Characteristic Volatile Organic Compound Analysis of Different Cistanches Based on HS-GC-IMS
Abstract
:1. Introduction
2. Results
2.1. HS-GC-IMS Topographic Plots of Different Cistanches
2.2. Identification of Volatile Compounds from Different Cistanches
2.3. Gallery Plots of Different Cistanches
2.4. Clustering Analysis of Different Cistanches
2.4.1. Dynamic PCA of Samples
2.4.2. Fingerprint Similarity Analysis Using Euclidean Distance
3. Materials and Methods
3.1. Materials
3.2. HS-GC-IMS
3.3. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sun, X.; Li, L.; Pei, J.; Liu, C.; Huang, L.F. Metabolome and transcriptome profiling reveals quality variation and underlying regulation of three ecotypes for Cistanche deserticola. Plant Mol. Biol. 2020, 102, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Q.; Xu, R.; He, X.; Feng, R.; Xu, C.Q.; Liu, T. Market Investigation and Study of Standard Grade of Cistanches Herba. Mod. Chin. Med. 2021, 23, 401–408. [Google Scholar]
- National Health Commission. The two departments of the state issued a document: The pilot of 9 substances such as Ganoderma lucidum and tianma is both food and Chinese herbal medicine management. Edible Med. Mushrooms 2020, 28, 16. [Google Scholar]
- Meng, G.; Yong, H.; Xin, C.; Zhi-Feng, Z.; Hong-Rui, Z.; Yan, Z.; He-Min, L.; Yu-Hai, G. Distribution Characteristics of Mineral Elements in Different Types of Cistanche deserticola Y.C.Ma Were Anaylzed by ICP-MS. Spectrosc. Spectr. Anal. 2022, 42, 2452–2455. [Google Scholar]
- Jia, W.; Wen, Y.; Dong, W.; Xin-Hua, Z.; Lei, G. Comparative studies of four Cistanche speices based on HPLC characteristic chromatogram. Chin. J. Pharm. Anal. 2021, 41, 384–393. [Google Scholar]
- Zhang, J.; Li, C.; Che, Y.; Wu, J.; Wang, Z.; Cai, W.; Li, Y.; Ma, Z.; Tu, P. LTQ-Orbitrap-based strategy for traditional Chinese medicine targeted class discovery, identification and herbomics research: A case study on phenylethanoid glycosides in three different species of Herba Cistanches. RSC Adv. 2015, 5, 80816–80828. [Google Scholar] [CrossRef]
- Liu, W.; Song, Q.; Cao, Y.; Xie, N.; Li, Z.; Jiang, Y.; Zheng, J.; Tu, P.; Song, Y.; Li, J. From (1)H NMR-based non-targeted to LC-MS-based targeted metabolomics strategy for in-depth chemome comparisons among four Cistanche species. J. Pharm. Biomed. Anal. 2019, 162, 16–27. [Google Scholar] [CrossRef]
- Xu, C.; Jia, X.; Xu, R.; Wang, Y.; Zhou, Q.; Sun, S. Rapid discrimination of Herba Cistanches by multi-step infrared macro-fingerprinting combined with soft independent modeling of class analogy (SIMCA). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 421–431. [Google Scholar] [CrossRef]
- Xiong, W.T.; Gu, L.; Wang, C.; Sun, H.X.; Liu, X. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. J. Ethnopharmacol. 2013, 150, 935–945. [Google Scholar] [CrossRef]
- Weirong, B.; Xufang, Y.; Lixing, Z.; Ruyi, G.; Yun, W. Enzymatic Transformation of Verbascoside in Cistanche tubulosa. Food 2020, 41, 195–198. [Google Scholar]
- Chen, M.; Cui, G.-H.; Xiao, S.-P.; Lin, S.-F.; Wu, Z.-G.; Huang, Q. Preliminary study on variation pattern of Cistanche deserticola. China J. Chin. Mater. Med. 2008, 33, 2179–2181. [Google Scholar]
- Hong, M.; Rui, C.; Hong, Y. The Comparative Anatomy Research on Vegetative Organs of Cistanche deserticola. J. Inn. Mong. Univ. Nat. Sci. Ed. 2006, 37, 65–68, 122–124. [Google Scholar]
- Biao, L. The Study on Effective Component Content in Cistanche. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2012. [Google Scholar]
- Hou, H.; Liu, C.; Lu, X.; Fang, D.; Hu, Q.; Zhang, Y.; Zhao, L. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques. LWT 2021, 146, 111402. [Google Scholar] [CrossRef]
- Yao, W.; Cai, Y.; Liu, D.; Zhao, Z.; Zhang, Z.; Ma, S.; Zhang, M.; Zhang, H. Comparative analysis of characteristic volatile compounds in Chinese traditional smoked chicken (specialty poultry products) from different regions by headspace-gas chromatography-ion mobility spectrometry. Poult. Sci. 2020, 99, 7192–7201. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, S.; Zheng, Y.; Zhang, M. Volatile Compounds of Different Fresh Wet Noodle Cultivars Evaluated by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. An. Acad. Bras. Cienc. 2020, 92, e20190063. [Google Scholar] [CrossRef]
- Wei, X.-F.; Ma, X.-L.; Cao, J.-H.; Sun, X.-Y.; Fang, Y.-L. Aroma characteristics and volatile compounds of distilled Crystal grape spirits of different alcohol concentrations: Wine sprits in the Shangri-La region of China. Food Sci. Technol. 2018, 38 (Suppl. 1), 50–58. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wang, C.; Zhang, X.; Li, X.; Gao, Y. Characteristic volatiles analysis of Dongbei Suancai across different fermentation stages based on HS-GC-IMS with PCA. J. Food Sci. 2022, 87, 612–622. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, X.; Liu, J.; Jia, M.; Blanchard, C.; Zhou, Z. Characterizing the volatile compounds of different sorghum cultivars by both GC-MS and HS-GC-IMS. Food Res. Int. 2021, 140, 109975. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Wang, X.; Wang, R.; Ren, F.; Zhang, Q.; Shan, Y.; Ding, S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019, 24, 3904. [Google Scholar] [CrossRef] [Green Version]
- Li, M.Q.; Yang, R.W.; Zhang, H.; Wang, S.L.; Chen, D.; Lin, S.Y. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Jampaphaeng, K.; Ferrocino, I.; Giordano, M.; Rantsiou, K.; Maneerat, S.; Cocolin, L. Microbiota dynamics and volatilome profile during stink bean fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a starter culture. Food Microbiol. 2018, 76, 91–102. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Y.; Wang, B.; Song, H.; Zou, T. Screening of the volatile compounds in fresh and thermally treated watermelon juice via headspace-gas chromatography-ion mobility spectrometry and comprehensive two-dimensional gas chromatography-olfactory-mass spectrometry analysis. LWT 2021, 137, 110478. [Google Scholar] [CrossRef]
- Dong, W.; Tan, L.; Zhao, J.; Hu, R.; Lu, M. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta) Cultivars Grown in Hainan Province, China. Molecules 2015, 20, 16687–16708. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wang, R.; Guo, J.; Ge, K.; Li, G.; Fu, F.; Ding, S.; Shan, Y. Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019, 24, 3053. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Wang, J.; He, Y.; Ji, X.J.; Tang, H.; Dong, Y.M.; Yan, W.J. HS-GC-IMS detection of volatile organic compounds in Acacia honey powders under vacuum belt drying at different temperatures. Food Sci. Nutr. 2021, 9, 4085–4093. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, L.; Wu, L.; Xue, X.; Zhao, J.; Li, Y.; Ye, Z.; Lin, G. Classification of Chinese Honeys According to Their Floral Origins Using Elemental and Stable Isotopic Compositions. J. Agric. Food Chem. 2015, 63, 5388–5394. [Google Scholar] [CrossRef]
- Zhou, S.-Q.; Feng, D.; Zhou, Y.-X.; Zhao, J.; Zhao, J.-Y.; Guo, Y.; Yan, W.-J. HS-GC-IMS detection of volatile organic compounds in cistanche powders under different treatment methods. LWT 2022, 165, 113703. [Google Scholar] [CrossRef]
Count | Compound | CAS# | Formula | MW | RI | Rt (s) | Dt (RIPrel) | Comment |
---|---|---|---|---|---|---|---|---|
1 | Ethanol | C64-17-5 | C2H6O | 46.1 | 519.7 | 102.932 | 1.13339 | |
2 | Acetone | C67-64-1 | C3H6O | 58.1 | 537.7 | 110.795 | 1.13243 | |
3 | Methylpropanal | C78-84-2 | C4H8O | 72.1 | 567.8 | 123.954 | 1.10451 | monomer |
4 | Methylpropanal | C78-84-2 | C4H8O | 72.1 | 567.1 | 123.633 | 1.28451 | dimer |
5 | 3-Methylbutanal | C590-86-3 | C5H10O | 86.1 | 647.2 | 158.616 | 1.17285 | monomer |
6 | 3-Methylbutanalr | C590-86-3 | C5H10O | 86.1 | 645.7 | 157.974 | 1.40964 | dimer |
7 | 2-Methylbutanal | C96-17-3 | C5H10O | 86.1 | 667 | 167.281 | 1.16323 | monomer |
8 | 2-Methylbutanalr | C96-17-3 | C5H10O | 86.1 | 662.2 | 165.195 | 1.40001 | dimer |
9 | Acetoin | C513-86-0 | C4H8O2 | 88.1 | 726.1 | 206.658 | 1.32704 | |
10 | Hexanal | C66-25-1 | C6H12O | 100.2 | 793.2 | 262.856 | 1.56653 | |
11 | Pentanal | C110-62-3 | C5H10O | 86.1 | 696.6 | 183.055 | 1.4304 | |
12 | Heptanal | C111-71-7 | C7H14O | 114.2 | 900.4 | 386.492 | 1.32578 | monomer |
13 | Heptanal | C111-71-7 | C7H14O | 114.2 | 898.8 | 383.682 | 1.69888 | dimer |
14 | (E)-2-Heptenal | C18829-55-5 | C7H12O | 112.2 | 956.7 | 486.525 | 1.2615 | monomer |
15 | (E)-2-Heptenal | C18829-55-5 | C7H12O | 112.2 | 955.8 | 484.839 | 1.67241 | dimer |
16 | 2-Heptanone | C110-43-0 | C7H14O | 114.2 | 890.6 | 370.195 | 1.25898 | monomer |
17 | 2-Heptanone | C110-43-0 | C7H14O | 114.2 | 890.1 | 369.633 | 1.63838 | dimer |
18 | (E)-2-Hexenal | C6728-26-3 | C6H10O | 98.1 | 846.7 | 321.864 | 1.18335 | monomer |
19 | (E)-2-Hexenal | C6728-26-3 | C6H10O | 98.1 | 846.7 | 321.864 | 1.52494 | dimer |
20 | (E)-2-Octenal | C2548-87-0 | C8H14O | 126.2 | 1067.7 | 695.821 | 1.33298 | monomer |
21 | (E)-2-Octenal | C2548-87-0 | C8H14O | 126.2 | 1065.5 | 691.686 | 1.82433 | dimer |
22 | n-Nonanal | C124-19-6 | C9H18O | 142.2 | 1105.4 | 769.423 | 1.46964 | monomer |
23 | n-Nonanal | C124-19-6 | C9H18O | 142.2 | 1105.9 | 770.25 | 1.95024 | dimer |
24 | (E)-2-Nonenal | C18829-56-6 | C9H16O | 140.2 | 1161.8 | 879.239 | 1.40734 | |
25 | Decanal | C112-31-2 | C10H20O | 156.3 | 1212.8 | 978.677 | 1.53391 | |
26 | Octanal | C124-13-0 | C8H16O | 128.2 | 1010.8 | 585.11 | 1.39729 | monomer |
27 | Octanal | C124-13-0 | C8H16O | 128.2 | 1008.1 | 579.876 | 1.81921 | dimer |
28 | Phenylacetaldehyde | C122-78-1 | C8H8O | 120.2 | 1038.8 | 639.539 | 1.25666 | |
29 | 2,3-Butanedione | C431-03-8 | C4H6O2 | 86.1 | 586.5 | 132.113 | 1.16452 | |
30 | 2-Propanol | C67-63-0 | C3H8O | 60.1 | 540.6 | 112.085 | 1.21749 | |
31 | Ethyl acetate | C141-78-6 | C4H8O2 | 88.1 | 607.4 | 141.256 | 1.09931 | monomer |
32 | Ethyl acetate | C141-78-6 | C4H8O2 | 88.1 | 606.6 | 140.883 | 1.3438 | dimer |
33 | 2-Methylpropanol | C78-83-1 | C4H10O | 74.1 | 628.3 | 150.375 | 1.16871 | monomer |
34 | 2-Methylpropanol | C78-83-1 | C4H10O | 74.1 | 627.4 | 150.003 | 1.36194 | dimer |
35 | (E)-2-Pentenal | C1576-87-0 | C5H8O | 84.1 | 748.2 | 224.229 | 1.11138 | monomer |
36 | (E)-2-Pentenal | C1576-87-0 | C5H8O | 84.1 | 747.3 | 223.581 | 1.36555 | dimer |
37 | 1-Pentanol | C71-41-0 | C5H12O | 88.1 | 768.8 | 240.733 | 1.51103 | |
38 | Furfural | C98-01-1 | C5H4O2 | 96.1 | 849.4 | 324.875 | 1.08437 | monomer |
39 | Furfural | C98-01-1 | C5H4O2 | 96.1 | 847.9 | 323.18 | 1.33581 | dimer |
40 | Gamma-butyrolactone | C96-48-0 | C4H6O2 | 86.1 | 943.9 | 463.811 | 1.08519 | monomer |
41 | Gamma-butyrolactone | C96-48-0 | C4H6O2 | 86.1 | 941.4 | 459.34 | 1.30502 | dimer |
42 | Methional | C3268-49-3 | C4H8OS | 104.2 | 913.2 | 409.263 | 1.0909 | |
43 | Methyl hexanoate | C106-70-7 | C7H14O2 | 130.2 | 920.8 | 422.676 | 1.28447 | monomer |
44 | Methyl hexanoate | C106-70-7 | C7H14O2 | 130.2 | 920.5 | 422.229 | 1.68557 | dimer |
45 | Butyl acetate | C123-86-4 | C6H12O2 | 116.2 | 816.5 | 288.54 | 1.61755 | |
46 | 6-Methyl-5-hepten-2-one | C110-93-0 | C8H14O | 126.2 | 990.8 | 547.119 | 1.16743 | |
47 | 2-Pentylfuran | C3777-69-3 | C9H14O | 138.2 | 993.6 | 552.086 | 1.25933 | |
48 | Linalool | C78-70-6 | C10H18O | 154.3 | 1099.5 | 757.916 | 1.24181 |
[+] a-1 | [+] a-2 | [+] a-3 | [+] b-1 | [+] b-2 | [+] b-3 | [+] c-1 | [+] c-2 | [+] c-3 | |
---|---|---|---|---|---|---|---|---|---|
[+] a-1 | 0 | 244,780.261 | 349,867.703 | 10,298,521.170 | 10,797,214.659 | 10,768,595.551 | 11,414,096.203 | 10,833,142.541 | 10,653,051.491 |
[+] a-2 | 244,780.261 | 0 | 101,933.352 | 12,021,114.137 | 12,457,807.693 | 12,417,734.407 | 13,249,669.406 | 12,696,028.017 | 12,483,589.885 |
[+] a-3 | 349,867.703 | 101,933.352 | 0 | 12,578,385.513 | 13,066,327.608 | 13,032,175.961 | 13,504,086.200 | 12,940,298.655 | 12,735,107.148 |
[+] b-1 | 10,298,521.170 | 12,021,114.137 | 12,578,385.513 | 0 | 177,930.336 | 333,022.655 | 8,392,413.066 | 8,332,392.665 | 8,254,672.403 |
[+] b-2 | 1,079,7214.659 | 12,457,807.693 | 13,066,327.608 | 177,930.336 | 0 | 56,862.870 | 9,101,479.265 | 9,140,934.968 | 9,039,867.767 |
[+] b-3 | 10,768,595.551 | 12,417,734.407 | 13,032,175.961 | 333,022.655 | 56,862.870 | 0 | 8,995,502.234 | 9,098,087.522 | 8,991,662.351 |
[+] c-1 | 11,414,096.203 | 13,249,669.406 | 13,504,086.200 | 8,392,413.066 | 9,101,479.265 | 8,995,502.234 | 0 | 595,582.622 | 711,259.717 |
[+] c-2 | 10,833,142.541 | 12,696,028.017 | 12,940,298.655 | 8,332,392.665 | 9,140,934.968 | 9,098,087.522 | 595,582.622 | 0 | 15,974.500 |
[+] c-3 | 10,653,051.491 | 12,483,589.885 | 12,735,107.148 | 8,254,672.403 | 9,039,867.767 | 8,991,662.351 | 711,259.717 | 15,974.500 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Feng, D.; Zhou, Y.; Duan, H.; He, Y.; Jiang, Y.; Yan, W. Characteristic Volatile Organic Compound Analysis of Different Cistanches Based on HS-GC-IMS. Molecules 2022, 27, 6789. https://doi.org/10.3390/molecules27206789
Zhou S, Feng D, Zhou Y, Duan H, He Y, Jiang Y, Yan W. Characteristic Volatile Organic Compound Analysis of Different Cistanches Based on HS-GC-IMS. Molecules. 2022; 27(20):6789. https://doi.org/10.3390/molecules27206789
Chicago/Turabian StyleZhou, Shiqi, Duo Feng, Yaxi Zhou, Hao Duan, Yue He, Yongjun Jiang, and Wenjie Yan. 2022. "Characteristic Volatile Organic Compound Analysis of Different Cistanches Based on HS-GC-IMS" Molecules 27, no. 20: 6789. https://doi.org/10.3390/molecules27206789
APA StyleZhou, S., Feng, D., Zhou, Y., Duan, H., He, Y., Jiang, Y., & Yan, W. (2022). Characteristic Volatile Organic Compound Analysis of Different Cistanches Based on HS-GC-IMS. Molecules, 27(20), 6789. https://doi.org/10.3390/molecules27206789