Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Composites
2.2. Electrochemical Characterizations
2.3. Optimization of Experimental Conditions
2.4. Analytical Performance of the Aptasensor
2.5. Selectivity Investigation of Aptasensor
2.6. Real Sample Analysis
3. Materials and Methods
3.1. Reagents
3.2. Apparatus
3.3. Synthesis of AuNPs/ZIF-8
3.4. Synthesis of AuNPs/PCs
3.5. Fabrication of the Aptasensor
3.6. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Lorgeril, J.; Lucasson, A.; Petton, B.; Toulza, E.; Montagnani, C.; Clerissi, C.; Vidal-Dupiol, J.; Chaparro, C.; Galinier, R.; Escoubas, J.-M.; et al. Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nat. Commun. 2018, 9, 4215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Bo, X. Laser-enabled flexible electrochemical sensor on finger for fast food security detection. J. Hazard. Mater. 2022, 423, 127014–127026. [Google Scholar] [CrossRef]
- Dong, X.; Yan, X.; Li, M.; Liu, H.; Li, J.; Wang, L.; Wang, K.; Lu, X.; Wang, S.; He, B. Ultrasensitive detection of chloramphenicol using electrochemical aptamer sensor: A mini review. Electrochem. Commun. 2020, 120, 106835–106841. [Google Scholar] [CrossRef]
- Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J. Hazard. Mater. 2018, 342, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Forti, A.; Campana, G.; Simonella, A.; Multari, M.; Scortichini, G. Determination of chloramphenicol in honey by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2005, 529, 257–263. [Google Scholar] [CrossRef]
- Bogusz, M.J.; Hassan, H.; Al-Enazi, E.; Ibrahim, Z.; Al-Tufail, M. Rapid determination of chloramphenicol and its glucuronide in food products by liquid chromatography–electrospray negative ionization tandem mass spectrometry. J. Chromatogr. B 2004, 807, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Barveen, N.R.; Wang, T.-J.; Chang, Y.-H. Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples. Chemosphere 2021, 275, 130115–130127. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Jian, D.; Zhang, Y.; Shan, Y.; Wang, S.; Liu, F. Paper-based antibiotic sensor (PAS) relying on colorimetric indirect competitive enzyme-linked immunosorbent assay for quantitative tetracycline and chloramphenicol detection. Sens. Actuators B Chem. 2021, 329, 129173–129184. [Google Scholar] [CrossRef]
- Xie, X.; Wang, B.; Pang, M.; Zhao, X.; Xie, K.; Zhang, Y.; Wang, Y.; Guo, Y.; Liu, C.; Bu, X.; et al. Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry. Food Chem. 2018, 269, 542–548. [Google Scholar] [CrossRef]
- Zhao, M.; Li, X.; Zhang, Y.; Wang, Y.; Wang, B.; Zheng, L.; Zhang, D.; Zhuang, S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem. 2020, 339, 127857–127864. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Li, Z.; Dong, C.; Li, H.-W.; Li, J. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem. J. 2019, 148, 774–783. [Google Scholar] [CrossRef]
- Meenakshi, S.; Sophia, S.J.; Pandian, K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng. C 2018, 90, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bhardwaj, J.; Jang, J. Label-Free, Highly Sensitive Electrochemical Aptasensors Using Polymer-Modified Reduced Graphene Oxide for Cardiac Biomarker Detection. ACS Omega 2020, 5, 3924–3931. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Wang, S.; Wang, W.; Niu, Z.; Rodas-Gonzalez, A.; Li, K.; Li, L.; Yang, Q. CoNi bimetallic metal-organic frameworks and gold nanoparticles-based aptamer electrochemical sensor for enrofloxacin detection. Appl. Surf. Sci. 2022, 604, 154369–154379. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, D.; Wang, G.; Geng, L.; Xu, R.; Wang, G.; Guo, Y.; Sun, X. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. J. Hazard. Mater. 2022, 440, 129707–129718. [Google Scholar] [CrossRef]
- Li, H.-K.; An, Y.-X.; Zhang, E.-H.; Zhou, S.-N.; Li, M.-X.; Li, Z.-J.; Li, X.; Yuan, R.; Zhang, W.; He, H. A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection performance. Anal. Chim. Acta 2022, 1223, 340204–340212. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Zou, J.; Yu, Q.; Gao, Y.; Qu, F.; Liu, S.; Zhou, H.; Lu, L. Ultrasensitive indirect electrochemical sensing of thiabendazole in fruit and water by the anodic stripping voltammetry of Cu2+ with hierarchical Ti3C2Tx-TiO2 for signal amplification. Food Chem. 2023, 402, 134379–134387. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, R.; Yuan, Q.; Wang, F. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta 2017, 167, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Qian, Y.; Badshah, A.; Nadeem, M.A.; Zhao, D. Highly Porous Carbon Derived from MOF-5 as a Support of ORR Electrocatalysts for Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 17268–17275. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, S.; He, D.; Yu, D.; Liu, F.; Shao, N.; Zhang, Z. MOF-Derived Porous ZnO Nanocages/rGO/Carbon Sponge-Based Photocatalytic Microreactor for Efficient Degradation of Water Pollutants and Hydrogen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 11989–11998. [Google Scholar] [CrossRef]
- An, L.; Cao, M.; Zhang, X.; Lin, J.; Tian, Q.; Yang, S. pH and Glutathione Synergistically Triggered Release and Self-Assembly of Au Nanospheres for Tumor Theranostics. ACS Appl. Mater. Interfaces 2020, 12, 8050–8061. [Google Scholar] [CrossRef]
- Ocsoy, I.; Gulbakan, B.; Shukoor, M.I.; Xiong, X.; Chen, T.; Powell, D.H.; Tan, W. Aptamer-Conjugated Multifunctional Nanoflowers as a Platform for Targeting, Capture, and Detection in Laser Desorption Ionization Mass Spectrometry. ACS Nano 2012, 7, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Salandari-Jolge, N.; Ensafi, A.A.; Rezaei, B. Ultra-sensitive electrochemical aptasensor based on zeolitic imidazolate framework-8 derived Ag/Au core-shell nanoparticles for mercury detection in water samples. Sens. Actuators B Chem. 2021, 331, 129426–129435. [Google Scholar] [CrossRef]
- Jin, Y.; Li, X.; Ge, C.; Ma, J.; Li, Y.; Zhao, E.; Yao, S.; Xu, G.; Li, D. Carbon nanotube hollow polyhedrons derived from ZIF-8@ZIF-67 coupled to electro-deposited gold nanoparticles for voltammetric determination of acetaminophen. Mikrochim. Acta 2019, 187, 6. [Google Scholar] [CrossRef]
- Dadmehr, M.; Shahi, S.C.; Malekkiani, M.; Korouzhdehi, B.; Tavassoli, A. A stem-loop like aptasensor for sensitive detection of aflatoxin based on graphene oxide/AuNPs nanocomposite platform. Food Chem. 2023, 402, 134212–134223. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Chai, B.; Gao, L.; Zhao, J.; Xu, X. An ultrasensitive electrochemical aptasensor for microcystin-LR detection using core-satellite gold nanoparticle/silver nanocluster nanoassemblies as labels for signal amplification. Sens. Actuators B Chem. 2022, 371, 132586–132594. [Google Scholar] [CrossRef]
- Liu, S.; Lai, G.; Zhang, H.; Yu, A. Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles. Mikrochim. Acta 2017, 184, 1445–1451. [Google Scholar] [CrossRef]
- He, B.; Wang, S. An electrochemical aptasensor based on PEI-C3N4/AuNWs for determination of chloramphenicol via exonuclease-assisted signal amplification. Mikrochim. Acta 2021, 188, 22. [Google Scholar] [CrossRef]
- Lu, M.; Cao, C.; Wang, F.; Liu, G. A polyethyleneimine reduced graphene oxide/gold nanocubes based electrochemical aptasensor for chloramphenicol detection using single-stranded DNA-binding protein. Mater. Des. 2020, 199, 109409–109417. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, M.; Wei, X.; Sun, Y.; Chen, Y.; Qi, S.; Tian, X.; Qiu, J.; Xu, D. Synthesis of rGO@PDA@AuNPs for an effective electrochemical chloramphenicol sensor. Diam. Relat. Mater. 2022, 128, 109311–109320. [Google Scholar] [CrossRef]
- Roushani, M.; Rahmati, Z.; Farokhi, S.; Hoseini, S.J.; Fath, R.H. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles. Mater. Sci. Eng. C 2020, 108, 110388–110397. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.-C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; et al. Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, J.; Wang, L. Porous carbon derived from ZIF-8 modified molecularly imprinted electrochemical sensor for the detection of tert-butyl hydroquinone (TBHQ) in edible oil. Food Chem. 2021, 365, 130462–130469. [Google Scholar] [CrossRef] [PubMed]
Modified Electrode | Method | Linear Range (nM) | LOD (nM) | Ref. |
---|---|---|---|---|
Apt/rGO/AgNPs/GCE | LSV | 10–35 × 103 | 2 | [27] |
PEI-C3N4/AuNWs | DPV | 0.1–1000 | 2.69 × 10−3 | [28] |
Apt/PEI-rGO/AuNCs/AuE | DPV | 0.005–1 × 103 | 2.08 × 10−3 | [29] |
rGO@PDA@AuNPs | DPV | 100–100 × 103 | 58 | [30] |
Apt/AgNPs/[NH2–Si]-f-GO/GCE | DPV | 0.01–200 | 0.0033 | [31] |
Apt/AuNPs/PCs/GCE | DPV | 0.0001–100 | 0.03 × 10−3 | This work |
Samples | Added (pM) | Found (pM) | RSD (%) | Recovery (%) | by ICPMS Method |
---|---|---|---|---|---|
1 | 100 | 103 | 2.17 | 103.0 | 98.41 |
2 | 500 | 477 | 2.96 | 95.4 | 511.81 |
3 | 1000 | 985 | 1.88 | 98.8 | 1017.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zou, J.; Zhong, W.; Zou, J.; Gao, Y.; Liu, S.; Zhang, S.; Lu, L. Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol. Molecules 2022, 27, 6842. https://doi.org/10.3390/molecules27206842
Yang J, Zou J, Zhong W, Zou J, Gao Y, Liu S, Zhang S, Lu L. Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol. Molecules. 2022; 27(20):6842. https://doi.org/10.3390/molecules27206842
Chicago/Turabian StyleYang, Jing, Jiamin Zou, Wei Zhong, Jin Zou, Yansha Gao, Shuwu Liu, Songbai Zhang, and Limin Lu. 2022. "Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol" Molecules 27, no. 20: 6842. https://doi.org/10.3390/molecules27206842
APA StyleYang, J., Zou, J., Zhong, W., Zou, J., Gao, Y., Liu, S., Zhang, S., & Lu, L. (2022). Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol. Molecules, 27(20), 6842. https://doi.org/10.3390/molecules27206842