Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Controlled Challenge
2.2. Exhaled Breath Condensate (EBC) Collection
2.3. Spectral Signature Acquisition
2.4. Data Analysis
2.5. Aquaphotomics Approach
2.6. Chemometrics
3. Results
3.1. Aquaphotomics Findings
3.2. Discriminant Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Larsen, L.E. Bovine Respiratory Syncytial Virus (BRSV): A review. Acta Vet. Scand. 2000, 41, 1–24. [Google Scholar] [CrossRef]
- Valarcher, J.-F.; Taylor, G. Bovine respiratory syncytial virus infection. Vet. Res. 2007, 38, 153–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodersen, B.W. Bovine respiratory syncytial virus. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Turkington, H.L.; Cosby, S.L. The bacterial and viral agents of BRDC: Immune evasion and vaccine developments. Vaccines 2021, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Snowder, G.D.; Van Vleck, L.D.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J. Anim. Sci. 2006, 84, 1999–2008. [Google Scholar] [CrossRef] [Green Version]
- Kurćubić, V.; Đoković, R.; Ilić, Z.; Petrović, M. Etiopathogenesis and economic significance of bovine respiratory disease complex (BRDC). Acta Agric. Serbica 2018, 23, 85–100. [Google Scholar] [CrossRef]
- Peel, D.S. The Effect of Market Forces on Bovine Respiratory Disease. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 497–508. [Google Scholar] [CrossRef]
- Fulton, R.W.; Confer, A.W. Laboratory test descriptions for bovine respiratory disease diagnosis and their strengths and weaknesses: Gold standards for diagnosis, do they exist? Can. Vet. J. 2012, 53, 754–761. [Google Scholar] [PubMed]
- White, B.J.; Goehl, D.R.; Amrine, D.E.; Booker, C.; Wildman, B.; Perrett, T. Bayesian evaluation of clinical diagnostic test characteristics of visual observations and remote monitoring to diagnose bovine respiratory disease in beef calves. Prev. Vet. Med. 2016, 126, 74–80. [Google Scholar] [CrossRef]
- Timsit, E.; Dendukuri, N.; Schiller, I.; Buczinski, S. Diagnostic accuracy of clinical illness for bovine respiratory disease (BRD) diagnosis in beef cattle placed in feedlots: A systematic literature review and hierarchical Bayesian latent-class meta-analysis. Prev. Vet. Med. 2016, 135, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Nefedchenko, A.V.; Glotov, A.G.; Koteneva, S.V.; Glotova, T.I. Developing and Testing a Real-Time Polymerase Chain Reaction to Identify and Quantify Bovine Respiratory Syncytial Viruses. Mol. Genet. Microbiol. Virol. 2020, 35, 168–173. [Google Scholar] [CrossRef]
- Blakebrough-Hall, C.; Dona, A.; D’occhio, M.J.; McMeniman, J.; González, L.A. Diagnosis of Bovine Respiratory Disease in feedlot cattle using blood 1H NMR metabolomics. Sci. Rep. 2020, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Maurer, D.L.; Koziel, J.A.; Engelken, T.J.; Cooper, V.L.; Funk, J.L. Detection of volatile compounds emitted from nasal secretions and serum: Towards non-invasive identification of diseased cattle biomarkers. Separations 2018, 5, 18. [Google Scholar] [CrossRef]
- Spinhirne, J.P.; Koziel, J.A.; Chirase, N.K. Sampling and analysis of volatile organic compounds in bovine breath by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2004, 1025, 63–69. [Google Scholar] [CrossRef]
- Kuchmenko, T.; Shuba, A.; Umarkhanov, R.; Chernitskiy, A. Portable Electronic Nose for Analyzing the Smell of Nasal Secretions in Calves: Toward Noninvasive Diagnosis of Infectious Bronchopneumonia. Vet. Sci. 2021, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Safonov, V.A.; Kuchmenko, T.A.; Chernitskiy, A. Chemical elements in exhaled breath condensate of calves with infectious bronchopneumonia. In Proceedings of the 45th FEBS Congress, Molecules of Life: Toward New Horizons, Ljubljana, Slovenia, 3–8 July 2021. [Google Scholar]
- Santos-Rivera, M.; Fitzkee, N.C.; Hill, R.A.; Baird, R.E.; Blair, E.; Thoresen, M.; Woolums, A.R.; Meyer, F.; Vance, C. Nuclear Magnetic Resonance-based Metabolomics of Blood Plasma from Dairy Calves Infected with the Main Causal Agents of Bovine Respiratory Disease (BRD). Sci. Rep. 2022, 1–31. [Google Scholar] [CrossRef]
- Williams, P.; Antoniszyn, J.; Manley, M. Near Infrared Technology. Getting the Best out of Light; 1st ed.; AFRICAN SUN Media: Stellenbosch, South Africa, 2019; ISBN 978-1-928480-30-3. [Google Scholar]
- Beć, K.B.; Grabska, J.; Huck, C.W. Near-infrared spectroscopy in bio-applications. Molecules 2020, 25, 2948. [Google Scholar] [CrossRef]
- Tsenkova, R. Introduction aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–314. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Tsenkova, R. AquaPhotomics: Water Absorbance Pattern as a Biological Marker. NIR News 2006, 17, 13–23. [Google Scholar] [CrossRef]
- Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Acquiring Spectra of Various Biological Fluids of the Same Organism Reveals the Importance of Water Matrix Absorbance Coordinates and the Aquaphotome for Understanding Biological Phenomena. NIR News 2008, 19, 13–15. [Google Scholar] [CrossRef]
- Tsenkova, R. AquaPhotomics: Water Absorbance Pattern as a Biological Marker for Disease Diagnosis and Disease Understanding. NIR News 2007, 18, 14–16. [Google Scholar] [CrossRef]
- Kazani, S.; Israel, E. Utility of exhaled breath condensates across respiratory diseases. Am. J. Respir. Crit. Care Med. 2012, 185, 791–792. [Google Scholar] [CrossRef] [PubMed]
- Houspie, L.; De Coster, S.; Keyaerts, E.; Narongsack, P.; De Roy, R.; Talboom, I.; Sisk, M.; Maes, P.; Verbeeck, J.; Van Ranst, M. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses. Virol. J. 2011, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zollinger, E.; Clauss, M.; Steinmetz, H.W.; Hatt, J.M. Collection of exhaled breath and exhaled breath condensate in veterinary medicine. A review. Vet. Q. 2006, 28, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Reinhold, P.; Knobloch, H. Exhaled breath condensate: Lessons learned from veterinary medicine. J. Breath Res. 2010, 4. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; Hunt, J.; Barnes, P.J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; van Beurden, W.J.C.; Corradi, M.; Dekhuijzen, R.; et al. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523–548. [Google Scholar] [CrossRef] [Green Version]
- Kuchmenko, T.A.; Umarkhanov, R.U.; Shuba, A.A.; Dorovskaya, E.S.; Chernitskiy, A.E. Analysis of the volatile compounds’ condensate exhaled air “electronic nose” based on piezoelectric sensor to assess the status of calves. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 072028. [Google Scholar] [CrossRef]
- Chernitskiy, A.E.; Safonov, V.A. Early detection of bovine respiratory disease in calves by induced cough. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 042047. [Google Scholar] [CrossRef]
- Chernitskiy, A.; Safonov, V.A. Exhaled hydrogen peroxide as a potential marker of lower airway inflammation in neonatal calves. In Proceedings of the 45th FEBS Congress, Molecules of Life: Toward New Horizons, Ljubljana, Slovenia, 3–8 July 2021; pp. 102–103. [Google Scholar]
- Santos-Rivera, M.; Woolums, A.; Thoresen, M.; Blair, E.; Jefferson, V.; Meyer, F.; Vance, C.K. Profiling Mannheimia haemolytica infection in dairy calves using near infrared spectroscopy (NIRS) and multivariate analysis (MVA). Sci. Rep. 2021, 11, 1392. [Google Scholar] [CrossRef]
- Garrido-Varo, A.; Garcia-Olmo, J.; Fearn, T. A note on Mahalanobis and related distance measures in WinISI and The Unscrambler. J. Near Infrared Spectrosc. 2019, 27, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Fearn, T. Mahalanobis and Euclidean Distances. NIR News 2010, 21, 12–14. [Google Scholar] [CrossRef]
- Messick, N.J.; Kalivas, J.H.; Lang, P.M. Selecting factors for partial least squares. Microchem. J. 1997, 55, 200–207. [Google Scholar] [CrossRef]
- Lalkhen, A.G.; McCluskey, A. Clinical tests: Sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC-Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Robertson, W.H.; Diken, E.G.; Price, E.A.; Shin, J.W.; Johnson, M.A. Spectroscopic determination of the OH− solvation shell in the OH−·(H2O)n clusters. Science 2003, 299, 1367–1372. [Google Scholar] [CrossRef]
- Bázár, G.; Kovacs, Z.; Tanaka, M.; Furukawa, A.; Nagai, A.; Osawa, M.; Itakura, Y.; Sugiyama, H.; Tsenkova, R. Water revealed as molecular mirror when measuring low concentrations of sugar with near infrared light. Anal. Chim. Acta 2015, 896, 52–62. [Google Scholar] [CrossRef]
- Beganović, A.; Beć, K.B.; Grabska, J.; Stanzl, M.T.; Brunner, M.E.; Huck, C.W. Vibrational coupling to hydration shell—Mechanism to performance enhancement of qualitative analysis in NIR spectroscopy of carbohydrates in aqueous environment. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2020, 237, 118359. [Google Scholar] [CrossRef]
- Makarevich, A.E.; Ivashkevich, D.L. Dynamics of Intermediate Substrates of Carbohydrates Metabolism in Exhaled Breath Condensate During Copd Development. Chest 2006, 130, 170S. [Google Scholar] [CrossRef]
- Makarevich, A.E. Lipid and carbohydrate metabolites changes in exhaled breath condensate and blood in acute exacerbation of chronic bronchitis and chronic obstructive. Практикуючий Лікар 2018, 7, 30–36. [Google Scholar]
- Conner, G.E.; Salathe, M.; Forteza, R. Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am. J. Respir. Crit. Care Med. 2002, 166, S57–S61. [Google Scholar] [CrossRef]
- Knobloch, H.; Becher, G.; Decker, M.; Reinhold, P. Evaluation of H2O2 and pH in exhaled breath condensate samples: Methodical and physiological aspects. Biomarkers 2008, 13, 319–341. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; MacNee, W.; Kelly, F.J.; Dekhuijzen, P.N.R.; Phillips, M.; Döring, G.; Choi, A.M.K.; Yamaya, M.; Bach, F.H.; Willis, D.; et al. “Haemoxygenase-1 induction and exhaled markers of oxidative stress in lung diseases”, summary of the ERS Research Seminar in Budapest, Hungary, September, 1999. Eur. Respir. J. 2001, 18, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skulachev, V.P. The H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body. Biokhimiya 2001, 66, 1425–1429. [Google Scholar]
- Reinhold, P.; Becher, G.; Rothe, M. Evaluation of the measurement of leukotriene B4 concentrations in exhaled condensate as a noninvasive method for assessing mediators of inflammation in the lungs of calves. Am. J. Vet. Res. 2000, 61, 742–749. [Google Scholar] [CrossRef]
- Reinhold, P.; Langenberg, A.; Becher, G.; Rothe, M. Exhaled condensate—A medium obtained by a non-invasive method for the detection of inflammation mediators of the lung. Berl. Munch. Tierarztl. Wochenschr. 1999, 112, 254–259. [Google Scholar]
- Reinhold, P.; Langenberg, A.; Foedisch, G.; Jena, M.R. The influence of variables of ventilation on the concentration of urea and ammonia in the exhaled breath condensate Member’s Comments. Eur Respir J. 2004, 24, 2486. [Google Scholar]
- Reinhold, P.; Langenberg, A.; Seifert, J.; Rothe, M.; Jena, G.B. Ammonia and urea in the exhaled breath condensate (EBC) and in corresponding blood samples Member’s Comments. Eur Respir J. 2002, 20, 3034. [Google Scholar]
- Theakstone, A.G.; Rinaldi, C.; Butler, H.J.; Cameron, J.M.; Confield, L.R.; Rutherford, S.H.; Sala, A.; Sangamnerkar, S.; Baker, M.J. Fourier-transform infrared spectroscopy of biofluids: A practical approach. Transl. Biophotonics 2021, 3, e2020000255. [Google Scholar] [CrossRef]
- Rutherford, S.H.; Nordon, A.; Hunt, N.T.; Baker, M.J. Biofluid Analysis and Classification using IR and 2D-IR Spectroscopy. Chemom. Intell. Lab. Syst. 2021, 217, 104408. [Google Scholar] [CrossRef]
- Shaw, R.A.; Mantsch, H.H. Infrared Spectroscopy of Biological Fluids in Clinical and Diagnostic Analysis. In Encyclopedia of Analytical Chemistry; John and Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Ollesch, J.; Drees, S.L.; Heise, H.M.; Behrens, T.; Brüning, T.; Gerwert, K. FTIR spectroscopy of biofluids revisited: An automated approach to spectral biomarker identification. Analyst 2013, 138, 4092–4102. [Google Scholar] [CrossRef] [PubMed]
- Fabian, H.; Lasch, P.; Naumann, D. Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. J. Biomed. Opt. 2005, 10, 031103. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and understanding biofluid vibrational spectroscopy: A critical review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef] [Green Version]
Model | # Selected PCs | % Explained Variance | Category and Quality | % PCA-LDA Mahalanobis | ||
---|---|---|---|---|---|---|
Cal 80% | Val 20% | External Validation | ||||
1 (Calf 1 out) | 8 | 99.8 | baseline | 64/64 | 16/16 | 7/20 |
infected | 64/64 | 16/16 | 9/20 | |||
% Accuracy | 100 | 100 | 40 | |||
% Sensitivity | 100 | 100 | 45 | |||
% Specificity | 100 | 100 | 35 | |||
2 (Calf 2 out) | 9 | 99.9 | baseline | 64/64 | 16/16 | 16/20 |
infected | 64/64 | 16/16 | 20/20 | |||
% Accuracy | 100 | 100 | 90 | |||
% Sensitivity | 100 | 100 | 100 | |||
% Specificity | 100 | 100 | 80 | |||
3 (Calf 3 out) | 7 | 99.6 | baseline | 64/64 | 16/16 | 18/20 |
infected | 64/64 | 15/16 | 10/20 | |||
% Accuracy | 100 | 97 | 70 | |||
% Sensitivity | 100 | 94 | 50 | |||
% Specificity | 100 | 100 | 90 | |||
4 (Calf 4 out) | 5 | 98.9 | baseline | 54/64 | 10/16 | 17/20 |
infected | 59/64 | 16/16 | 20/20 | |||
% Accuracy | 86 | 81 | 93 | |||
% Sensitivity | 92 | 100 | 100 | |||
% Specificity | 80 | 63 | 85 | |||
5 (Calf 5 out) | 8 | 99.9 | baseline | 63/64 | 16/16 | 18/20 |
infected | 64/64 | 16/16 | 12/20 | |||
% Accuracy | 99 | 100 | 75 | |||
% Sensitivity | 100 | 100 | 60 | |||
% Specificity | 98 | 100 | 90 | |||
Mean ± SD | 7 ± 2 | 99.6 ± 0.4 | % Accuracy | 97 ± 6 (a) | 96 ± 8 (a,b) | 74 ± 21 (b) |
% Sensitivity | 98 ± 4 (a) | 99 ± 3 (a) | 71 ± 27 (b) | |||
% Specificity | 96 ± 9 (a) | 93 ± 17 (a) | 76 ± 23 (a) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Rivera, M.; Woolums, A.R.; Thoresen, M.; Meyer, F.; Vance, C.K. Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics. Molecules 2022, 27, 549. https://doi.org/10.3390/molecules27020549
Santos-Rivera M, Woolums AR, Thoresen M, Meyer F, Vance CK. Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics. Molecules. 2022; 27(2):549. https://doi.org/10.3390/molecules27020549
Chicago/Turabian StyleSantos-Rivera, Mariana, Amelia R. Woolums, Merrilee Thoresen, Florencia Meyer, and Carrie K. Vance. 2022. "Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics" Molecules 27, no. 2: 549. https://doi.org/10.3390/molecules27020549
APA StyleSantos-Rivera, M., Woolums, A. R., Thoresen, M., Meyer, F., & Vance, C. K. (2022). Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics. Molecules, 27(2), 549. https://doi.org/10.3390/molecules27020549