In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Cytotoxic Effect of Streptococcus pyogenes on C6 Glioma Cells
2.2. Evaluation of the Cytotoxic Effect of Protegrin-1, Cathelicidin LL-37 and NGF on C6 Glioma Cells
2.3. Determination of Chemotherapy Action on the C6 Cell Line
2.4. Determination of the Combined Action of S. pyogenes 7 and S. pyogenes 21 with PG-1, LL-37, NGF and Temozolomide on the C6 Cell Line
2.5. Evaluation of the Cytotoxic Combined Effect of NGF, Protegrin-1 and Cathelicidin LL-37 with Chemotherapy on C6 Glioma Cells
2.6. Evaluation of the Cytotoxic Effect of NGF, Protegrin-1, Cathelicidin LL-37 and Streptococcal Strains on Normal Fibroblasts Cells
3. Discussion
4. Materials and Methods
4.1. Streptococcus pyogenes Strains
4.2. Cell Culture
4.3. Trypan Blue Assay
4.4. MTT Assay
4.5. Determination of IC50 Dose, Combination Index and Combination Effects
4.6. Real-Time Cytotoxicity Analysis
4.7. Reagents
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. International Agency for Research on Cancer (Globocan). Available online: https://gco.iarc.fr/tomorrow/home (accessed on 18 September 2021).
- Azzarelli, R.; Simons, B.D.; Philpott, A. The developmental origin of brain tumours: A cellular and molecular framework. Development 2018, 145, dev162693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, J.N.; Urup, T.; Grunnet, K.; Toft, A.; Johansen, M.D.; Poulsen, S.H.; Christensen, I.J.; Muhic, A.; Poulsen, H.S. Toxicity and efficacy of lomustine and bevacizumab in recurrent glioblastoma patients. J. Neurooncol. 2018, 137, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Penas-Prado, M.; Hess, K.R.; Fisch, M.J.; Lagrone, L.W.; Groves, M.D.; Levin, V.A.; De Groot, J.F.; Puduvalli, V.K.; Colman, H.; Volas-Redd, G.; et al. Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma. Neurooncology 2015, 17, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Roci, E.; Cakani, B.; Brace, G.; Bushati, T.; Rroji, A.; Petrela, M.; Kaloshi, G. Platinum-based chemotherapy in recurrent high-grade glioma patients: Retrospective study. Med. Arh. 2014, 68, 140–143. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Strobel, H.; Baisch, T.; Fitzel, R.; Schilberg, K.; Siegelin, M.D.; Karpel-Massler, G.; Debatin, K.M.; Westhoff, M.A. Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef]
- Gao, J.Q.; Lv, Q.; Li, L.-M.; Tang, X.-J.; Li, F.-Z.; Hu, Y.-L.; Han, M. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials 2013, 34, 5628–5639. [Google Scholar] [CrossRef]
- Ivanov, D.P.; Parker, T.L.; Walker, D.A.; Alexander, C.; Ashford, M.B.; Gellert, P.R.; Garnett, M.C. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J. Biotechnol. 2015, 205, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Guidelines on Good Pharmacovigilance Practices: Europ. Medicines Agency. 2015. Available online: http:www.ema.europa.eu (accessed on 24 September 2020).
- Evered, D.; Nugent, J.; Whelan, J. (Eds.) Growth Factors in Biology and Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 0470718676. [Google Scholar]
- Levi-Montalcini, R. The nerve growth factor: Thirty-five years later. Cell Dev. Biol. 1987, 23, 227–238. [Google Scholar] [CrossRef]
- Tacconelli, A.; Farina, A.R.; Cappabianca, L.; DeSantis, G.; Tessitore, A.; Vetuschi, A.; Sferra, R.; Rucci, N.; Argenti, B.; Screpanti, I.; et al. TrkA alternative splicing: A regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 2004, 6, 347–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS ONE 2013, 8, e66557. [Google Scholar] [CrossRef] [Green Version]
- Do, N.; Weindl, G.; Grohmann, L.; Salwiczek, M.; Koksch, B.; Korting, H.C.; Schäfer-Korting, M. Cationic membrane-active peptides-anticancer and antifungal activity as well as penetration into human skin. Exp. Dermatol. 2014, 23, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial Peptides: Versatile Biological Properties. Int. J. Pept. 2013, 2013, 675391. [Google Scholar] [CrossRef] [Green Version]
- Hoskin, D.W.; Ramamoorthy, A. Studies on Anticancer Activities of Antimicrobial Peptides. Biochim. Biophys. Acta 2008, 1778, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol. Rep. 2017, 38, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Patyar, S.; Joshi, R.; Byrav, D.S.P.; Prakash, A.; Medhi, B.; Das, B.K. Bacteria in cancer therapy: A novel experimental strategy. J. Biomed. Sci. 2010, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.N.; Phan, T.X.; Nam, T.K.; Nguyen, V.H.; Kim, H.S.; Bom, H.S.; Choy, H.E.; Hong, Y.; Min, J.J. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol. Ther. 2010, 18, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Starnes, C.O. Coley’s toxins in perspective. Nature 1992, 357, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Ryoma, Y.; Moriya, Y.; Okamoto, M.; Kanaya, I.; Saito, M.; Sato, M. Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy. Anticancer Res. 2004, 24, 3295–3301. [Google Scholar]
- Suvorova, M.A.; Tsapieva, A.N.; Kiseleva, E.P.; Suvorov, A.N.; Bak, E.G.; Arumugam, M.; Chereshnev, V.A. Complete genome sequences of emm111 type Streptococcus pyogenes strain GUR, with antitumor activity, and its derivative strain GURSA1 with an inactivated emm gene. Genome Announc. 2017, 5, e00939-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suvorova, M.A.; Kramskaya, T.A.; Duplik, N.V.; Chereshnev, V.A.; Grabovskaya, K.B.; Ermolenko, E.I.; Suvorov, A.N.; Kiseleva, E.P. The effect of inactivation of the M-protein gene on the antitumor properties of live Streptococcus pyogenes in experiment. Vopr. Oncol. 2017, 63, 803–807. [Google Scholar]
- Voronina, T.A.; Guzeevatykh, L.S.; Mironov, A.N. Guidelines for Conducting Preclinical Studies of Drugs; Mulyar, A.G., Chichenkov, O.N., Eds.; Grif and K: Moscow, Russia, 2012; 944p. [Google Scholar]
- Maletzki, C.; Rosche, Y.; Riess, C. Deciphering molecular mechanisms of arginine deiminase-based therapy-Comparative response analysis in paired human primary and recurrent glioblastomas. Chem. Biol. Interact. 2017, 278, 179–188. [Google Scholar] [CrossRef]
- Yoshida, J.; Takamura, S.; Ishibashi, T.; Nishio, M. Antiproliferative and apoptosis-inducing effects of an antitumor glycoprotein from Streptococcus pyogenes. Anticancer Res. 1999, 19, 1865–1871. [Google Scholar] [PubMed]
- Yoshida, J.; Ishibashi, T.; Nishio, M. Growth-inhibitory effect of a streptococcal antitumor glycoprotein on human epidermoid carcinoma A431 cells- involvement of dephosphorylation of epidermal growth factor receptor. Cancer Res. 2001, 61, 6151–6157. [Google Scholar] [PubMed]
- Lee, J.H.; Moore, L.; Kumar, S.; DeLucas, L.; Pritchard, D.; Ponnazhagan, S.; Deivanayagam, C. In vitro studies on anti-cancer effect of Streptococcus pyogenes phage hyaluronidase (HylP) on breast cancer. AACR Annu. Meet. 2008, 68, 1506. [Google Scholar]
- Higuchi, Y. Antitumor Effect of Streptococcus pyogenes by Inducing Hydrogen Peroxide Production. Jpn. J. Cancer Res. 1996, 87, 1271–1279. [Google Scholar] [CrossRef]
- Watanabe, T.; Кataуama, Y.; Kimura, S.; Yoshino, A. Control of Proliferation and Survival of C6 Glioma Cells with Modification of the Nerve Growth Factor Autocrine System. J. Neurooncol. 1999, 41, 121–128. [Google Scholar] [CrossRef]
- Singer, H.; Hansen, B.; Martinie, D.; Karp, C. Mitogenesis in Glioblastoma Multiforme Cell Lines: A Role for NGF and its TrkA Receptors. J. Neurooncol. 1999, 45, 1–8. [Google Scholar] [CrossRef]
- Huet, S.; Schott, B.; Robert, J. P-glycoprotein overexpression cannot explain the complete doxorubicin-resistance phenotype in rat glioblastoma cell lines. Br. J. Cancer 1992, 65, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and Mechanisms of Human Cathelicidin LL-37 in Cancer. Cell Physiol. Biochem. 2018, 47, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.X.; Cheng, A.S.; To, K.F.; Tong, J.H.; Li, M.S.; Shen, J.; Wong, C.C.; Zhang, L.; Chan, R.L.; Wang, X.J.; et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012, 72, 6512–6523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colle, J.-H.; Périchon, B.; Garcia, A. Antitumor and antibacterial properties of virally encoded cationic sequences. Biologics 2019, 3, 117–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, G.T.; de Lima, T.M.; Barbeiro, H.V.; Chammas, R.; Machado, M.C.C.; da Silva, F.P. Cathelicidin LL-37 Promotes or Inhibits Cancer Cell Stemness Depending on the Tumor Origin. Oncomedicine 2016, 1, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Can, G.; Akpinar, B.; Baran, Y.; Zhivotovsky, B.; Olsson, M. 5-Fluorouracil signaling through a calcium–calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells. Oncogene 2013, 32, 4529–4538. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.X.; Wu, H.P.; Zhang, H.L.; Ashton, C.; Tong, C.; Wu, J. DNA damage-induced sustained p53 activation contributes to inflammation-associated hepatocarcinogenesis in rats. Oncogene 2013, 32, 4565–4571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, K.; Kotian, A.; Subramanian, H.; Daniell, H.; Ali, H. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 2015, 6, 28573–28587. [Google Scholar] [CrossRef] [Green Version]
- Shamova, O.V.; Orlov, D.S.; Pazina, T.Y.; Yamshchikova, E.V.; Orlov, S.B.; Zharkova, M.S. Study of the molecular and cellular bases of the cytotoxic effect of antimicrobial peptides on tumor cells. Fundamental. Res. 2012, 5, 207–212. [Google Scholar]
- Freshney, R.I.; Griffiths, B.; Hay, R.J.; Reid, Y.A.; Carmiol, S.; Kunz-Schugart, L. Animal Cell Culture: A Practical Approach. Masters, 3rd ed.; Oxford University Press: London, UK, 2000. [Google Scholar]
- Brem, H.; Golinko, M.S.; Stojadinovic, O.; Kodra, A.; Diegelmann, R.F.; Vukelic, S.; Entero, H.; Coppock, D.L.; Tomic-Canic, M. Primary cultured fibroblasts derived from patients with chronic wounds: A methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. J. Transl. Med. 2008, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Bozhkova, V.P.; Veprintsev, B.P.; Viktorov, I.V. Guidelines for the Cultivation of Nervous Tissue; Veprintsev, B.P., Viktorov, I.V., Ya, B., Eds.; Science: Moscow, Russia, 1988; 315p. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Svirnovsky, A.I. Methodological studies of drug sensitivity of leukemic cells. Probl. Health Ecol. 2011, 3, 89–91. [Google Scholar]
- Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Junka, A.F.; Janczura, A.; Smutnicka, D.; Mączyńska, B.; Secewicz, A.; Nowicka, J.; Bartoszewicz, M.; Gościniak, G. Use of the Real Time xCelligence System for Purposes of Medical Microbiology. Pol. J. Microbiol. 2012, 61, 191–197. [Google Scholar] [CrossRef]
- van Belle, G.; Fisher, L.D.; Heagerty, P.J.; Lumley, T. Biostatistics: A Methodology for the Health Sciences; Fisher, L.D., van Belle, G., Eds.; Jonh Wiley and Sons Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
GAS Strain | Index of Cytotoxicity, % | |
---|---|---|
MTT Assay | Trypan Blue Assay | |
S. pyogenes GUR | 28.4 ± 0.07 | 52.6 ± 9.1 |
S. pyogenes GURSA1 | 19.2 ± 0.05 | 69.7± 10.5 |
S. pyogenes 7 | 32.2 ± 0.01 | 71.8± 11.9 |
S. pyogenes 21 | 79.1 ± 10.5 * | 79.2 ± 14.5 * |
Substance | IC50, μM (MTT Assay) | IC50, μM (Trypan Blue Assay) |
---|---|---|
Doxorubicin | 227.0 ± 9.9 | 30.0 ± 8.6 |
Carboplatin | 244.1 ± 52.0 | 2600.3 ± 86.0 |
Temozolomide | 391.5 ± 18.0 | 134.8 ± 63.7 |
Cisplatin | 81.2 ± 12.1 | 82.2 ± 3.1 |
Etoposide | 11.5 ± 2.5 | 1.8 ± 0.4 |
NGF | 0.0148 ± 0.0019 | 0.0025 ± 0.001 |
LL-37 | 1.1 ± 0.1 | 1.1 ± 0.2 |
PG-1 | 10.1 ± 1.8 | 8.6 ± 3.6 |
Substance | Substances, μM | PG1 + Chemotherapy, μM | LL37 + Chemotherapy, μM | NGF + Chemotherapy, μM |
---|---|---|---|---|
Doxorubicin | 227.0 ± 9.9 | 375.5 ± 14.6 | 172.6 ± 31.8 | 657.1 ± 26.1 |
Carboplatin | 244.1 ± 52.0 | 1144.4 ± 464.1 | 55.2 ± 1.2 | 2847.8 ± 327.6 |
Temozolomide | 391.5 ± 18.0 | 1313.4 ± 107.1 | 1805.1 ± 115.7 | 5855.2 ± 525.1 |
Cisplatin | 81.2 ± 12.1 | 644.7 ± 16.85 | 4.0 ± 0.3 | 1167.0 ± 137.3 |
Etoposide | 11.5 ± 2.5 | 27.1 ± 4.9 | 0.62 ± 0.14 | 36.4 ± 2.6 |
NGF | 0.0148 ± 0.0019 | - | - | - |
LL-37 | 1.1 ± 0.1 | - | - | - |
PG-1 | 10.1 ± 1.8 | - | - | - |
Substance | Substances, μM | PG1 + Chemotherapy, μM | LL37 + Chemotherapy, μM | NGF + Chemotherapy, μM |
---|---|---|---|---|
Doxorubicin | 30.0 ± 8.6 | 9.16 ± 2.2 | 1657.9 ± 124.9 | 701.1 ± 60.6 |
Carboplatin | 2600.3 ± 86.0 | 2583.1 ± 106.2 | 4216.4 ± 171.7 | 23,296.4 ± 578.0 |
Temozolomide | 134.8 ± 63.7 | 1300.4 ± 424.6 | 23,851.0 ± 238.7 | 23,296.4 ± 578.0 |
Cisplatin | 82.2 ± 3.1 | 28.2 ± 12.29 | 1527.3 ± 168.2 | 4199.0 ± 737.3 |
Etoposide | 1.8 ± 0.4 | 13.7 ± 0.7 | 27.0 ± 4.6 | 28.6 ± 2.2 |
NGF | 0.0025 ± 0.001 | - | - | - |
LL-37 | 1.1 ± 0.2 | - | - | - |
PG-1 | 8.6 ± 3.6 | - | - | - |
Substance | PG1 + Chemotherapy | LL37 + Chemotherapy | NGF + Chemotherapy |
---|---|---|---|
Doxorubicin | 2.72 (antagonism) | 5.57 (antagonism) | 2.90 (antagonism) |
Carboplatin | 0.11 (synergism) | 6.90 (antagonism) | 11.67 (strong antagonism) |
Temozolomide | 1.0 (addittivity) | 13.3 (antagonism) | 4.45 (antagonism) |
Cisplatin | 7.75 (antagonism) | 1.53 (antagonism) | 1413.8 (strong antagonism) |
Etoposide | 2.41 (antagonism) | 0.57 (synergism) | 4.44 (antagonism) |
Substance | PG1 + Chemotherapy | LL37 + Chemotherapy | NGF + Chemotherapy |
---|---|---|---|
Doxorubicin | 0.65 (synergism) | 61.98 (strong antagonism) | 24.69 (strong antagonism) |
Carboplatin | 4.49 (antagonism) | 12.58 (strong antagonism) | 5.78 (antagonism) |
Temozolomide | 9.20 (antagonism) | 60.83 (strong antagonism) | 62.11 (strong antagonism) |
Cisplatin | 0.60 (synergism) | 13.97 (strong antagonism) | 55.49 (strong antagonism) |
Etoposide | 4.43 (antagonism) | 17.24 (strong antagonism) | 18.07 (strong antagonism) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, A.N.; Tsapieva, A.; Alaverdian, D.A.; Filatenkova, T.A.; Galimova, E.S.; Suvorova, M.; Shamova, O.V.; Suvorov, A.N. In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line. Molecules 2022, 27, 569. https://doi.org/10.3390/molecules27020569
Chernov AN, Tsapieva A, Alaverdian DA, Filatenkova TA, Galimova ES, Suvorova M, Shamova OV, Suvorov AN. In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line. Molecules. 2022; 27(2):569. https://doi.org/10.3390/molecules27020569
Chicago/Turabian StyleChernov, Alexandr N., Anna Tsapieva, Diana A. Alaverdian, Tatiana A. Filatenkova, Elvira S. Galimova, Mariia Suvorova, Olga V. Shamova, and Alexander N. Suvorov. 2022. "In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line" Molecules 27, no. 2: 569. https://doi.org/10.3390/molecules27020569
APA StyleChernov, A. N., Tsapieva, A., Alaverdian, D. A., Filatenkova, T. A., Galimova, E. S., Suvorova, M., Shamova, O. V., & Suvorov, A. N. (2022). In Vitro Evaluation of the Cytotoxic Effect of Streptococcus pyogenes Strains, Protegrin PG-1, Cathelicidin LL-37, Nerve Growth Factor and Chemotherapy on the C6 Glioma Cell Line. Molecules, 27(2), 569. https://doi.org/10.3390/molecules27020569