Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Cheese Samples
3.2. Chemicals and Reagents
3.3. PAHs Standards
3.4. Determination of PAHs Content
3.4.1. Extraction and Clean-Up
3.4.2. Chromatographic Analysis
3.4.3. Recovery Studies
3.4.4. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boffetta, P.; Jourenkova, N.; Gustavsson, P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997, 8, 444–472. [Google Scholar] [CrossRef] [PubMed]
- IARC (International Agency for Research on Cancer). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 2002; Volume 82. [Google Scholar]
- IARC (International Agency for Research on Cancer). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 2010; Volume 92. [Google Scholar]
- Aygun, F.S.; Kabadayi, F. Determination of benzo[a]pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. Inter. J. Food Sci. Nutr. 2005, 56, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Ciecierska, M.; Obiedzinski, M.W. Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae and baby foods available in the Polish market. Food Control. 2010, 21, 1166–1172. [Google Scholar] [CrossRef]
- Ishizaki, A.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A 2010, 1217, 5555–5563. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, S.A.O. Polycyclic Aromatic Hydrocarbons in foods: A critical review. Cur. Nutr. Food. Sci. 2020, 16, 866–873. [Google Scholar] [CrossRef]
- Bansal, V.; Kumar, P.; Kwon, E.E.; Kim, K.H. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit. Rev. Food Sci. Nutr. 2017, 57, 3297–3312. [Google Scholar] [CrossRef]
- SCF (Scientific Committee on Food); European Commission. Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food; Report SCF/CS/CNTM/PAH/29 Final 4 December 2002; European Commission: Brussels, Belgium, 4 December 2002.
- Guillén, M.D.; Palencia, G.; Ibargoitia, M.L.; Fresno, M.; Sopela, P. Contamination of cheese by polycyclic aromatic hydrocarbons in traditional smoking. Influence of the position in the smokehouse on the contamination level of smoked cheese. J. Dairy Sci. 2011, 94, 1679–1690. [Google Scholar] [CrossRef] [Green Version]
- EC European Commission. Commission Recommendation 2005/108/EC of 4 February 2005 on the further investigation into the levels of polycyclic aromatic hydrocarbons in certain foods. Off. J. Eur. Union 2005, L34, 43–45. [Google Scholar]
- EC European Commission. Commission Regulation (EC) No 208/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons. Off. J. Eur. Union 2005, L34, 3–5. [Google Scholar]
- EFSA. European Food Safety Authority. Polycyclic aromatic hydrocarbons in food-scientific opinion of the panel on contaminants in the food chain (Question N° EFSA-Q-2007-136). EFSA J. 2008, 6, 724. [Google Scholar]
- Wu, P.; Zhang, L.; Hu, Z.; Zhang, N.; Wang, L.; Zhao, Y. Contamination of 15+1 European Union polycyclic aromatic hydrocarbons in various types of tea and their infusions purchased on Hangzhou city market in China. Food Addit. Contam. Part A 2020, 37, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Yebra-Pimentel, I.; Fernandez-Gonzalez, R.; Martinez-Carballo, E.; Simal-Gandara, J. A critical review about the health risk assessment of PAHs and their metabolites in foods. Crit. Rev. Food Sci. Nutr. 2015, 55, 1383–1405. [Google Scholar] [CrossRef] [PubMed]
- EC European Commission. Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union L 2011, 215, 4–8. [Google Scholar]
- Pluta-Kubica, A.; Filipczak-Fiutak, M.; Domagała, J.; Duda, I.; Migdał, W. Contamination of traditionally smoked cheeses with polycyclic aromatic hydrocarbons and biogenic amines. Food Control. 2020, 112, 107–115. [Google Scholar] [CrossRef]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. Int. J. Dairy Technol. 2019, 72, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Camargo, M.C.; Toledo, M.C. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits? Food Control. 2003, 14, 49–53. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.; Li, L.; Wang, X.; Li, W.; Li, X. Occurrence, dietary exposure, and health risk estimation of polycyclic aromatic hydrocarbons in grilled and fried meats in Shandong of China. Food Sci. Nutr. 2018, 6, 2431–2439. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control. 2016, 60, 64–87. [Google Scholar] [CrossRef]
- Olatunji, O.S.; Fatoki, O.S.; Opeolu, B.O.; Ximba, B.J. Benzo[a]pyrene and Benzo[k]fluoranthene in some processed fish and fish products. Int. J. Environ Res. Public Health 2015, 12, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wu, S.M.; Wang, L.; Akoh, C.C. Concentration, dietary exposure and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) in youtiao, a Chinese traditional fried food. Food Control. 2016, 59, 328–336. [Google Scholar] [CrossRef]
- Orecchio, S.; Papuzza, V. Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel. J. Hazard Mater. 2009, 164, 876–883. [Google Scholar] [PubMed]
- Ciecierska, M.; Obiedziński, M.W. Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control. 2013, 30, 556–562. [Google Scholar] [CrossRef]
- Hyunjeong, J.; Byungjoo, K.; Jeongkwon, K.; Song-Yee, B. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using 13C-labeled internal standards. Food Chem. 2020, 309, 125–139. [Google Scholar]
- Rojo Camargo, M.C.; Ramos, A.P.; Vicente, E. Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean oils processing. Food Chem. 2012, 135, 937–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tfouni, S.A.V.; Padovani, G.R.; Reis, R.M.; Furlani, R.P.Z.; Camargo, M.C.R. Incidence of polycyclic aromatic hydrocarbons in vegetable oil blends. Food Control. 2014, 46, 539–543. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Gong, G. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci. Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Guillén, M.D.; Sopelana, P. Occurrence of polycyclic aromatic hydrocarbons in smoked cheese. J. Dairy Sci. 2004, 87, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Guillén, M.D.; Palencia, G.; Sopelana, P.; Ibargoitia, M.L. Occurrence of polycyclic aromatic hydrocarbons in artisanal Palmero cheese smoked with two types of vegetable matter. J. Dairy Sci. 2007, 90, 2717–2725. [Google Scholar] [CrossRef] [Green Version]
- Migdał, W.; Walczycka, M.; Migdał, Ł. The Levels of Polycyclic Aromatic Hydrocarbons in Traditionally Smoked Cheeses in Poland. Polycycl. Aromat. Comp. 2022, 42, 1391–1403. [Google Scholar]
- EC Commission Regulation. No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, L364, 5. [Google Scholar]
- EC European Commission. Commission Regulation (EU) No 1933/2015 of 27 October 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in cocoa fibre, banana chips, food supplements, dried herbs and dried spices. Off. J. Eur. Union L 2015, 282, 11–13. [Google Scholar]
- Anastasio, A.; Mercogliano, R.; Vollano, L.; Pepe, T.; Cortesi, M.L. Levels of benzo[a]pyrene (BaP) in “Mozzarella di Bufala Campana” cheese smoked according to different procedures. J. Agric. Food Chem. 2004, 52, 4452–4455. [Google Scholar] [CrossRef] [PubMed]
- Węgrzyn, E.; Grześkiewicz, S.; Popławska, W.; Głód, B.K. Modified analytical method for polycyclic aromatic hydrocarbons, using SEC for sample preparation and RP-HPLC with fluorescence detection. Application to different food samples. Acta Chromatogr. 2006, 17, 233–249. [Google Scholar]
- Garcia Falcon, S.M.; Gonzalez Amigo, S.G.; Lage Yusty, M.A.; Lopez de Alda Villaizan, M.J.; Simal Lozano, J. Enrichment of benzo[a]pyrene in smoked food products and determination by high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A 1996, 753, 207–215. [Google Scholar] [CrossRef]
- Gul, O.; Dervişoğlu, M.; Mortaş, M.; Aydemir, O.; İlhan, E.; Cakiroglu, K. Evaluation of polycyclic aromatic hydrocarbons in Circassian cheese by high-performance liquid chromatography with fluorescence detection. J. Food Compost. Anal. 2015, 37, 82–86. [Google Scholar] [CrossRef]
- Suchanová, M.; Hajšlová, J.; Tomaniová, M.; Kocourek, V.; Babička, L. Polycyclic aromatic hydrocarbons in smoked cheese. J. Sci. Food Agric. 2008, 88, 1307–1317. [Google Scholar] [CrossRef]
- Pagliuca, G.; Gazzotti, T.; Zironi, E.; Serrazanetti, G.P.; Mollica, D.; Rosmini, R. Determination of high molecular mass polycyclic aromatic hydrocarbons in a typical Italian smoked cheese by HPLC-FLD. J. Agric. Food Chem. 2003, 51, 5111–5115. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Inter. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Świt, P.; Orzeł, J.; Maślanka, S. Monitoring of PAHs in simulated natural and artificial fires by HPLC-DAD-FLD with the application of Multi-Component Integrated Calibration Method toimprove quality of analytical results. Measure 2022, 196, 111242. [Google Scholar] [CrossRef]
- De Martin, S.; Matcovich, P.; Nanut, D.; Zulian, S.; Siardi, V. Determination of polycyclic aromatic hydrocarbons (PAH) in smoked foods. Boll. Chim. Igien. Parte Sci. 1998, 49, 177–181. [Google Scholar]
- Michalski, R.; Germuska, R. The content of benzo[a]pyrene in Slovakian smoked cheese. Pol. J. Food Nutr. Sci. 2003, 12, 33–37. [Google Scholar]
- Naccari, C.; Cristani, M.; Licata, P.; Giofre, F.; Trombetta, D. Levels of benzo[a]pyrene and benzo[a]anthracene in smoked “Provola” cheese from Calabria (Italy). Food Addit. Contam. Part B 2008, 1, 78–84. [Google Scholar] [CrossRef] [PubMed]
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. ISO: Geneva, Switzerland, 2016.
- ISO/IEC 17025:2017; General Requiment for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
Sample Code | Sum of PAH5 | Sum of PAH9 | Naph | Ace | Fln | Phe | Ant | Flt | Pyr | B[a]A | Chr | B[b]F | B[k]F | B[a]P | DB[ah]A | B[ghi]P | I[1,2,3-cd]P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UC-1 | ND | 9.9 | 9.1 | 0.3 | 1.2 | 2.1 | <LOD | <LOD | 0.5 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-2 | ND | 19.4 | 8.8 | 0.7 | 1.1 | 3.2 | <LOD | <LOD | 0.4 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-3 | ND | 13.1 | 11.9 | 0.5 | 1.6 | 4.1 | <LOD | <LOD | 0.7 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-4 | ND | 10.7 | 10.2 | 0.2 | 2.1 | 3.6 | <LOD | <LOD | 0.3 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
UC-5 | ND | 13.4 | 12.3 | 0.5 | 1.1 | 4.2 | <LOD | <LOD | 0.4 | ND | ND | <LOD | <LOD | <LOD | ND | ND | ND |
SC-1 | 0.7 | 8.9 | 2.1 | 1.2 | 5.6 | 15.4 | 1.1 | 2.2 | 1.1 | 0.1 | 0.2 | ND | ND | 0.6 | ND | ND | ND |
SC-2 | 0.9 | 10.6 | 3.7 | 1.1 | 5.0 | 11.7 | 4.3 | 3.1 | 1.3 | 0.2 | 0.1 | ND | ND | 0.7 | ND | ND | ND |
SC-3 | 0.7 | 21.9 | 11.3 | 5.6 | 5.3 | 17.3 | 3.7 | 1.3 | 1.2 | 0.1 | 0.3 | ND | ND | 0.6 | ND | ND | ND |
SC-4 | 0.7 | 11.8 | 5.1 | 3.7 | 10.1 | 8.6 | 1.2 | 1.7 | 1.7 | 0.1 | 0.1 | ND | ND | 0.6 | ND | ND | ND |
SC-5 | 1.3 | 15.1 | 9.4 | 2.3 | 4.8 | 8.8 | 1.7 | 1.3 | 1.4 | 0.2 | 0.1 | ND | ND | 0.9 | ND | ND | ND |
SC-6 | 1.8 | 25.8 | 8.5 | 8.6 | 1.1 | 4.1 | 4.6 | 3.7 | 2.8 | 1.3 | 0.5 | ND | ND | 0.5 | ND | ND | ND |
SC-7 | 1.4 | 19.0 | 2.1 | 8.7 | 1.1 | 18.2 | 5.8 | 3.1 | 1.3 | 1.1 | 0.9 | ND | ND | 0.3 | ND | ND | ND |
SC-8 | 2.2 | 14.6 | 1.5 | 2.7 | 1.2 | 7.3 | 5.6 | 4.2 | 3.1 | 1.7 | 0.5 | ND | ND | 0.5 | ND | ND | ND |
SC-9 | 2.8 | 21.2 | 3.8 | 2.1 | 11.8 | 4.1 | 8.4 | 3.4 | 2.6 | 2.1 | 0.5 | ND | ND | 0.7 | ND | ND | ND |
SC-10 | 2.9 | 16.8 | 2.9 | 7.1 | 4.9 | 24.5 | 1.2 | 5.7 | 3.4 | 2.2 | 0.7 | ND | ND | 0.7 | ND | ND | ND |
Mean-UC ±SD | 10.5 a ±0.53 | 0.4 a ±0.11 | 1.4 a ±0.13 | 3.4 a ±0.21 | - | - | 0.5 a ±0.11 | - | - | - | - | - | - | - | - | ||
min. | 8.8 | 0.2 | 1.1 | 2.1 | - | - | 0.3 | - | - | - | - | - | - | - | - | ||
max. | 12.3 | 0.7 | 2.1 | 4.3 | - | - | 0.7 | - | - | - | - | - | - | - | - | ||
Mean-SC ±SD | 5.0 b ±0.54 | 4.3 b ±0.25 | 5.1 ±0.56 | 12.0 b ±0.64 | 3.8 ±0.67 | 3.0 ±0.51 | 3.2 b ±0.63 | 0.9 ±0.11 | 0.4 ±0.10 | - | - | 0.6 ±0.13 | - | - | - | ||
min. | 1.5 | 1.1 | 1.1 | 4.1 | 1.1 | 1.3 | 1.1 | 0.1 | 0.1 | - | - | 0.3 | - | - | - | ||
max. | 11.3 | 8.7 | 11.8 | 24.5 | 8.4 | 5.7 | 3.4 | 2.2 | 0.9 | - | - | 0.9 | - | - | - |
Analyte | Recovery (%) | CV (%) | LOD (μg/kg) | LOQ (μg/kg) | Linearity R2 | |
---|---|---|---|---|---|---|
Level I (5.0 μg/kg) | Level II (50.0 μg/kg) | |||||
Naph | 82.50 | 90.40 | 0.7 | 0.06 | 0.15 | 0.9998 |
Ace | 93.40 | 83.80 | 0.8 | 0.06 | 0.15 | 0.9997 |
Fln | 85.20 | 85.10 | 0.7 | 0.06 | 0.15 | 0.9996 |
Phe | 90.50 | 80.20 | 0.6 | 0.10 | 0.15 | 0.9995 |
Ant | 93.30 | 88.30 | 0.7 | 0.08 | 0.15 | 0.9998 |
Flt | 86.40 | 87.60 | 0.8 | 0.06 | 0.15 | 0.9997 |
Pyr | 92.60 | 88.50 | 0.7 | 0.10 | 0.15 | 0.0006 |
B[a]A | 87.50 | 90.10 | 0.7 | 0.06 | 0.15 | 0.9997 |
Chr | 80.30 | 92.50 | 0.6 | 0.05 | 0.15 | 0.9996 |
B[b]F | 81.60 | 82.10 | 0.9 | 0.08 | 0.15 | 0.9996 |
B[k]F | 92.70 | 84.80 | 0.6 | 0.05 | 0.15 | 0.9995 |
B[a]P | 90.10 | 91.50 | 0.8 | 0.05 | 0.15 | 0.9997 |
DB[ah]A | 88.20 | 90.80 | 0.7 | 0.05 | 0.15 | 0.9998 |
B[ghi]P | 90.60 | 85.10 | 0.6 | 0.04 | 0.15 | 0.9998 |
I[1,2,3-cd]P | 84.20 | 87.60 | 0.7 | 0.07 | 0.15 | 0.9996 |
Sample Code 1 | Category of Cheese Producer/Source | Cheese Commercial Name | Weight Of Single Cheese Package (g) |
---|---|---|---|
UC-1 | Samples collected from retailed market | Gouda | 250 |
UC-2 | Edam | 250 | |
UC-3 | Gouda | 150 | |
UC-4 | Gouda | 150 | |
UC-5 | Ser królewski | 230 | |
SC-1 | Industrial | Gouda wędzona | 1500 |
SC-2 | Industrial | Salami wędzone | 1000 |
SC-3 | Industrial | Rolada ustrzycka | 500 |
SC-4 | Industrial | Salami królewskie | 500 |
SC-5 | Samples collected from retailed market | Gouda wędzona | 250 |
SC-6 | Zakopiańskie specjały–mini gołka zakopiańska | 160 | |
SC-7 | Rolada ustrzycka | 300 | |
SC-8 | Radamer wędzony | 250 | |
SC-9 | Włoszczowski wędzony | 250 | |
SC-10 | Ser królewski wędzony | 200 |
Chromatografic Condition | |
---|---|
Parameter | Value |
Analytical column | Supelcosil® LC-PAH (250 mm × 4.6 mm i.d.; 5 µm) column with the guard column Supelcosil® LC-18 (20 mm × 4.0 mm i.d., 5 µm; Supelco) |
Mobile phase/Gradient | (A) Water; (B) Acetonitrile; |
0 min—55% B at 1 mL/min 5 min–55% B20 min–100% B 30 min–100% B 30.1 min–55% B | |
Injection volume | 50 µL, needle washed for 3 s with acetonitrile |
Temperature of the column | 35 °C |
Diode Array Detector (DAD) | 254 nm, band width 4 nm, reference 400 nm, reference band width 100 nm, 10 Hz |
Fluorescence Detector (FLD) | Multisignal acquisition, T1 = 216/336 for 7.1–10.7 min (Naph); T2 = 240/320 for 10.7–11.1 min (Ace, Fln); T3 = 248/368 for 11.1–12.2 min (Phe); T4 = 248/404 for 12.2–13.2 min (Ant); T5 = 232/448 for 13.2– 14.3 min (Flt); T6 = 270/388 for 14.3–16.0 min (Pyr); T7 = 270/388 for 16.0–19.3 min (B[a]A, Chr); T8 = 250/430 for 19.3–23.6 min (B[b]F, B[k]F, B[a]P); T9 = 295/405 for 23.6– 25.8 min (DB[ah]A, B[ghi]P); T10 = 248/484 for 25.8–30.5 min (I [1,2,3-cd]P;19.45 Hz; PMT 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak-Śliwińska, M.; Paszczyk, B.; Śliwiński, M. Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules 2022, 27, 6909. https://doi.org/10.3390/molecules27206909
Polak-Śliwińska M, Paszczyk B, Śliwiński M. Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules. 2022; 27(20):6909. https://doi.org/10.3390/molecules27206909
Chicago/Turabian StylePolak-Śliwińska, Magdalena, Beata Paszczyk, and Mariusz Śliwiński. 2022. "Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method" Molecules 27, no. 20: 6909. https://doi.org/10.3390/molecules27206909
APA StylePolak-Śliwińska, M., Paszczyk, B., & Śliwiński, M. (2022). Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules, 27(20), 6909. https://doi.org/10.3390/molecules27206909