Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Morphological Assessment, Cell Proliferation, and Cytotoxicity Analysis
2.2. Cytochrome C Release and Caspase 3/7 Activity
2.3. Reactive Oxygen Species (ROS) Production and Nuclear Hoechst Staining
2.4. Immunofluorescence and Immunoblotting of p53, Bax, and Bcl-2
3. Discussion
4. Materials and Methods
4.1. Plant Material, Collection Site, and Herbarium
4.2. Extraction and Green Synthesis of ZnO NPs
4.3. Cell Culture
4.4. Morphology, Cell Proliferation, and Cytotoxicity Analysis
4.5. Cytochrome C Release and Caspase 3/7 Assay
4.6. Hoechst Staining and Reactive Oxygen Species (ROS) Production
4.7. Immunofluorescence and Immunoblotting
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassanpour, S.H.; Dehghani, M. Review of Cancer from Perspective of Molecular. J. Cancer Res. Pract. 2017, 4, 127–129. [Google Scholar] [CrossRef]
- Fares, J.; Kanojia, D.; Rashidi, A.; Ulasov, I.; Lesniak, M.S. Landscape of Combination Therapy Trials in Breast Cancer Brain Metastasis. Int. J. Cancer 2020, 147, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salam, H.A.; Sivaraj, R.; Venckatesh, R. Green Synthesis and Characterization of Zinc Oxide Nanoparticles from Ocimum basilicum L. Var. purpurascens Benth.-Lamiaceae Leaf Extract. Mater. Lett. 2014, 131, 16–18. [Google Scholar] [CrossRef]
- Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S.I. Novel Green Synthetic Strategy to Prepare ZnO Nanocrystals Using Rambutan (Nephelium lappaceum L.) Peel Extract and Its Antibacterial Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 17–27. [Google Scholar] [CrossRef]
- Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. Green Synthesis of ZnO Nanoparticles Using Solanum Nigrum Leaf Extract and Their Antibacterial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 864–870. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, C.; Chen, X.; Yang, Z. Zinc Oxide Nanoparticles Induce Renal Toxicity through Reactive Oxygen Species. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2016, 90, 76–83. [Google Scholar] [CrossRef]
- Rajeshkumar, S. Anticancer Activity of Eco-Friendly Gold Nanoparticles against Lung and Liver Cancer Cells. J. Genet. Eng. Biotechnol. 2016, 14, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-Extract Mediated Synthesis of ZnO Nanoparticles Using Pongamia Pinnata and Their Activity against Pathogenic Bacteria. Adv. Powder Technol. 2015, 26, 1294–1299. [Google Scholar] [CrossRef]
- Jamdagni, P.; Khatri, P.; Rana, J.S. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract of Nyctanthes Arbor-Tristis and Their Antifungal Activity. J. King Saud Univ.—Sci. 2018, 30, 168–175. [Google Scholar] [CrossRef]
- Taranath, T.C.; Patil, B.N. Limonia Acidissima L. Leaf Mediated Synthesis of Zinc Oxide Nanoparticles: A Potent Tool against Mycobacterium Tuberculosis. Int. J. Mycobacteriol. 2016, 5, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Pulit-Prociak, J.; Chwastowski, J.; Kucharski, A.; Banach, M. Functionalization of Textiles with Silver and Zinc Oxide Nanoparticles. Appl. Surf. Sci. 2016, 385, 543–553. [Google Scholar] [CrossRef]
- Mirzaei, H.; Darroudi, M. Zinc Oxide Nanoparticles: Biological Synthesis and Biomedical Applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Stan, M.; Popa, A.; Toloman, D.; Dehelean, A.; Lung, I.; Katona, G. Enhanced Photocatalytic Degradation Properties of Zinc Oxide Nanoparticles Synthesized by Using Plant Extracts. Mater. Sci. Semicond. Process. 2015, 39, 23–29. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Ahmad, I.; Alshahrani, M.Y.; Wahab, S.; Al-Harbi, A.I.; Nisar, N.; Alraey, Y.; Alqahtani, A.; Mir, M.A.; Irfan, S.; Saeed, M. Zinc oxide nanoparticle: An effective antibacterial agent against pathogenic bacterial isolates. J. King Saud Univ. Sci. 2022, 34, 102110. [Google Scholar] [CrossRef]
- Mishra, P.; Ahmad, A.; AI-Keridis, L.A.; Alshammari, N.; Alabdallah, N.; Muzammil, K.; Saeed, M.; Ansari, I.M. Doxorubicin-Conjugated Zinc Oxide Nanoparticles, Biogenically Synthesized Using a Fungus Aspergillus niger, Exhibit High Therapeutic Efficacy against Lung Cancer Cells. Molecules. 2022, 27, 2590. [Google Scholar] [CrossRef]
- Zheng, J.; Lang, Y.; Zhang, Q.; Cui, D.; Sun, H.; Jiang, L.; Chen, Z.; Zhang, R.; Gao, Y.; Tian, W.; et al. Structure of Human MDM2 Complexed with RPL11 Reveals the Molecular Basis of P53 Activation. Genes Dev. 2015, 29, 1524–1534. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.G.; Park, S.; Lim, C.H.; Kim, H.S.; Song, S.Y.; Roh, T.-Y.; Sung, J.-H.; Suh, W.; Ham, S.-J.; Lim, K.-H.; et al. ZNF224, Krüppel like Zinc Finger Protein, Induces Cell Growth and Apoptosis-Resistance by down-Regulation of P21 and P53 via MiR-663a. Oncotarget 2016, 7, 31177–31190. [Google Scholar] [CrossRef] [Green Version]
- Finn, C.E. Rubus spp., blackberry. In The Encyclopedia of Fruits and Nuts; Janick, J., Paull, R.E., Eds.; CABI: Cambridge, MA, USA, 2008; pp. 348–351. [Google Scholar]
- Patel, A.V.; Rojas-Vera, J.; Dacke, C.G. Therapeutic Constituents and Actions of Rubus Species. Curr. Med. Chem. 2004, 11, 1501–1512. [Google Scholar] [CrossRef]
- Das, N.J.; Saikia, S.P.; Sarkar, S.; Devi, K. Medicinal Plants of North-Kamrup District of Assam Used in Primary Healthcare System. IJTK 2006, 5, 489–493. [Google Scholar]
- Barukial, J.; Sarmah, J.N. Ethnomedicinal Plants Used by the People of Golaghat District, Assam, India. Int. J. Med. Aromat. Plants 2011, 1, 203–211. [Google Scholar]
- Plackal Adimuriyil George, B.; Tynga, I.M.; Abrahamse, H. In Vitro Antiproliferative Effect of the Acetone Extract of Rubus Fairholmianus Gard. Root on Human Colorectal Cancer Cells. BioMed Res. Int. 2015, 2015, 165037. [Google Scholar] [CrossRef]
- George, B.P.; Abrahamse, H.; Parimelazhagan, T. Caspase Dependent Apoptotic Activity of Rubus Fairholmianus Gard. on MCF-7 Human Breast Cancer Cell Lines. J. Appl. Biomed. 2016, 14, 211–219. [Google Scholar] [CrossRef]
- George, B.P.A.; Abrahamse, H.; Hemmaragala, N.M. Caspase Dependent Apoptotic Inhibition of Melanoma and Lung Cancer Cells by Tropical Rubus Extracts. Biomed. Pharmacother. 2016, 80, 193–199. [Google Scholar] [CrossRef]
- Plackal Adimuriyil George, B.; Kumar, N.; Abrahamse, H.; Ray, S.S. Apoptotic Efficacy of Multifaceted Biosynthesized Silver Nanoparticles on Human Adenocarcinoma Cells. Sci. Rep. 2018, 8, 14368. [Google Scholar] [CrossRef] [Green Version]
- George, B.P.; Abrahamse, H. Increased Oxidative Stress Induced by Rubus Bioactive Compounds Induce Apoptotic Cell Death in Human Breast Cancer Cells. Oxid. Med. Cell. Longev. 2019, 2019, 6797921. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, N.K.; George, B.P.; Houreld, N.N.; Abrahamse, H. Synthesis of Zinc Oxide Nanoparticles Using Rubus Fairholmianus Root Extract and Their Activity against Pathogenic Bacteria. Molecules 2021, 26, 3029. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Pissas, G.; Liakopoulos, V.; Stefanidis, I. Cytochrome C as a potential Clinical Useful Marker of Mitochondrial and cellular Damage. Front. Immunol. 2016, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Enrique Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32. Available online: www.biomedcentral.com/1471-2121/14/32 (accessed on 9 September 2022). [CrossRef] [Green Version]
- El-Shorbagy, H.M.; Eissa, S.M.; Sabet, S.; El-Ghor, A.A. Apoptosis and Oxidative Stress as Relevant Mechanisms of Antitumor Activity and Genotoxicity of ZnO-NPs Alone and in Combination with N-Acetyl Cysteine in Tumor-Bearing Mice. Int. J. Nanomed. 2019, 14, 3911–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moos, P.J.; Chung, K.; Woessner, D.; Honeggar, M.; Cutler, N.S.; Veranth, J.M. ZnO Particulate Matter Requires Cell Contact for Toxicity in Human Colon Cancer Cells. Chem. Res. Toxicol. 2010, 23, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Saad, B.; Dakwar, S.; Said, O.; Abu-Hijleh, G.; Battah, F.A.; Kmeel, A.; Aziazeh, H. Evaluation of Medicinal Plant Hepatotoxicity in Co-Cultures of Hepatocytes and Monocytes. Evid. Based Complement. Alternat. Med. 2006, 3, 93–98. [Google Scholar] [CrossRef]
- Vidau, C.; Brunet, J.-L.; Badiou, A.; Belzunces, L.P. Phenylpyrazole Insecticides Induce Cytotoxicity by Altering Mechanisms Involved in Cellular Energy Supply in the Human Epithelial Cell Model Caco-2. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2009, 23, 589–597. [Google Scholar] [CrossRef]
- Pandurangan, M.; Enkhtaivan, G.; Kim, D.H. Anticancer Studies of Synthesized ZnO Nanoparticles against Human Cervical Carcinoma Cells. J. Photochem. Photobiol. B 2016, 158, 206–211. [Google Scholar] [CrossRef]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of Cytochrome c Release from Mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef] [Green Version]
- Chota, A.; George, B.P.; Abrahamse, H. Interactions of Multidomain Pro-Apoptotic and Anti-Apoptotic Proteins in Cancer Cell Death. Oncotarget 2021, 12, 1615–1626. [Google Scholar] [CrossRef]
- Choi, Y. Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells. Oncol. Rep. 2015, 34, 2533–2540. [Google Scholar] [CrossRef] [Green Version]
- Al-Oqail, M.M. Anticancer efficacies of Krameria lappacea extracts against human breast cancer cell line (MCF-7): Role of oxidative stress and ROS generation. Saudi Pharm. J. 2021, 29, 244–251. [Google Scholar] [CrossRef]
- De Botton, S.; Sabri, S.; Daugas, E.; Zermati, Y.; Guidotti, J.E.; Hermine, O.; Kroemer, G.; Vainchenker, W.; Debili, N. Platelet Formation Is the Consequence of Caspase Activation within Megakaryocytes. Blood 2002, 100, 1310–1317. [Google Scholar] [CrossRef]
- McComb, S.; Chan, P.K.; Guinot, A.; Hartmannsdottir, H.; Jenni, S.; Dobay, M.P.; Bourquin, J.-P.; Bornhauser, B.C. Efficient Apoptosis Requires Feedback Amplification of Upstream Apoptotic Signals by Effector Caspase-3 or -7. Sci. Adv. 2019, 5, eaau9433. [Google Scholar] [CrossRef] [Green Version]
- Bisht, G.; Rayamajhi, S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine 2016, 3, 9. [Google Scholar] [CrossRef]
- Carmody, R.J.; Cotter, T.G. Signalling Apoptosis: A Radical Approach. Redox Rep. Commun. Free Radic. Res. 2001, 6, 77–90. [Google Scholar] [CrossRef]
- Li, D.; Ueta, E.; Kimura, T.; Yamamoto, T.; Osaki, T. Reactive Oxygen Species (ROS) Control the Expression of Bcl-2 Family Proteins by Regulating Their Phosphorylation and Ubiquitination. Cancer Sci. 2004, 95, 644–650. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Shawkey, A.E.; Rabeh, M.A.; Abdellatif, A.O. Expression of P53, BAX, and BCL-2 in Human Malignant Melanoma and Squamous Cell Carcinoma Cells after Tea Tree Oil Treatment in Vitro. Cytotechnology 2019, 71, 461–473. [Google Scholar] [CrossRef]
- Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Multiple Pathways of Cytochrome c Release from Mitochondria in Apoptosis. Biochim. Biophys. Acta BBA—Bioenerg. 2006, 1757, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ghosh, S.; Chandna, S. Evidence for MicroRNA-31 Dependent Bim-Bax Interaction Preceding Mitochondrial Bax Translocation during Radiation-Induced Apoptosis. Sci. Rep. 2015, 5, 15923. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Patwari, Y.; Srinivasula, S.M.; Newland, A.C.; Fernandes-Alnemri, T.; Alnemri, E.S.; Kelsey, S.M. Bax Translocation Is Crucial for the Sensitivity of Leukaemic Cells to Etoposide-Induced Apoptosis. Oncogene 2001, 20, 4817–4826. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-T.; Kang, J.A.; Choi, J.-A.; Kang, C.-M.; Kim, T.-H.; Bae, S.; Kang, S.; Kim, S.; Choi, W.-I.; Cho, C.-K.; et al. Phytosphingosine Induces Apoptotic Cell Death via Caspase 8 Activation and Bax Translocation in Human Cancer Cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003, 9, 878–885. [Google Scholar]
- Akhtar, R.S.; Geng, Y.; Klocke, B.J.; Roth, K.A. Neural Precursor Cells Possess Multiple P53-Dependent Apoptotic Pathways. Cell Death Differ. 2006, 13, 1727–1739. [Google Scholar] [CrossRef] [Green Version]
- Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.Ö.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, Apoptotic and Autophagic Cell Fates Triggered by Nanoparticles. Autophagy 2019, 15, 4–33. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, B.P.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules 2022, 27, 6862. https://doi.org/10.3390/molecules27206862
George BP, Rajendran NK, Houreld NN, Abrahamse H. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules. 2022; 27(20):6862. https://doi.org/10.3390/molecules27206862
Chicago/Turabian StyleGeorge, Blassan P., Naresh K. Rajendran, Nicolette N. Houreld, and Heidi Abrahamse. 2022. "Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells" Molecules 27, no. 20: 6862. https://doi.org/10.3390/molecules27206862
APA StyleGeorge, B. P., Rajendran, N. K., Houreld, N. N., & Abrahamse, H. (2022). Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules, 27(20), 6862. https://doi.org/10.3390/molecules27206862