Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate
Abstract
:1. Introduction
2. Results and Discussion
2.1. DSC-Based Compatibility
2.2. Determination of the Optimal Composition of the Energetic Formulations
2.3. Morphological and Structural Characterizations
2.4. Assessment of the Thermal Behavior
2.5. Determination of the Thermo-Kinetic Parameters
2.6. Sensitivity Features
3. Experimental Section
3.1. Materials
3.2. Theoretical Design of the Composites
3.3. Preparation Procedure of the Optimal Composites
3.4. Compatibility Assessment
3.5. Characterization Techniques
Kinetic Computations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, B.; Zhang, D.; Xie, L. Preparation and characterization of a series of high-energy and low-sensitivity composites with different desensitizers. New J. Chem. 2022, 46, 5218–5233. [Google Scholar] [CrossRef]
- Lysien, K.; Stolarczyk, A.; Jarosz, T. Solid Propellant Formulations: A Review of Recent Progress and Utilized Components. Materials 2021, 14, 6657. [Google Scholar] [CrossRef]
- Yan, Q.-L.; DeLuca, L.T. Urgent demand for high energy insensitive propellants with controllable burn rates. Energetic Mater. Front. 2021, 2, 1–2. [Google Scholar] [CrossRef]
- Agrawal, J.P.; Dodke, V.S. Some Novel High Energy Materials for Improved Performance. Z. Für Anorg. Und Allg. Chem. 2021, 647, 1856–1882. [Google Scholar] [CrossRef]
- Sabatini, J.J.; Johnson, E.C. A short review of nitric esters and their role in energetic materials. ACS Omega 2021, 6, 11813–11821. [Google Scholar] [CrossRef] [PubMed]
- Norrrahim, M.N.F.; Kasim, N.A.M.; Knight, V.F.; Ujang, F.A.; Janudin, N.; Razak, M.A.I.A.; Shah, N.A.A.; Noor, S.A.M.; Jamal, S.H.; Ong, K.K. Nanocellulose: The next super versatile material for the military. Mater. Adv. 2021, 2, 1485–1506. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Kohsari, I.; Zandavar, H.; Koudehi, M.F.; Mirsadeghi, S. Electrospinning and thermal characterization of nitrocellulose nanofibers containing a composite of diaminofurazan, aluminum nano-powder and iron oxide nanoparticles. Cellulose 2019, 26, 4405–4415. [Google Scholar] [CrossRef]
- Santos, D.; Iop, G.D.; Bizzi, C.A.; Mello, P.A.; Mesko, M.F.; Balbinot, F.P.; Flores, E.M. A Single Step Ultrasound-assisted Nitrocellulose Synthesis from Microcrystalline Cellulose. Ultrason. Sonochem. 2020, 72, 105453. [Google Scholar] [CrossRef] [PubMed]
- Tarchoun, A.F.; Sayah, Z.B.D.; Trache, D.; Klapötke, T.M.; Belmerabt, M.; Abdelaziz, A.; Bekhouche, S. Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J. Nanostruct. Chem. 2022, 12, 963–977. [Google Scholar] [CrossRef]
- DeLuca, L.T. Highlights of solid rocket propulsion history. In Chemical Rocket Propulsion; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1015–1032. [Google Scholar]
- Klapötke, T.M. Chemistry of high-energy materials. In Chemistry of High-Energy Materials; de Gruyter: Berlin, Germany, 2022; pp. 18–516. [Google Scholar]
- Anniyappan, M.; Talawar, M.; Sinha, R.; Murthy, K.; Waves, S. Review on advanced energetic materials for insensitive munition formulations. Combust. Explos. Shock Waves 2020, 56, 495–519. [Google Scholar] [CrossRef]
- Abd-Elghany, M.; Klapötke, T.M.; Elbeih, A. Investigation of 2,2,2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with Nitrocellulose (thermal behavior and decomposition kinetics). J. Anal. Appl. Pyrolysis 2017, 128, 397–404. [Google Scholar] [CrossRef]
- Rozumov, E. Recent Advances in Gun Propellant Development: From Molecules to Materials. Energetic Mater. 2017, 25, 23–65. [Google Scholar]
- Liang, X.; Jiang, H.; Pan, X.; Hua, M.; Jiang, J. Analysis and characterization of nitrocellulose as binder optimized by 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. J. Therm. Anal. Calorim. 2021, 143, 113–126. [Google Scholar] [CrossRef]
- Hanafi, S.; Trache, D.; Meziani, R.; Boukciat, H.; Mezroua, A.; Tarchoun, A.F.; Derradji, M. Synthesis, characterization and thermal decomposition behavior of a novel HNTO/AN co-crystal as a promising rocket propellant oxidizer. Chem. Eng. J. 2021, 417, 128010. [Google Scholar] [CrossRef]
- Qi, X.; Yan, N.; Li, H.; Zhao, Y.; Liu, P.; Yan, Q. New insight into dynamic mechanical relaxation in N-butyl-N-(2-nitroxy-ethyl) nitramine plasticized nitrocellulose through molecular dynamic simulations. Cellulose 2022, 29, 1307–1314. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Y.; Huang, H.; Shang, F.; Song, X. An electrospun preparation of the NC/GAP/nano-LLM-105 nanofiber and its properties. Nanomaterials 2019, 9, 854. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xie, W.; Wang, H.; Li, Y.; Zhang, W.; Liu, Y.; Song, K.; Fan, X. Preparation and characteristic of NC/RDX nanofibers by electrospinning. Sci. Technol. Energetic Mater. 2020, 81, 142–147. [Google Scholar]
- Wang, Y.; Song, X.; Song, D.; Liang, L.; An, C.; Wang, J. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J. Hazard. Mater. 2016, 312, 73–83. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.; Cao, X.; Gao, J.; Wang, Y.; Qin, Y.; Zhang, Y.; Zhang, J.; Jin, G.; Wang, M. Fabrication of nitrocellulose-based nanoenergetic composites, study on its structure, thermal decomposition kinetics, mechanism, and sensitivity. Nano Sel. 2021, 2, 2225–2236. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Song, X.; Huang, H.; Li, F. Characteristics and properties of nitrocellulose/glycidyl azide polymer/2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane nanocomposites synthesized using a sol–gel supercritical method. Nanomater. Nanotechnol. 2019, 9, 1847980418825034. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zheng, W.; Wang, X.; Shen, F. Nitrification Progress of Nitrogen-Rich Heterocyclic Energetic Compounds: A Review. Molecules 2022, 27, 1465. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Tarchoun, A.F.; Boukeciat, H.; Trache, D. Insight into the Thermodynamic Properties of Promising Energetic HNTO· AN Co-Crystal: Heat Capacity, Combustion Energy, and Formation Enthalpy. Energies 2022, 15, 6722. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Gao, H.; Fu, W.; Li, Y.; Tang, L.; Zhou, Z. Promising hydrazinium 3-Nitro-1, 2, 4-triazol-5-one and its analogs. J. Mater. Sci. 2016, 51, 10849–10862. [Google Scholar] [CrossRef]
- Pu, C.-K.; Luan, Y.; Yi, M.-J.; Xiao, Z.-G. Investigation on thermal characteristics and desensitization mechanism of improved step ladder-structured nitrocellulose. Def. Technol. 2022, in press. [Google Scholar] [CrossRef]
- Yi, J.-H.; Zhao, F.-Q.; Ren, Y.-H.; Xu, S.-Y.; Ma, H.-X.; Hu, R.-Z. Thermal decomposition mechanism and quantum chemical investigation of hydrazine 3-nitro-1, 2, 4-triazol-5-one (HNTO). J. Therm. Anal. Calorim. 2010, 100, 623–627. [Google Scholar] [CrossRef]
- Standardization Agreement (STANAG) 4147; Chemical compatibility of ammunition components with explosives (non-nuclear applications). NATO Military Agency for Standardization: Brussels, Belgium, Edition 2. 5 June 2001.
- Hanafi, S.; Trache, D.; Mezroua, A.; Boukeciat, H.; Meziani, R.; Tarchoun, A.F.; Abdelaziz, A. Optimized energetic HNTO/AN co-crystal and its thermal decomposition kinetics in the presence of energetic coordination nanomaterials based on functionalized graphene oxide and cobalt. RSC Adv. 2021, 11, 35287–35299. [Google Scholar] [CrossRef]
- Chalghoum, F.; Trache, D.; Maggi, F.; Benziane, M. Effect of Complex Metal Hydrides on the Elimination of Hydrochloric Acid Exhaust Products from High-Performance Composite Solid Propellants: A Theoretical Analysis. Propellants Explos. Pyrotech. 2020, 45, 1204–1215. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Wozniak, D.R.; Piercey, D.G. Progress and performance of energetic materials: Open dataset, tool, and implications for synthesis. J. Mater. Chem. A 2022, 10, 11054–11073. [Google Scholar] [CrossRef]
- Born, M.; Fessard, T.C.; Göttemann, L.; Klapötke, T.M.; Stierstorfer, J.; Voggenreiter, M. 3,3-Dinitratooxetane—An important leap towards energetic oxygen-rich monomers and polymers. Chem. Commun. 2021, 57, 2804–2807. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, Z.; Chinnam, A.K.; Staples, R.J.; Shreeve, J.M. A duo and a trio of triazoles as very thermostable and insensitive energetic materials. Inorg. Chem. 2020, 59, 17766–17774. [Google Scholar] [CrossRef]
- Suceska, M.; Dobrilovic, M.; Bohanek, V.; Stimac, B. Estimation of explosive energy output by EXPLO5 thermochemical code. Z. Für Anorg. Und Allg. Chem. 2021, 647, 231–238. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.; Elbeih, A.; Helal, F. The effect of different copper salts on the mechanical and ballistic characteristics of double base rocket propellants. Cent. Eur. J. Energetic Mater. 2016, 13, 469–482. [Google Scholar] [CrossRef]
- Elbasuney, S.; Fahd, A.; Mostafa, H.E. Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture. Fuel 2017, 208, 296–304. [Google Scholar] [CrossRef]
- Chalghoum, F.; Trache, D.; Benziane, M.; Chelouche, S. Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant. J. Therm. Anal. Calorim. 2022, 147, 11507–11534. [Google Scholar] [CrossRef]
- Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L.T.; Khimeche, K.; Fassina, M.; Dossi, S.; Colombo, G. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab. J. Chem. 2019, 12, 3639–3651. [Google Scholar] [CrossRef] [Green Version]
- Chelouche, S.; Trache, D.; Tarchoun, A.F.; Khimeche, K.; Mezroua, A. Stability Assessment for Double Base Rocket Propellant During Long Natural/Artificial Aging Using Various Methods and Kinetic Modeling. In Materials Research and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 93–122. [Google Scholar]
- Du, L.-X.; Jin, S.-H.; Shu, Q.-H.; Li, L.-J.; Chen, K.; Chen, M.-L.; Wang, J.-F. The investigation of NTO/HMX-based plastic-bonded explosives and its safety performance. Def. Technol. 2022, 18, 72–80. [Google Scholar] [CrossRef]
- Touidjine, S.; Boulkadid, M.K.; Trache, D.; Belkhiri, S.; Mezroua, A.; Aleg, M.I.; Belkebiche, A. Preparation of ammonium nitrate-based solid composite propellants supplemented with polyurethane/nitrocellulose blends binder and their thermal decomposition behavior. Def. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Z.-H.; Meng, K.-J.; Zhang, X.-X.; Yan, Q.-L. Decomposition and combustion of HTPB-based composite propellants containing intercalated HMX crystals with desired high energy but low burn rate. Fuel 2022, 321, 124067. [Google Scholar] [CrossRef]
- Yi, J.-H.; Zhao, F.-Q.; Gao, H.-X.; Xu, S.-Y.; Wang, M.-C. Preparation, characterization, non-isothermal reaction kinetics, thermodynamic properties, and safety performances of high nitrogen compound: Hydrazine 3-nitro-1, 2, 4-triazol-5-one complex. J. Hazard. Mater. 2008, 153, 261–268. [Google Scholar] [CrossRef]
- Chai, H.; Duan, Q.; Cao, H.; Li, M.; Sun, J. Effects of nitrogen content on pyrolysis behavior of nitrocellulose. Fuel 2020, 264, 116853. [Google Scholar] [CrossRef]
- Sovizi, M.; Hajimirsadeghi, S.; Naderizadeh, B. Effect of particle size on thermal decomposition of nitrocellulose. J. Hazard. Mater. 2009, 168, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Dobrynin, O.S.; Zharkov, M.N.; Kuchurov, I.V.; Fomenkov, I.V.; Zlotin, S.G.; Monogarov, K.A.; Meerov, D.B.; Pivkina, A.N.; Muravyev, N.V. Supercritical antisolvent processing of nitrocellulose: Downscaling to nanosize, reducing friction sensitivity and introducing burning rate catalyst. Nanomaterials 2019, 9, 1386. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, X.; Gao, J.; He, W.; Liu, J.; Wang, Y.; Zhou, X.; Shen, J.; Wang, B.; He, Y. Nitrated bacterial cellulose-based energetic nanocomposites as propellants and explosives for military applications. ACS Appl. Nano Mater. 2021, 4, 1906–1915. [Google Scholar] [CrossRef]
- Benhammada, A.; Trache, D.; Kesraoui, M.; Chelouche, S. Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials 2020, 10, 968. [Google Scholar] [CrossRef] [PubMed]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Slimani, K.; Belouettar, B.E.; Abdelaziz, A.; Bekhouche, S.; Bessa, W. Valorization of Esparto Grass Cellulosic Derivatives for the Development of Promising Energetic Azidodeoxy Biopolymers: Synthesis, Characterization and Isoconversional Thermal Kinetic Analysis. Propellants Explos. Pyrotech. 2022, 47, e202100293. [Google Scholar] [CrossRef]
- Wang, H.; Kline, D.J.; Rehwoldt, M.; Wu, T.; Zhao, W.; Wang, X.; Zachariah, M.R. Architecture can significantly alter the energy release rate from nanocomposite energetics. ACS Appl. Polym. Mater. 2019, 1, 982–989. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Pivkina, A.N.; Koga, N. Critical appraisal of kinetic calculation methods applied to overlapping multistep reactions. Molecules 2019, 24, 2298. [Google Scholar] [CrossRef] [Green Version]
- Sbirrazzuoli, N. Determination of pre-exponential factor and reaction mechanism in a model-free way. Thermochim. Acta 2020, 691, 178707. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M.; Selmani, A.; Saada, M.; Chelouche, S.; Mezroua, A.; Abdelaziz, A. New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: Their synthesis, characterization, and non-isothermal decomposition kinetics. New J. Chem. 2021, 45, 5099–5113. [Google Scholar] [CrossRef]
- Trache, D.; Abdelaziz, A.; Siouani, B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J. Therm. Anal. Calorim. 2017, 128, 335–348. [Google Scholar] [CrossRef]
- Chen, L.; Qin, Y.; Cao, X.; Gao, J.; Liu, S.; Zhang, Y.; Tu, J.; Wang, Y.; Liu, J.; He, W. Preparation and characterisation of the NBC/CL-20/AP nanoenergetic composite materials. Mater. Technol. 2021, 37, 943–952. [Google Scholar] [CrossRef]
- Sućeska, M. EXPLO5 V6. 04; Brodarski Institute: Zagreb, Croatia, 2017. [Google Scholar]
- Trache, D.; Tarchoun, A.F.; Chelouche, S.; Khimeche, K. New insights on the compatibility of nitrocellulose with aniline-based compounds. Propellants Explos. Pyrotech. 2019, 44, 970–979. [Google Scholar] [CrossRef]
- Tomasz, G.; Bartosz, Z.; Paweł, M.; Michał, C.; Katarzyna, C.; Tomasz, S. Review of Methods for Testing the Compatibility of High Energy Mixed Components. Cent. Eur. J. Energetic Mater. 2021, 18, 513–528. [Google Scholar]
- Pang, W.; Wang, K.; DeLuca, L.T.; Trache, D.; Fan, X.; Li, J.; Li, H. Experiments and simulations on interactions between 2, 3-bis(hydroxymethyl)-2, 3-dinitro-1, 4-butanediol tetranitrate(DNTN) with some energetic components and inert materials. FirePhysChem 2021, 1, 166–173. [Google Scholar] [CrossRef]
- NATO, S.A. 4489 (STANAG 4489), Explosives. In Impact Sensit; Tests: Brussels, Belgium, 1999. [Google Scholar]
- NATO, S.A. 4487 (STANAG 4487), Explosive. In Frict. Sensit; Tests: Brussels, Belgium, 2002. [Google Scholar]
- Trache, D.; Maggi, F.; Palmucci, I.; DeLuca, L.T. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J. Therm. Anal. Calorim. 2018, 132, 1601–1615. [Google Scholar] [CrossRef]
Sample | IS (J) | FS (N) | |||
---|---|---|---|---|---|
HNTO | 1.820 ± 0.003 | / | / | 7 | 360 |
NC | 1.671 ± 0.004 | / | / | 3 | 350 |
NMCC | 1.694 ± 0.004 | / | / | 2 | 350 |
HNTO/NC | 1.781 ± 0.002 | 1.760 | 1.2 | 6 | 350 |
HNTO/NMCC | 1.793 ± 0.002 | 1.770 | 1.3 | 6 | 350 |
Sample | 1st Decomposition Stage | 2nd Decomposition Stage | 3rd Decomposition Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tonset (°C) | Tpeak (°C) | ∆T * (°C) | ∆H (J/g) | Tonset (°C) | Tpeak (°C) | ∆T * (°C) | ∆H (J/g) | Tonset (°C) | Tpeak (°C) | ∆T * (°C) | ∆H (J/g) | ∆HT (J/g) | |
HNTO/NC | 195.0 | 201.9 | 14.2 | 549.5 | 218.7 | 225.5 | 6.8 | 950.5 | 232.7 | 239.4 | 6.7 | 335.8 | 1835.8 |
HNTO/NMCC | 185.9 | 195.7 | 9.8 | 560.9 | 204.1 | 209.2 | 5.1 | 994.8 | 218.8 | 222.3 | 3.5 | 356.4 | 1912.1 |
Sample | Isoconversional Method | Eα (kJ/mol) | Log (A(s−1)) | g(α) | |
---|---|---|---|---|---|
HNTO/NC 1st step | TAS | 139.49 ± 12.40 | 11.95 ± 2.84 | G1 = 1 − (1 − α)2 | |
it-KAS | 139.54 ± 12.45 | 11.83 ± 2.83 | G1 = 1 − (1 − α)2 | ||
VYA/CE | β = 10 °C/min | 139.49 ± 12.35 | 11.89 ± 1.30 | / | |
β = 15 °C/min | 11.93 ± 1.30 | / | |||
β = 20 °C/min | 11.89 ± 1.30 | / | |||
β = 25 °C/min | 11.85 ± 1.30 | / | |||
HNTO/NC 2nd step | TAS | 157.96 ± 9.55 | 13.25 ± 1.35 | A5/2 = [−ln(1 − α)]2/5 | |
it-KAS | 157.97 ± 9.55 | 13.11 ± 1.34 | A5/2 = [−ln(1 − α)]2/5 | ||
VYA/CE | β = 10 °C/min | 157.96 ± 9.37 | 13.15 ± 1.21 | / | |
β = 15 °C/min | 13.18 ± 1.25 | / | |||
β = 20 °C/min | 13.20 ± 1.24 | / | |||
β = 25 °C/min | 13.22 ± 1.20 | / | |||
HNTO/NC 3rd step | TAS | 165.93 ± 11.06 | 13.45 ± 1.86 | A3 = [−ln(1 − α)]1/3 | |
it-KAS | 165.96 ± 11.05 | 13.30 ± 1.85 | A3 = [−ln(1 − α)]1/3 | ||
VYA/CE | β = 10 °C/min | 165.94 ± 8.67 | 13.41 ± 1.60 | / | |
β = 15 °C/min | 13.32 ± 1.62 | / | |||
β = 20 °C/min | 13.38 ± 1.58 | / | |||
β = 25 °C/min | 13.35 ± 1.59 | / | |||
HNTO/NMCC 1st step | TAS | 119.5 ± 7.85 | 10.27 ± 1.22 | G1 = 1 −(1 − α)]2 | |
it-KAS | 119.5 ± 7.90 | 10.20 ± 1.21 | G1 = 1 −(1 − α)]2 | ||
VYA/CE | β = 10 °C/min | 119.5 ± 8.70 | 10.13 ± 0.93 | / | |
β = 15 °C/min | 10.23 ± 0.98 | / | |||
β = 20 °C/min | 10.20 ± 0.95 | / | |||
β = 25 °C/min | 10.14 ± 0.91 | / | |||
HNTO/NMCC 2nd step | TAS | 125.4 ± 9.90 | 10.32 ± 1.80 | A5/2 = [−ln(1 − α)]2/5 | |
it-KAS | 125.5 ± 9.95 | 10.20 ± 1.73 | A5/2 = [−ln(1 − α)]2/5 | ||
VYA/CE | β = 10 °C/min | 125.5 ± 10.83 | 10.24 ± 0.89 | / | |
β = 15 °C/min | 10.30 ± 0.93 | / | |||
β = 20 °C/min | 10.27 ± 0.94 | / | |||
β = 25 °C/min | 14.24 ± 0.92 | / | |||
HNTO/NMCC 3rd step | TAS | 133.08 ± 11.15 | 10.34 ± 1.70 | A4 = [−ln(1 − α)]1/4 | |
it-KAS | 133.11 ± 11.70 | 10.22 ± 1.62 | A4 = [−ln(1 − α)]1/4 | ||
VYA/CE | β = 10 °C/min | 133.10 ± 11.65 | 10.25 ± 1.02 | / | |
β = 15 °C/min | 10.37 ± 1.11 | / | |||
β = 20 °C/min | 10.35 ± 1.08 | / | |||
β = 25 °C/min | 10.26 ± 1.06 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Harrat, A.; Boukecha, W.O.; Hamouche, M.A.; Boukeciat, H.; Dourari, M. Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate. Molecules 2022, 27, 6945. https://doi.org/10.3390/molecules27206945
Tarchoun AF, Trache D, Abdelaziz A, Harrat A, Boukecha WO, Hamouche MA, Boukeciat H, Dourari M. Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate. Molecules. 2022; 27(20):6945. https://doi.org/10.3390/molecules27206945
Chicago/Turabian StyleTarchoun, Ahmed Fouzi, Djalal Trache, Amir Abdelaziz, Abdelatif Harrat, Walid Oussama Boukecha, Mohamed Abderrahim Hamouche, Hani Boukeciat, and Mohammed Dourari. 2022. "Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate" Molecules 27, no. 20: 6945. https://doi.org/10.3390/molecules27206945
APA StyleTarchoun, A. F., Trache, D., Abdelaziz, A., Harrat, A., Boukecha, W. O., Hamouche, M. A., Boukeciat, H., & Dourari, M. (2022). Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate. Molecules, 27(20), 6945. https://doi.org/10.3390/molecules27206945