Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways
Abstract
:1. Introduction
2. Results
2.1. The Effects of Nalfurafine and Nalfurafine Analogs on the Functions of κORs Using the CellKeyTM System
2.2. The Effects of Nalfurafine Analogs on the Intracellular cAMP Levels Evaluated Using the GloSensor® cAMP Assay
2.3. Effects of Nalfurafine Analogs on β-Arrestin Recruitment Using the PathHunter® Recruitment Assay
2.4. The Selectivity of G-Protein- and β-Arrestin-Mediated Pathways (G-Protein-Biased Factors)
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Lines
4.3. Cell Culture
4.4. Functional Analysis of ORs Using the CellKeyTM System
4.5. Intracellular cAMP Levels Measured with the GloSensor® cAMP Assay
4.6. β-Arrestin Recruitment Assay with PathHunter®
4.7. The Estimated Intrinsic Reactive Activity (RAi) and Biased Factors
4.8. Statistical Analysis and Approval for the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kivell, B.; Prisinzano, T.E. Kappa Opioids and the Modulation of Pain. Psychopharmacology 2010, 210, 109–119. [Google Scholar] [CrossRef]
- Berterame, S.; Erthal, J.; Thomas, J.; Fellner, S.; Vosse, B.; Clare, P.; Hao, W.; Johnson, D.T.; Mohar, A.; Pavadia, J.; et al. Use of and Barriers to Access to Opioid Analgesics: A Worldwide, Regional, and National Study. Lancet 2016, 387, 1644–1656. [Google Scholar] [CrossRef]
- Caudill-Slosberg, M.A.; Schwartz, L.M.; Woloshin, S. Office Visits and Analgesic Prescriptions for Musculoskeletal Pain in US: 1980 vs. 2000. Pain 2004, 109, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Olsen, Y.; Daumit, G.L.; Ford, D.E. Opioid Prescriptions by U.S. Primary Care Physicians From 1992 to 2001. J. Pain 2006, 7, 225–235. [Google Scholar] [CrossRef]
- Machelska, H.; Celik, M.Ö. Advances in Achieving Opioid Analgesia Without Side Effects. Front. Pharmacol. 2018, 9, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trescot, A.M.; Datta, S.; Lee, M.; Hansen, H. Opioid Pharmacology. Pain Phys. 2008, 11, S133–S153. [Google Scholar] [CrossRef]
- Chou, R.; Fanciullo, G.J.; Fine, P.G.; Adler, J.A.; Ballantyne, J.C.; Davies, P.; Donovan, M.I.; Fishbain, D.A.; Foley, K.M.; Fudin, J.; et al. Clinical Guidelines for the Use of Chronic Opioid Therapy in Chronic Noncancer Pain. J. Pain 2009, 10, 113–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid Complications and Side Effects. Pain Phys. 2008, 11, S105–S120. [Google Scholar] [CrossRef]
- Khademi, H.; Kamangar, F.; Brennan, P.; Malekzadeh, R. Opioid Therapy and Its Side Effects: A Review. Arch. Iran. Med. 2016, 19, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Rummans, T.A.; Burton, M.C.; Dawson, N.L. How Good Intentions Contributed to Bad Outcomes: The Opioid Crisis. Mayo Clin. Proc. 2018, 93, 344–350. [Google Scholar] [CrossRef]
- Webster, L.R.; Webster, R.M. Predicting Aberrant Behaviors in Opioid-Treated Patients: Preliminary Validation of the Opioid Risk Tool. Pain Med. 2005, 6, 432–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderah, T.W. Delta and Kappa Opioid Receptors as Suitable Drug Targets for Pain. Clin. J. Pain 2010, 26, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H.; Saitoh, A. Research and Development of Kappa Opioid Receptor Agonists and Delta Opioid Receptor Agonists. Pharmacol. Ther. 2020, 205, 107427. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Stahl, E.L.; Lovell, K.M.; Frankowski, K.J.; Prisinzano, T.E.; Aubé, J.; Bohn, L.M. Characterization of Kappa Opioid Receptor Mediated, Dynorphin-Stimulated [35S]GTPγS Binding in Mouse Striatum for the Evaluation of Selective KOR Ligands in an Endogenous Setting. Neuropharmacology 2015, 99, 131–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavkin, C.; James, I.F.; Goldstein, A. Dynorphin Is a Specific Endogenous Ligand of the Kappa Opioid Receptor. Science 1982, 215, 413–415. [Google Scholar] [CrossRef]
- Mansour, A.; Khachaturian, H.; Lewis, M.E.; Akil, H.; Watson, S.J. Anatomy of CNS Opioid Receptors. Trends Neurosci. 1988, 11, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, B.N.; Cesselin, F.; Raghubir, R.; Reisine, T.; Bradley, P.B.; Portoghese, P.S.; Hamon, M. International Union of Pharmacology. XII. Classification of Opioid Receptors. Pharmacol. Rev. 1996, 48, 567–592. [Google Scholar] [PubMed]
- Kardon, A.P.; Polgár, E.; Hachisuka, J.; Snyder, L.M.; Cameron, D.; Savage, S.; Cai, X.; Karnup, S.; Fan, C.R.; Hemenway, G.M.; et al. Dynorphin Acts as a Neuromodulator to Inhibit Itch in the Dorsal Horn of the Spinal Cord. Neuron 2014, 82, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Cowan, A.; Kehner, G.B.; Inan, S. Targeting Itch With Ligands Selective for Kappa Opioid Receptors. Handb. Exp. Pharmacol. 2015, 226, 291–314. [Google Scholar] [CrossRef]
- Inan, S.; Cowan, A. Kappa Opioid Agonists Suppress Chloroquine-Induced Scratching in Mice. Eur. J. Pharmacol. 2004, 502, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Morgenweck, J.; Frankowski, K.J.; Prisinzano, T.E.; Aubé, J.; Bohn, L.M. Investigation of the Role of βarrestin2 in Kappa Opioid Receptor Modulation in a Mouse Model of Pruritus. Neuropharmacology 2015, 99, 600–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.R. Pharmacology of Opioids. Pharmacol. Rev. 1983, 35, 283–323. [Google Scholar]
- Land, B.B.; Bruchas, M.R.; Schattauer, S.; Giardino, W.J.; Aita, M.; Messinger, D.; Hnasko, T.S.; Palmiter, R.D.; Chavkin, C. Activation of the Kappa Opioid Receptor in the Dorsal Raphe Nucleus Mediates the Aversive Effects of Stress and Reinstates Drug Seeking. Proc. Natl. Acad. Sci. USA 2009, 106, 19168–19173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, A.; Brantl, V.; Herz, A.; Emrich, H.M. Psychotomimesis Mediated by Kappa Opiate Receptors. Science 1986, 233, 774–776. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, L.A.; Gmerek, D.E.; Winger, G.; Woods, J.H. Kappa Opioids in Rhesus Monkeys. I. Diuresis, Sedation, Analgesia and Discriminative Stimulus Effects. J. Pharmacol. Exp. Ther. 1987, 242, 413–420. [Google Scholar] [PubMed]
- Roth, B.L.; Baner, K.; Westkaemper, R.; Siebert, D.; Rice, K.C.; Steinberg, S.; Ernsberger, P.; Rothman, R.B. Salvinorin A: A Potent Naturally Occurring Nonnitrogenous Kappa Opioid Selective Agonist. Proc. Natl. Acad. Sci. USA 2002, 99, 11934–11939. [Google Scholar] [CrossRef] [Green Version]
- Raehal, K.M.; Schmid, C.L.; Groer, C.E.; Bohn, L.M. Functional Selectivity at the μ-Opioid Receptor: Implications for Understanding Opioid Analgesia and Tolerance. Pharmacol. Rev. 2011, 63, 1001–1019. [Google Scholar] [CrossRef] [Green Version]
- Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell 2017, 171, 1165–1175.e13. [Google Scholar] [CrossRef] [Green Version]
- Rovira, X.; Pin, J.P.; Giraldo, J. The Asymmetric/Symmetric Activation of GPCR Dimers as a Possible Mechanistic Rationale for Multiple Signalling Pathways. Trends Pharmacol. Sci. 2010, 31, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Townsend, E.A.; Naylor, J.E.; Negus, S.S.; Edwards, S.R.; Qureshi, H.N.; McLendon, H.W.; McCurdy, C.R.; Kapanda, C.N.; do Carmo, J.M.; da Silva, F.S.; et al. Effects of nalfurafine on the reinforcing, thermal antinociceptive, and respiratory-depressant effects of oxycodone: Modeling an abuse-deterrent opioid analgesic in rats. Psychopharmacology 2017, 234, 2597–2605. [Google Scholar] [CrossRef]
- Okude, J.; Ueda, T.; Kofuku, Y.; Sato, M.; Nobuyama, N.; Kondo, K.; Shiraishi, Y.; Mizumura, T.; Onishi, K.; Natsume, M.; et al. Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μ-Opioid Receptor. Angew. Chem. Int. Ed. Engl. 2015, 54, 15771–15776. [Google Scholar] [CrossRef] [PubMed]
- Raffa, R.B.; Martinez, R.P.; Connelly, C.D. G-Protein Antisense Oligodeoxyribonucleotides and Mu-Opioid Supraspinal Antinociception. Eur. J. Pharmacol. 1994, 258, R5–R7. [Google Scholar] [CrossRef]
- Bohn, L.M.; Lefkowitz, R.J.; Gainetdinov, R.R.; Peppel, K.; Caron, M.G.; Lin, F.T. Enhanced Morphine Analgesia in Mice Lacking Beta-Arrestin 2. Science 1999, 286, 2495–2498. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, A.; Gillis, A.; Hill, R.; Schmiedel, F.; Bailey, C.; Kelly, E.; Henderson, G.; Christie, M.J.; Schulz, S. Morphine-induced respiratory depression is independent of beta-arrestin2 signalling. Br. J. Pharmacol. 2020, 177, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C.L.; Rominger, D.H.; Koblish, M.; Dewire, S.M.; Crombie, A.L.; et al. Structure-Activity Relationships and Discovery of a G Protein Biased μ Opioid Receptor Ligand, [(3-Methoxythiophen-2-yl) Methyl]({2-[(9R)-9-(Pyridin-2-yl)-6-Oxaspiro-[4.5] Decan- 9-yl] Ethyl})Amine (TRV130), for the Treatment of Acute Severe Pain. J. Med. Chem. 2013, 56, 8019–8031. [Google Scholar] [CrossRef] [PubMed]
- Faouzi, A.; Varga, B.R.; Majumdar, S. Biased Opioid Ligands. Molecules 2020, 25, 4527. [Google Scholar] [CrossRef]
- Bermudez, M.; Nguyen, T.N.; Omieczynski, C.; Wolber, G. Strategies for the Discovery of Biased GPCR Ligands. Drug Discov. Today 2019, 24, 1031–1037. [Google Scholar] [CrossRef]
- Kudla, L.; Przewlocki, R. Influence of G Protein-Biased Agonists of μ-Opioid Receptor on Addiction-Related Behaviors. Pharmacol. Rep. 2021, 73, 1033–1051. [Google Scholar] [CrossRef]
- Miyano, K.; Manabe, S.; Komatsu, A.; Fujii, Y.; Mizobuchi, Y.; Uezono, E.; Ohshima, K.; Nonaka, M.; Kuroda, Y.; Narita, M.; et al. The G Protein Signal-Biased Compound TRV130; Structures, Its Site of Action and Clinical Studies. Curr. Top. Med. Chem. 2020, 20, 2822–2829. [Google Scholar] [CrossRef] [PubMed]
- Spetea, M.; Eans, S.O.; Ganno, M.L.; Lantero, A.; Mairegger, M.; Toll, L.; Schmidhammer, H.; McLaughlin, J.P. Selective Kappa Receptor Partial Agonist HS666 Produces Potent Antinociception Without Inducing Aversion After i.c.v. Administration in Mice. Br. J. Pharmacol. 2017, 174, 2444–2456. [Google Scholar] [CrossRef] [Green Version]
- Chavkin, C. The Therapeutic Potential of Kappa-Opioids for Treatment of Pain and Addiction. Neuropsychopharmacology 2011, 36, 369–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schattauer, S.S.; Kuhar, J.R.; Song, A.; Chavkin, C. Nalfurafine Is a G-Protein Biased Agonist Having Significantly Greater Bias at the Human Than Rodent Form of the Kappa Opioid Receptor. Cell Signal. 2017, 32, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brust, T.F.; Morgenweck, J.; Kim, S.A.; Rose, J.H.; Locke, J.L.; Schmid, C.L.; Zhou, L.; Stahl, E.L.; Cameron, M.D.; Scarry, S.M.; et al. Biased Agonists of the Kappa Opioid Receptor Suppress Pain and Itch Without Causing Sedation or Dysphoria. Sci. Signal. 2016, 9, ra117. [Google Scholar] [CrossRef] [Green Version]
- Nagase, H.; Hayakawa, J.; Kawamura, K.; Kawai, K.; Takezawa, Y.; Matsuura, H.; Tajima, C.; Endo, T. Discovery of a Structurally Novel Opioid Kappa-Agonist Derived From 4,5-Epoxymorphinan. Chem. Pharm. Bull. 1998, 46, 366–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, T.; Awamura, S.; Kimura, C.; Ide, S.; Sakano, K.; Minami, M.; Nagase, H.; Satoh, M. Pharmacological Properties of TRK-820 on Cloned Mu-, Delta- and Kappa-Opioid Receptors and Nociceptin Receptor. Eur. J. Pharmacol. 1999, 376, 159–167. [Google Scholar] [CrossRef]
- Togashi, Y.; Umeuchi, H.; Okano, K.; Ando, N.; Yoshizawa, Y.; Honda, T.; Kawamura, K.; Endoh, T.; Utsumi, J.; Kamei, J.; et al. Antipruritic Activity of the Kappa-Opioid Receptor Agonist, TRK-820. Eur. J. Pharmacol. 2002, 435, 259–264. [Google Scholar] [CrossRef]
- Nagase, H.; Fujii, H. Opioids in Preclinical and Clinical Trials. Top. Curr. Chem. 2011, 299, 29–62. [Google Scholar] [CrossRef]
- Inui, S. Nalfurafine Hydrochloride to Treat Pruritus: A Review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, H.; Ebata, T.; Takamori, K.; Muramatsu, T.; Nakamoto, H.; Suzuki, H. Effect of a Novel Kappa-Receptor Agonist, Nalfurafine Hydrochloride, on Severe Itch in 337 Haemodialysis Patients: A Phase III, Randomized, Double-Blind, Placebo-Controlled Study. Nephrol. Dial. Transplant. 2010, 25, 1251–1257. [Google Scholar] [CrossRef] [Green Version]
- Nakao, K.; Mochizuki, H. Nalfurafine Hydrochloride: A New Drug for the Treatment of Uremic Pruritus in Hemodialysis Patients. Drugs Today 2009, 45, 323–329. [Google Scholar] [CrossRef]
- Bruijnzeel, A.W. Kappa-Opioid Receptor Signaling and Brain Reward Function. Brain Res. Rev. 2009, 62, 127–146. [Google Scholar] [CrossRef] [PubMed]
- Chefer, V.I.; Czyzyk, T.; Bolan, E.A.; Moron, J.; Pintar, J.E.; Shippenberg, T.S. Endogenous Kappa-Opioid Receptor Systems Regulate Mesoaccumbal Dopamine Dynamics and Vulnerability to Cocaine. J. Neurosci. 2005, 25, 5029–5037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shippenberg, T.S.; Chefer, V.I.; Zapata, A.; Heidbreder, C.A. Modulation of the Behavioral and Neurochemical Effects of Psychostimulants by Kappa-Opioid Receptor Systems. Ann. N. Y. Acad. Sci. 2001, 937, 50–73. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Hirayama, S.; Nagase, H. Opioid kappa receptor selective agonist TRK820 (nal-furafine hydrochloride). In InTech; Luca, G., Ed.; Pharmacology: Rijeka, Croatia, 2012; pp. 81–98. [Google Scholar]
- Nagase, H.; Fujii, H. Essential Structure of the Kappa Opioid Receptor Agonist Nalfurafine for Binding to the Kappa Receptor. Curr. Pharm. Des. 2013, 19, 7400–7414. [Google Scholar] [CrossRef]
- Miyano, K.; Sudo, Y.; Yokoyama, A.; Hisaoka-Nakashima, K.; Morioka, N.; Takebayashi, M.; Nakata, Y.; Higami, Y.; Uezono, Y. History of the G Protein-Coupled Receptor (GPCR) Assays From Traditional to a State-of-the-Art Biosensor Assay. J. Pharmacol. Sci. 2014, 126, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Huang, P.; Chiu, Y.T.; Chen, C.; Wang, H.; Li, M.; Zheng, Y.; Ehlert, F.J.; Zhang, Y.; Liu-Chen, L.Y. Comparison of Pharmacological Properties Between the Kappa Opioid Receptor Agonist Nalfurafine and 42B, Its 3-Dehydroxy Analogue: Disconnect Between In Vitro Agonist Bias and In Vivo Pharmacological Effects. ACS Chem. Neurosci. 2020, 11, 3036–3050. [Google Scholar] [CrossRef]
- DiMattio, K.M.; Ehlert, F.J.; Liu-Chen, L.Y. Intrinsic Relative Activities of Kappa Opioid Agonists in Activating Galpha Proteins and Internalizing Receptor: Differences Between Human and Mouse Receptors. Eur. J. Pharmacol. 2015, 761, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.T.; Figueroa, K.W.; Liller, S.; Ehlert, F.J. Estimation of Agonist Activity at G Protein-Coupled Receptors: Analysis of M2 Muscarinic Receptor Signaling Through Gi/o, Gs, and G15. J. Pharmacol. Exp. Ther. 2007, 321, 1193–1207. [Google Scholar] [CrossRef] [Green Version]
- Tran, J.A.; Chang, A.; Matsui, M.; Ehlert, F.J. Estimation of Relative Microscopic Affinity Constants of Agonists for the Active State of the Receptor in Functional Studies on M2 and M3 Muscarinic Receptors. Mol. Pharmacol. 2009, 75, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, A.; Miyano, K.; Nakayama, D.; Mizobuchi, Y.; Uezono, E.; Ohshima, K.; Karasawa, Y.; Kuroda, Y.; Nonaka, M.; Yamaguchi, K.; et al. Novel Opioid Analgesics for the Development of Transdermal Opioid Patches That Possess Morphine-Like Pharmacological Profiles Rather Than Fentanyl: Possible Opioid Switching Alternatives Among Patch Formula. Anesth. Analg. 2022, 134, 1082–1093. [Google Scholar] [CrossRef]
- Manabe, S.; Miyano, K.; Fujii, Y.; Ohshima, K.; Yoshida, Y.; Nonaka, M.; Uzu, M.; Matsuoka, Y.; Sato, T.; Uezono, Y.; et al. Possible biased analgesic of hydromorphone through the G protein-over beta-arrestin-mediated pathway: cAMP, CellKey, and receptor internalization analyses. J. Pharmacol. Sci. 2019, 140, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Land, B.B.; Bruchas, M.R.; Lemos, J.C.; Xu, M.; Melief, E.J.; Chavkin, C. The Dysphoric Component of Stress Is Encoded by Activation of the Dynorphin Kappa-Opioid System. J. Neurosci. 2008, 28, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van’t Veer, A.; Carlezon, W.A., Jr. Role of Kappa-Opioid Receptors in Stress and Anxiety-Related Behavior. Psychopharmacology 2013, 229, 435–452. [Google Scholar] [CrossRef]
- Mores, K.L.; Cummins, B.R.; Cassell, R.J.; van Rijn, R.M. A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Front. Pharmacol. 2019, 10, 407. [Google Scholar] [CrossRef]
- Liu, J.J.; Chiu, Y.T.; DiMattio, K.M.; Chen, C.; Huang, P.; Gentile, T.A.; Muschamp, J.W.; Cowan, A.; Mann, M.; Liu-Chen, L.Y. Phosphoproteomic Approach for Agonist-Specific Signaling in Mouse Brains: mTOR Pathway Is Involved in Kappa Opioid Aversion. Neuropsychopharmacology 2019, 44, 939–949. [Google Scholar] [CrossRef]
- McLaughlin, J.P.; Myers, L.C.; Zarek, P.E.; Caron, M.G.; Lefkowitz, R.J.; Czyzyk, T.A.; Pintar, J.E.; Chavkin, C. Prolonged Kappa Opioid Receptor Phosphorylation Mediated by G-Protein Receptor Kinase Underlies Sustained Analgesic Tolerance. J. Biol. Chem. 2004, 279, 1810–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruchas, M.R.; Land, B.B.; Aita, M.; Xu, M.; Barot, S.K.; Li, S.; Chavkin, C. Stress-Induced p38 Mitogen-Activated Protein Kinase Activation Mediates Kappa-Opioid-Dependent Dysphoria. J. Neurosci. 2007, 27, 11614–11623. [Google Scholar] [CrossRef] [Green Version]
- Bruchas, M.R.; Macey, T.A.; Lowe, J.D.; Chavkin, C. Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-Dependent in Neurons and Astrocytes. J. Biol. Chem. 2006, 281, 18081–18089. [Google Scholar] [CrossRef] [Green Version]
- Redila, V.A.; Chavkin, C. Stress-Induced Reinstatement of Cocaine Seeking Is Mediated by the Kappa Opioid System. Psychopharmacology 2008, 200, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Grundmann, M.; Merten, N.; Malfacini, D.; Inoue, A.; Preis, P.; Simon, K.; Ruttiger, N.; Ziegler, N.; Benkel, T.; Schmitt, N.K.; et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 2018, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Urban, J.D.; Clarke, W.P.; von Zastrow, M.; Nichols, D.E.; Kobilka, B.; Weinstein, H.; Javitch, J.A.; Roth, B.L.; Christopoulos, A.; Sexton, P.M.; et al. Functional Selectivity and Classical Concepts of Quantitative Pharmacology. J. Pharmacol. Exp. Ther. 2007, 320, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rives, M.L.; Rossillo, M.; Liu-Chen, L.Y.; Javitch, J.A. 6′-Guanidinonaltrindole (6′-GNTI) Is a G Protein-Biased Kappa-Opioid Receptor Agonist That Inhibits Arrestin Recruitment. J. Biol. Chem. 2012, 287, 27050–27054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, C.L.; Streicher, J.M.; Groer, C.E.; Munro, T.A.; Zhou, L.; Bohn, L.M. Functional Selectivity of 6′-Guanidinonaltrindole (6′-GNTI) at Kappa-Opioid Receptors in Striatal Neurons. J. Biol. Chem. 2013, 288, 22387–22398. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Lovell, K.M.; Frankowski, K.J.; Slauson, S.R.; Phillips, A.M.; Streicher, J.M.; Stahl, E.; Schmid, C.L.; Hodder, P.; Madoux, F.; et al. Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors. J. Biol. Chem. 2013, 288, 36703–36716. [Google Scholar] [CrossRef] [Green Version]
- White, K.L.; Scopton, A.P.; Rives, M.L.; Bikbulatov, R.V.; Polepally, P.R.; Brown, P.J.; Kenakin, T.; Javitch, J.A.; Zjawiony, J.K.; Roth, B.L. Identification of Novel Functionally Selective Kappa-Opioid Receptor Scaffolds. Mol. Pharmacol. 2014, 85, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagase, H.; Imaide, S.; Hirayama, S.; Nemoto, T.; Fujii, H. Essential Structure of Opioid Kappa Receptor Agonist Nalfurafine for Binding to the Kappa Receptor 2: Synthesis of Decahydro(Iminoethano)Phenanthrene Derivatives and Their Pharmacologies. Bioorg. Med. Chem. Lett. 2012, 22, 5071–5074. [Google Scholar] [CrossRef]
- Fujii, H.; Imaide, S.; Hirayama, S.; Nemoto, T.; Gouda, H.; Hirono, S.; Nagase, H. Essential Structure of Opioid Kappa Receptor Agonist Nalfurafine for Binding to the Kappa Receptor 3: Synthesis of Decahydro(Iminoethano)Phenanthrene Derivatives with an Oxygen Functionality at the 3-Position and Their Pharmacologies. Bioorg. Med. Chem. Lett. 2012, 22, 7711–7714. [Google Scholar] [CrossRef]
- Meguro, Y.; Miyano, K.; Hirayama, S.; Yoshida, Y.; Ishibashi, N.; Ogino, T.; Fujii, Y.; Manabe, S.; Eto, M.; Nonaka, M.; et al. Neuropeptide Oxytocin Enhances μ Opioid Receptor Signaling as a Positive Allosteric Modulator. J. Pharmacol. Sci. 2018, 137, 67–75. [Google Scholar] [CrossRef]
- Tobo, M.; Tomura, H.; Mogi, C.; Wang, J.Q.; Liu, J.P.; Komachi, M.; Damirin, A.; Kimura, T.; Murata, N.; Kurose, H.; et al. Previously Postulated ‘ligand-independent’ Signaling of GPR4 Is Mediated Through Proton-Sensing Mechanisms. Cell Signal. 2007, 19, 1745–1753. [Google Scholar] [CrossRef]
- Yin, H.; Chu, A.; Li, W.; Wang, B.; Shelton, F.; Otero, F.; Nguyen, D.G.; Caldwell, J.S.; Chen, Y.A. Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J. Biol. Chem. 2009, 284, 12328–12338. [Google Scholar] [CrossRef] [Green Version]
- Ehlert, F.J. On the Analysis of Ligand-Directed Signaling at G Protein-Coupled Receptors. Naunyn Schmiedeberg’s Arch. Pharmacol. 2008, 377, 549–577. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, F.J.; Suga, H.; Griffin, M.T. Quantifying Agonist Activity at G Protein-Coupled Receptors. J. Vis. Exp. 2011, 58, e3179. [Google Scholar] [CrossRef] [PubMed]
CellKey Assay | GloSensor cAMP Assay | PathHunter Assay | |||||
---|---|---|---|---|---|---|---|
Compounds | Log EC50 (M) | Emax (%) | Log EC50 (M) | Emax (%) | Log EC50 (M) | Emax (%) | |
Nalfurafine | −9.64 ± 0.10 | 100.00 ± 3.09 | −10.09 ± 0.06 | 100.00 ± 1.74 | −9.27 ± 0.19 | 100.00 ± 7.43 | |
Group A | SYK-160 | −9.64 ± 0.90 | 88.74 ± 2.55 | −9.47 ± 0.10 *** | 96.51 ± 1.97 | −8.83 ± 0.12 | 107.27 ± 4.64 |
SYK-186 | −8.47 ± 0.10 *** | 95.42 ± 3.18 | −8.67 ± 0.09 *** | 101.14 ± 2.74 | −7.56 ± 0.11 *** | 81.76 ± 3.83 | |
SYK-406 | −9.17 ± 0.12 ** | 90.33 ± 3.94 | −9.52 ± 0.12 *** | 104.26 ± 3.44 | −8.64 ± 0.09 ** | 87.47 ± 2.77 | |
Group B | SYK-245 | −7.74 ± 0.07 *** | 92.51 ± 2.36 | −7.42 ± 0.11 *** | 103.21 ± 3.60 | −6.91 ± 0.09 *** | 88.78 ± 3.35 |
SYK-308 | −9.16 ± 0.09 ** | 95.41 ± 2.57 | −9.20 ±0.10 *** | 98.16 ± 3.21 | −8.20 ± 0.14 *** | 93.29 ± 5.51 | |
SYK-309 | −9.41 ± 0.12 | 98.06 ± 3.54 | −9.13 ± 0.07 *** | 102.03 ± 2.16 | −7.81 ± 0.08 *** | 85.92 ± 3.08 |
Compounds | G-Protein-Biased Ratio (Mean ± SEM) | p-Value |
---|---|---|
Nalfurafine | 1 | n.s. |
SYK-160 | 0.36 ± 0.05 | n.s. |
SYK-186 | 1.47 ± 0.30 | n.s. |
SYK-406 | 0.89 ± 0.18 | n.s. |
SYK-245 | 0.35 ± 0.67 | n.s. |
SYK-308 | 1.83 ± 0.80 | n.s. |
SYK-309 | 4.46 ± 1.87 ** | 0.0055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, M.; Miyano, K.; Hirayama, S.; Karasawa, Y.; Ohshima, K.; Uezono, E.; Komatsu, A.; Nonaka, M.; Fujii, H.; Yamaguchi, K.; et al. Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022, 27, 7065. https://doi.org/10.3390/molecules27207065
Yamaguchi M, Miyano K, Hirayama S, Karasawa Y, Ohshima K, Uezono E, Komatsu A, Nonaka M, Fujii H, Yamaguchi K, et al. Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules. 2022; 27(20):7065. https://doi.org/10.3390/molecules27207065
Chicago/Turabian StyleYamaguchi, Masahiro, Kanako Miyano, Shigeto Hirayama, Yusuke Karasawa, Kaori Ohshima, Eiko Uezono, Akane Komatsu, Miki Nonaka, Hideaki Fujii, Keisuke Yamaguchi, and et al. 2022. "Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways" Molecules 27, no. 20: 7065. https://doi.org/10.3390/molecules27207065
APA StyleYamaguchi, M., Miyano, K., Hirayama, S., Karasawa, Y., Ohshima, K., Uezono, E., Komatsu, A., Nonaka, M., Fujii, H., Yamaguchi, K., Iseki, M., Hayashida, M., & Uezono, Y. (2022). Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules, 27(20), 7065. https://doi.org/10.3390/molecules27207065