantas Med. 2014, 16, 406–425. [Google Scholar] [CrossRef] [Green Version]
- Cartaxo, S.L.; Souza, M.M.D.A.; de Albuquerque, U.P. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J. Ethnopharmacol. 2010, 131, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Castro, K.N.C.; Wolschick, D.; Leite, R.R.S.; Andrade, I.M.; Magalhaões, J.A.; Mayo, S.J. Ethnobotanical and ethnoveterinary study of medicinal plants used in the municipality of Bom Princpio do Piau, Piau, Brazil. J. Med. Plants Res. 2016, 10, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Fagundes, N.C.A.; Oliveira, G.L.; De Souza, B.G. Etnobotânica de plantas medicinais utilizadas no distrito de Vista Alegre, Claro dos Poções—Minas Gerais. Rev. Fitos 2017, 11, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Paulino, R.D.C.; Henriques, G.P.D.S.A.; Moura, O.N.S.; Coelho, M.D.F.B.; Azevedo, R.A.B. Medicinal plants at the Sítio do Gois, Apodi, Rio Grande do Norte State, Brazil. Rev. Bras. Farm. 2012, 22, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Pereira Júnior, R.L.; Andrade, A.P.; Araújo, K.D.; Barbosa, A.S.; Barbosa, F.M. Species as an Alternative to the Development of New Phytochemicals. Floresta e Ambient. 2014, 21, 509–520. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; de Oliveira, L.G.S.; de Macêdo, D.G.; de Menezes, I.R.A.; da Costa, J.G.M.; da Silva, M.A.P.; Lacerda, S.R.; Souza, M.M.D.A. Promising medicinal plants for bioprospection in a Cerrado area of Chapada do Araripe, Northeastern Brazil. J. Ethnopharmacol. 2014, 155, 1522–1533. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [Green Version]
- Negri, G.; Oliveira, A.F.M.; Salatino, M.L.F.; Salatino, A. Chemistry of the stern bark of Amburana cearensis (Allemao) (AC SM.). Rev. Bras. Plantas Med. 2004, 6, 1–4. [Google Scholar]
- Canuto, K.M.; Silveira, E.R. Constituintes químicos da casca do caule de Amburana cearensis A.C. Smith. Química Nova 2006, 29, 1241–1243. [Google Scholar] [CrossRef] [Green Version]
- Canuto, K.M.; Lima, M.A.S.; Silveira, E.R. Amburosides C-H and 6-O-protocatechuoyl coumarin from Amburana cearensis. J. Braz. Chem. Soc. 2010, 21, 1746–1753. [Google Scholar] [CrossRef]
- Leal, L.; Pierdoná, T.; Góes, J.; Fonsêca, K.; Canuto, K.; Silveira, E.; Bezerra, A.; Viana, G. A comparative chemical and pharmacological study of standardized extracts and vanillic acid from wild and cultivated Amburana cearensis A.C. Smith. Phytomedicine 2011, 18, 230–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sá, M.B.; Ralph, M.T.; Nascimento, D.C.O.; Ramos, C.S.; Barbosa, I.M.S.; Sá, F.B.; Lima-Filho, J. Phytochemistry and Preliminary Assessment of the Antibacterial Activity of Chloroform Extract of Amburana cearensis (Allemão) A.C. Sm. Against Klebsiella pneumoniae Carbapenemase-Producing Strains. Evid.-Based Complement. Altern. Med. 2014, 2014, 786586. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.A.C.; Campos, V.P.; Menezes, J.S.; Oliva, S.T.; West, C.B. Phytochemical Profile of Seed Extracts of Plants Typical of the Brazilian Semiarid and their Potential Application in Brackish Water Desalination. J. Braz. Chem. Soc. 2016, 27, 1694–1703. [Google Scholar] [CrossRef]
- Aguiar, A.A.; Soares, I.M.; Marson, P.G.; Bastos, E.G.P.; Ascêncio, S.D.; Aguiar, R.W.S. Development of a rich fraction in phenolic compounds with high antioxidant and antimicrobial activity in Amburana cearensis seeds extracts. J. Med. Plants Res. 2017, 11, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.P.; Braga-De-Souza, S.; Santos, C.C.; Santos, L.O.; Cerqueira, M.D.; Ribeiro, P.R.; Fernandez, L.G.; Silva, V.D.; Costa, S.L. Amburana cearensis seed extracts protect PC-12 cells against toxicity induced by glutamate. Rev. Bras. Farm. 2017, 27, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.E.P.; Souza, C.S.; Amparo, J.; Ferreira, R.S.; Nuñez-Figueredo, Y.; Fernandez, L.G.; Ribeiro, P.R.; Braga-de-Souza, S.; Amaral, V.D.S.; Costa, S.L. Amburana cearensis seed extract protects brain mitochondria from oxidative stress and cerebellar cells from excitotoxicity induced by glutamate. J. Ethnopharmacol. 2017, 209, 157–166. [Google Scholar] [CrossRef]
- Gouveia, B.B.; Barros, V.R.P.; Gonçalves, R.J.S.; Barberino, R.S.; Menezes, V.G.; Lins, T.L.B.; Macedo, T.J.S.; Santos, J.M.S.; Rolim, L.A.; Almeida, J.R.G.S.; et al. Effect of ovarian tissue transportation in Amburana cearensis extract on the morphology and apoptosis of goat preantral follicles. Anim. Reprod. 2015, 12, 316–323. [Google Scholar]
- De Oliveira, G.P.; da Silva, T.M.G.; Camara, C.A.; Santana, A.L.B.D.; Moreira, M.S.A.; Silva, T.M.S. Isolation and structure elucidation of flavonoids from Amburana cearensis resin and identification of human DNA topoisomerase II-α inhibitors. Phytochem. Lett. 2017, 22, 61–70. [Google Scholar] [CrossRef]
- Canuto, K.M.; Silveira, E.R.; Bezerra, A.M.E. Estudo fitoquímico de espécimens cultivados de cumaru (Amburana cearensis A. C. Smith). Química Nova 2010, 33, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Sá, M.D.C.A.D.; Peixoto, R.D.M.; Krewer, C.D.C.; Almeida, J.R.G.D.S.; De Vargas, A.C.; Da Costa, M.M. Antimicrobial activity of caatinga biome ethanolic plant extracts against gram negative and positive bacteria. Rev. Bras. Ciência Veterinária 2011, 18, 62–66. [Google Scholar] [CrossRef]
- Figueredo, F.G.; Ferreira, E.O.; Lucena, B.F.F.; Torres, C.M.G.; Lucetti, D.L.; Lucetti, E.C.P.; Silva, J.M.F.L.; Santos, F.A.V.; Medeiros, C.R.; Oliveira, G.M.M.; et al. Modulation of the Antibiotic Activity by Extracts from Amburana cearensis A. C. Smith and Anadenanthera macrocarpa (Benth.) Brenan. BioMed Res. Int. 2013, 2013, 640682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, V.F.; Franco, I.; Damasceno, T.E.F.; Almeida, J.; Da Costa, M.M. Potencial antimicrobiano de extratos etanólicos de plantas frente a bacilos gram negativos isolados da mucosa cérvico-vaginal de ovelhas criadas na região de Petrolina-PE. Semin. Ciências Agrárias 2014, 35, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, R.M.; Silva, W.E.L.; ALmeida, J.R.G.S.; Branco, A.; Costa, M.M. Antibacterial potential of native plants from the caatinga biome against staphylococcus spp. isolates from small ruminants with mastitis. Rev. Caatinga 2016, 29, 758–763. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, A.K.; Coelho, M.D.F.B.; Diógenes, F.E.P. Allelopathic activity of amburana cearensis seed extracts on melon emergence. Rev. Caatinga 2020, 33, 274–280. [Google Scholar] [CrossRef]
- Andrade, J.C.; Silva, A.R.P.; Santos, A.T.L.; Freitas, M.A.; Carneiro, J.N.P.; Gonçalo, M.I.P.; Morais-Braga, M.F.B. UPLC-MS-ESI-QTOF characterization and evaluation of the antibacterial and modulatory antibiotic activity of Ziziphus joazeiro Mart. aqueous extracts. S. Afr. J. Bot. 2019, 123, 105–112. [Google Scholar] [CrossRef]
- Dos Santos, P.H.A.; Dos Santos, I.S.; Melo, V.M.M.; Vasconcelos, I.M.; Carvalho, A.D.O.; Gomes, V.M. Partial characterization and antimicrobial activity of peptides from Amburana cearensis seeds against phytopathogenic fungi and yeasts. Acta Physiol. Plant. 2009, 32, 597–603. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Leal, L.; Matos, M.; Matos, F.; Ribeiro, R.; Ferreira, F.; Viana, G. Antinociceptive and antiedematogenic effects of the hydroalcoholic extract and coumarin from Torresea cearensis Fr. All. Phytomedicine 1997, 4, 221–227. [Google Scholar] [CrossRef]
- Bentley, G.; Newton, S.; Starr, J. Studies on the antinociceptive action of α-agonist drugs and their interactions with opioid mechanisms. J. Cereb. Blood Flow Metab. 1983, 79, 125–134. [Google Scholar] [CrossRef]
- Leal, L.; Ferreira, A.; Bezerra, G.; Matos, F.; Viana, G. Antinociceptive, anti-inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: A comparative study. J. Ethnopharmacol. 2000, 70, 151–159. [Google Scholar] [CrossRef]
- Marinho, M.G.V.; Brito, A.G.; Carvalho, K.A.; Bezerra-Santos, C.R.; Andrade, L.H.C.; Barbosa-Filho, J.M.; Piuvezam, M.R. Amburana cearensis e cumarina imunomodulam os níveis de anticorpos antígeno-especffico em camundongos BALB/c sensibilizados com ovalbumina. Acta Farm. Bonaer. 2004, 23, 47–52. [Google Scholar]
- Leal, L.K.A.M.; Nechio, M.; Silveira, E.R.; Canuto, K.M.; Fontenele, J.B.; Ribeiro, R.A.; Viana, G.S.B. Anti-inflflammatory and smooth muscle relaxant activities of the hydroalcoholic extract and chemical constituents from Amburana cearensis A. C. Smith. Phytotherapy Res. 2003, 17, 335–340. [Google Scholar] [CrossRef]
- Oliveira, R.R.B.; Góis, R.M.O.; Siqueira, R.S.; Almeida, J.R.G.S.; Lima, J.T.; Nunes, X.P.; Oliveira, V.R.; Siqueira, J.S.; Quintans, J. Antinociceptive effect of the ethanolic extract of Amburana cearensis (Allemão) A.C. Sm., Fabaceae, in rodents. Rev. Bras. Farm. 2009, 19, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Ariyo, O.O.; Ajayi, A.M.; Ben-Azu, B.; Aderibigbe, A.O. Anti-nociceptive and anti-inflammatory activities of ethanol extract and fractions of Morus mesozygia Stapf (Moraceae) leaves and its underlying mechanisms in rodents. J. Ethnopharmacol. 2020, 259, 112934. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.R.; Cavalcante, R.R.L.; Martins, M.C.C.; Parente, D.M.; Cavalcante, A.A.M.C. Avaliação da atividade antiedematogênica, antimicrobiana e mutagênica das sementes de Amburana cearensis (A. C. Smith) (Imburana-de-cheiro). Rev. Bras. Plantas Med. 2013, 15, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Leal, L.K.A.M.; Canuto, K.M.; Costa, K.C.D.S.; Júnior, H.; Vasconcelos, S.; Silveira, E.R.; Ferreira, M.V.P.; Fontenele, J.; Andrade, G.M.; Viana, G.S.D.B. Effects of Amburoside A and Isokaempferide, Polyphenols from Amburana cearensis, on Rodent Inflammatory Processes and Myeloperoxidase Activity in Human Neutrophils. Basic Clin. Pharmacol. Toxicol. 2009, 104, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Canuto, K.M.; Leal, L.K.A.M.; Lopes, A.A.; Coleman, C.M.; Ferreira, D.; Silveira, E.R. Amburanins A and B from Amburana cearensis: Daphnodorin-Type Biflavonoids that Modulate Human Neutrophil Degranulation. J. Braz. Chem. Soc. 2014, 25, 639–647. [Google Scholar] [CrossRef]
- Lopes, A.D.A.; Magalhães, T.R.; Uchôa, D.E.D.A.; Silveira, E.R.; Azzolini, A.E.C.S.; Kabeya, L.M.; Lucisano-Valim, Y.M.; Vasconcelos, S.; Viana, G.S.D.B.; Leal, L.K.A.M. Afrormosin, an Isoflavonoid from Amburana cearensis A. C. Smith, Modulates the Inflammatory Response of Stimulated Human Neutrophils. Basic Clin. Pharmacol. Toxicol. 2013, 113, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Li, X.; Fei, Z.; Fei, F.; Su, N. Neuroprotection mediated by natural products and their chemical derivatives. Neural Regen. Res. 2020, 15, 2008–2015. [Google Scholar] [CrossRef]
- Pierdoná, T.; Araújo, E.; Amaral, H.; Freitas, L.; Viana, G.; Silveira, E.; Leal, L.P. 1.g.103 Evaluation of the neuroprotective effects of bioproducts from Amburana cearensis on microglial cells. Eur. Neuropsychopharmacol. 2014, 24, S264. [Google Scholar] [CrossRef]
- Lataliza, A.A.B.; Cavalli, J.; Amarante, C.B.; Barbosa, D.B.; Brandão, M.A.F.; Dutra, R.C.; Rapozo, N.R.B. Antioxidant, Cytotoxic, Antiproliferative And Acetylcholinesterase Inhibition Properties of the Extract from Amburana cearensis. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 9336–9343. [Google Scholar]
- Costa-Lotufo, L.V.; Jimenez, P.C.; Wilke, D.V.; Leal, L.K.; Cunha, G.M.A.; Silveira, E.R.; Canuto, K.M.; Viana, G.S.B.; Moraes, M.E.A.; de Moraes, M.O.; et al. Antiproliferative Effects of Several Compounds Isolated from Amburana cearensis A. C. Smith. Z. Nat. C 2003, 58, 675–680. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy: An overview. In Allelochemicals: Role in Agriculture and Forestry; Waller, G.R., Ed.; American Chemical Society: Washington, DC, USA, 1987; pp. 8–22. [Google Scholar]
- Felix, A.R.Z.; Ono, E.O.; Pereira, C.S.; Rodrigues, J.D.; Pieri, C. Efeitos Alelopáticos da Amburana cearensis L. (Fr. All.) AC Smith na Germinação de Sementes de Alface (Lactuca sativa L.) e de Rabanete (Raphanus sativus L.). Rev. Bras. Fisiol. Veg. 2007, 5, 138–140. [Google Scholar]
- Lessa, B.F.T.; Silva, M.L.S.; Barreto, J.H.B.; Oliveira, A.B. Allelopathics effects of aqueous extracts of leaves of Amburana cearensis and Plectranthus barbatus on the germination of Amaranthus deflexus. Rev. Ciências Agrárias 2017, 40, 79–86. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, A.K.; Coelho, M.D.F.B.; Torres, S.B.; Diógenes, F.; Ésio, P. Allelopathy by extracts of Caatinga species on melon seeds. Semin. Ciências Agrárias 2016, 37, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Tuyen, P.T.; Xuan, T.D.; Anh, T.T.T.; Van, T.M.; Ahmad, A.; Elzaawely, A.A.; Khanh, T.D. Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc. Molecules 2018, 23, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, M.T.S.; Macedo, F.V.V.; Meent, M.V.D.; Rhee, I.K.; Verpoorte, R. Seleção de plantas com atividade anticolinasterase para tratamento da doença de Alzheimer. Química Nova 2003, 26, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Sharangi, A.B.; Das, S. Healing indigestion: A phytotherapeutic review. Adv. Tradit. Med. 2020, 20, 1–17. [Google Scholar] [CrossRef]
- Barberino, R.; Barros, V.; Menezes, V.; Santos, L.; Araújo, V.; Queiroz, M.; Almeida, J.; Palheta, R.; Matos, M. Amburana cearensis leaf extract maintains survival and promotes in vitro development of ovine secondary follicles. Zygote 2016, 24, 277–285. [Google Scholar] [CrossRef]
- Menezes, V.G.; Barberino, R.D.S.; Gouveia, B.B.; Gonçalves, R.J.D.S.; Almeida, J.R.G.D.S.; de Matos, M.H.T. Extract of Amburana cearensis maintains the survival of ovine preantral follicles during long-term ovarian tissue transport and promotes primordial follicle activation after in vitro culture. Semin. Ciências Agrárias 2018, 39, 2001–2016. [Google Scholar] [CrossRef]
- Farias, D.F.; Cavalheiro, M.G.; Viana, M.P.; Queiroz, V.A.; Rocha-Bezerra, L.C.; Vasconcelos, I.M.; Morais, S.M.; Carvalho, A.F. Water extracts of Brazilian leguminous seeds as rich sources of larvicidal compounds against Aedes aegypti L. An. Acad. Bras. Ciências 2010, 82, 585–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Melo, B.A.; Molina-Rugama, A.J.; Haddi, K.; Leite, D.T.; De Oliveira, E.E. Repellency and Bioactivity of Caatinga Biome Plant Powders against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Fla. Èntomol. 2015, 98, 417–423. [Google Scholar] [CrossRef]
- Dantas, A.C.D.S.; Araujo, A.D.C.; Pacheco, A.G.M.; Branco, A.; Sangioni, L.A.; Almeida, J.R.G.D.S.; Horta, M.C. Acaricidal activity of Amburana cearensis on the cattle tick Rhipicephalus (Boophilus) microplus. Ciência Rural. 2015, 46, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Nunes, A.R.; Rodrigues, A.L.M.; de Queiróz, D.B.; Vieira, I.G.P.; Neto, J.F.C.; Junior, J.T.C.; Tintino, S.R.; de Morais, S.M.; Coutinho, H.D.M. Photoprotective potential of medicinal plants from Cerrado biome (Brazil) in relation to phenolic content and antioxidant activity. J. Photochem. Photobiol. B Biol. 2018, 189, 119–123. [Google Scholar] [CrossRef]
- Monteiro, R.M.; Carneiro, I.D.S.; de Sousa, F.D.; Teixeira, M.J.; Dourado, R.C.M.; Moreira, R.D.A.; Moreira, A.C.D.O.M. Antileishmanial Activity of Coumarin from Amburana cearensis Seeds. OALib 2017, 4, 1–10. [Google Scholar] [CrossRef]
- Leal, L.K.A.M.; Fonseca, F.N.; Pereira, F.A.; Canuto, K.M.; Felipe, C.F.B.; Fontenele, J.B.; Pitombeira, M.V.; Silveira, E.R.; Viana, G.S.B. Protective Effects of Amburoside A, a Phenol Glucoside from Amburana cearensis, against CCl4-Induced Hepatotoxicity in Rats. Planta Med. 2008, 74, 497–502. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, Z.d.S.; Macêdo, N.S.; Bezerra, S.R.; Siyadatpanah, A.; Coutinho, H.D.M.; Seifi, Z.; Kim, B.; da Cunha, F.A.B.; Balbino, V.d.Q. Phytochemistry and Biological Activities of Amburana cearensis (Allemão) ACSm. Molecules 2022, 27, 505. https://doi.org/10.3390/molecules27020505
Silveira ZdS, Macêdo NS, Bezerra SR, Siyadatpanah A, Coutinho HDM, Seifi Z, Kim B, da Cunha FAB, Balbino VdQ. Phytochemistry and Biological Activities of Amburana cearensis (Allemão) ACSm. Molecules. 2022; 27(2):505. https://doi.org/10.3390/molecules27020505
Chicago/Turabian StyleSilveira, Zildene de Sousa, Nair Silva Macêdo, Suieny Rodrigues Bezerra, Abolghasem Siyadatpanah, Henrique Douglas Melo Coutinho, Zahra Seifi, Bonglee Kim, Francisco Assis Bezerra da Cunha, and Valdir de Queiroz Balbino. 2022. "Phytochemistry and Biological Activities of Amburana cearensis (Allemão) ACSm" Molecules 27, no. 2: 505. https://doi.org/10.3390/molecules27020505
APA StyleSilveira, Z. d. S., Macêdo, N. S., Bezerra, S. R., Siyadatpanah, A., Coutinho, H. D. M., Seifi, Z., Kim, B., da Cunha, F. A. B., & Balbino, V. d. Q. (2022). Phytochemistry and Biological Activities of Amburana cearensis (Allemão) ACSm. Molecules, 27(2), 505. https://doi.org/10.3390/molecules27020505