Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Proximate Composition of A. nilagirica
2.2. Quantitative and Qualitative Estimation of Phytochemicals in A. nilagirica
2.3. In Vitro Antioxidant Activities of A. nilagirica Extract
2.4. Enzyme-Inhibitory Activities of A. nilagirica Ethanol Extract
2.5. Antiproliferative Activity of the A. nilagirica
2.6. Anti-Inflammatory Activity of A. nilagirica
3. Materials and Methods
3.1. Artemisia Nilagirica (C.B.Clarke) Pamp. Collection and Extraction Using 100% Ethanol
3.2. Phytochemical Analysis of Artemesia nilagirica
3.3. Analysis of the Antioxidant Activity of A. nilagirica Ethanol Extract
3.4. Efficacy of A. nilagirica Ethanol Extract on Activities of Enzymes
3.5. Effect of A. nilagirica Ethanol Extract on Cancer Cell Proliferation
3.6. Effect of A. nilagirica Extract on Lipopolysaccharide-Induced Cytokine Production in Macrophages
3.7. Presentation of the Data, Software Used, and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Behera, N.K.; Mahalakshmi, G.S. A cloud based knowledge discovery framework, for medicinal plants from PubMed literature. Inform. Med. Unlocked 2019, 16, 100105. [Google Scholar] [CrossRef]
- Karpavičienė, B. Traditional Uses of Medicinal Plants in South-Western Part of Lithuania. Plants 2022, 11, 2093. [Google Scholar] [CrossRef] [PubMed]
- Noor, F.; Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals 2022, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, B.S.; Babalola, O.O. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J. Fungi 2021, 7, 147. [Google Scholar] [CrossRef] [PubMed]
- Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P.; et al. Artemisia annua, a Traditional Plant Brought to Light. Int. J. Mol. Sci. 2020, 21, 4986. [Google Scholar] [CrossRef] [PubMed]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus artemisia. Arch. Pharmacal Res. 2021, 44, 439–474. [Google Scholar] [CrossRef]
- Salaroli, R.; Andreani, G.; Bernardini, C.; Zannoni, A.; La Mantia, D.; Protti, M.; Forni, M.; Mercolini, L.; Isani, G. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines. Res. Vet. Sci. 2022, 152, 476–484. [Google Scholar] [CrossRef]
- Baies, M.H.; Gherman, C.; Boros, Z.; Olah, D.; Vlase, A.M.; Cozma-Petrut, A.; Gyorke, A.; Miere, D.; Vlase, L.; Crisan, G.; et al. The Effects of Allium sativum L., Artemisia absinthium L., Cucurbita pepo L., Coriandrum sativum L., Satureja hortensis L. and Calendula officinalis L. on the Embryogenesis of Ascaris suum Eggs during an In Vitro Experimental Study. Pathogens 2022, 11, 1065. [Google Scholar] [CrossRef]
- Suroowan, S.; Llorent-Martinez, E.J.; Zengin, G.; Dall’Acqua, S.; Sut, S.; Buskaran, K.; Fakurazi, S.; Mahomoodally, M.F. Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. Molecules 2022, 27, 5886. [Google Scholar] [CrossRef]
- Chen, X.Y.; Liu, T.; Hu, Y.Z.; Qiao, T.T.; Wu, X.J.; Sun, P.H.; Qian, C.W.; Ren, Z.; Zheng, J.X.; Wang, Y.F. Sesquiterpene lactones from Artemisia vulgaris L. as potential NO inhibitors in LPS-induced RAW264.7 macrophage cells. Front. Chem. 2022, 10, 948714. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Peng, S.; Ou, Y.; He, B.; Li, Y.; Lin, Q. Effects of Artemisia argyi Powder on Egg Quality, Antioxidant Capacity, and Intestinal Development of Roman Laying Hens. Front. Physiol. 2022, 13, 902568. [Google Scholar] [CrossRef]
- Su, S.H.; Sundhar, N.; Kuo, W.W.; Lai, S.C.; Kuo, C.H.; Ho, T.J.; Lin, P.Y.; Lin, S.Z.; Shih, C.Y.; Lin, Y.J.; et al. Artemisia argyi extract induces apoptosis in human gemcitabine-resistant lung cancer cells via the PI3K/MAPK signaling pathway. J. Ethnopharmacol. 2022, 299, 115658. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Agrawal, C.; Blunden, G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022, 27, 3828. [Google Scholar] [CrossRef]
- Zhu, Z.; Turak, A.; Aisa, H.A. Sesquiterpene lactones from Artemisia mongolica. Phytochemistry 2022, 199, 113158. [Google Scholar] [CrossRef]
- Zhang, J.J.; Qu, L.B.; Bi, Y.F.; Pan, C.X.; Yang, R.; Zeng, H.J. Antibacterial activity and mechanism of chloroform fraction from aqueous extract of mugwort leaves (Artemisia argyi L.) against Staphylococcus aureus. Lett. Appl. Microbiol. 2022, 74, 893–900. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, Q.; Zhou, J.; Xu, J.; Zhao, T.; Huang, B.; Miao, Y.; Liu, D. The role of antifungal activity of ethyl acetate extract from Artemisia argyi on Verticillium dahliae. J. Appl. Microbiol. 2022, 132, 1343–1356. [Google Scholar] [CrossRef]
- Tao, A.; Feng, X.; Sheng, Y.; Song, Z. Optimization of the Artemisia Polysaccharide Fermentation Process by Aspergillus niger. Front. Nutr. 2022, 9, 842766. [Google Scholar] [CrossRef]
- Suvaithenamudhan, S.; Ananth, S.; Mariappan, V.; Dhayabaran, V.V.; Parthasarathy, S.; Ganesh, P.S.; Shankar, E.M. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules 2022, 27, 5188. [Google Scholar] [CrossRef]
- Son, S.R.; Ju, I.G.; Kim, J.; Park, K.T.; Oh, M.S.; Jang, D.S. Chemical Constituents from the Aerial Parts of Artemisia iwayomogi and Their Anti-Neuroinflammatory Activities. Plants 2022, 11, 1954. [Google Scholar] [CrossRef]
- Kolesar, J.M.; Seeberger, P.H. Editorial: Anticancer Potential of Artemisia annua. Front. Oncol. 2022, 12, 853406. [Google Scholar] [CrossRef]
- Jung, E.J.; Paramanantham, A.; Kim, H.J.; Shin, S.C.; Kim, G.S.; Jung, J.M.; Hong, S.C.; Chung, K.H.; Kim, C.W.; Lee, W.S. Identification of Growth Factors, Cytokines and Mediators Regulated by Artemisia annua L. Polyphenols (pKAL) in HCT116 Colorectal Cancer Cells: TGF-beta1 and NGF-beta Attenuate pKAL-Induced Anticancer Effects via NF-kappaB p65 Upregulation. Int. J. Mol. Sci. 2022, 23, 1598. [Google Scholar] [CrossRef]
- Bordoni, V.; Sanna, L.; Lyu, W.; Avitabile, E.; Zoroddu, S.; Medici, S.; Kelvin, D.J.; Bagella, L. Silver Nanoparticles Derived by Artemisia arborescens Reveal Anticancer and Apoptosis-Inducing Effects. Int. J. Mol. Sci. 2021, 22, 8621. [Google Scholar] [CrossRef]
- Sahu, N.; Meena, S.; Shukla, V.; Chaturvedi, P.; Kumar, B.; Datta, D.; Arya, K.R. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination. J. Ethnopharmacol. 2018, 213, 72–80. [Google Scholar] [CrossRef]
- Ahameethunisa, A.R.; Hopper, W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Complement. Altern. Med. 2010, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.K.; Mohanty, S.; Padhi, A.; Pati, R.; Sonawane, A. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC Complement. Altern. Med. 2014, 14, 87. [Google Scholar] [CrossRef]
- Panda, S.; Rout, J.R.; Pati, P.; Ranjit, M.; Sahoo, S.L. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J. Parasit. Dis. 2018, 42, 22–27. [Google Scholar] [CrossRef]
- Gul, M.Z.; Chandrasekaran, S.; Manjulatha, K.; Bhat, M.Y.; Maurya, R.; Qureshi, I.A.; Ghazi, I.A. Bioassay-Guided Fractionation and In Vitro Antiproliferative Effects of Fractions of Artemisia nilagirica on THP-1 cell line. Nutr. Cancer 2016, 68, 1210–1224. [Google Scholar] [CrossRef]
- Raju, S.R.; Balakrishnan, S.; Kollimada, S.; Chandrashekara, K.N.; Jampani, A. Anti-tumor effects of Artemisia nilagirica extract on MDA-MB-231 breast cancer cells: Deciphering the biochemical and biomechanical properties via TGF-beta upregulation. Heliyon 2020, 6, e05088. [Google Scholar] [CrossRef]
- Parameswari, P.; Devika, R.; Vijayaraghavan, P. In vitro anti-inflammatory and antimicrobial potential of leaf extract from Artemisia nilagirica (Clarke) Pamp. Saudi J. Biol. Sci. 2019, 26, 460–463. [Google Scholar] [CrossRef]
- Suseela, V.; Gopalakrishnan, V.K.; Varghese, S. In vitro Antioxidant Studies of Fruits of Artemisia nilagirica (Clarke) Pamp. Indian J. Pharm. Sci. 2010, 72, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sati, S.C.; Sati, N.; Ahluwalia, V.; Walia, S.; Sati, O.P. Chemical composition and antifungal activity of Artemisia nilagirica essential oil growing in northern hilly areas of India. Nat. Prod. Res. 2013, 27, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Sonker, N.; Pandey, A.K.; Singh, P. Efficiency of Artemisia nilagirica (Clarke) Pamp. essential oil as a mycotoxicant against postharvest mycobiota of table grapes. J. Sci. Food Agric. 2015, 95, 1932–1939. [Google Scholar] [CrossRef] [PubMed]
- Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Khan, I.A.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.; et al. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya. Planta Med. 2014, 80, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Ekiert, H.; Świątkowska, J.; Klin, P.; Rzepiela, A.; Szopa, A. Artemisia annua—Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications. Planta Med. 2021, 87, 584–599. [Google Scholar] [CrossRef]
- Matvieieva, N.; Drobot, K.; Duplij, V.; Ratushniak, Y.; Shakhovsky, A.; Kyrpa-Nesmiian, T.; Mickevičius, S.; Brindza, J. Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots. Prep. Biochem. Biotechnol. 2019, 49, 82–87. [Google Scholar] [CrossRef]
- Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019, 116, 109004. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Crascì, L.; Cardile, V.; Longhitano, G.; Nanfitò, F.; Panico, A. Anti-degenerative effect of Apigenin, Luteolin and Quercetin on human keratinocyte and chondrocyte cultures: SAR evaluation. Drug Res. 2018, 68, 132–138. [Google Scholar] [CrossRef]
- Skowyra, M.; Gallego, M.G.; Segovia, F.; Almajano, M.P. Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions. Antioxidants 2014, 3, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Hidayathulla, S.; Rehman, M.T.; ElGamal, A.A.; Al-Massarani, S.; Razmovski-Naumovski, V.; Alqahtani, M.S.; El Dib, R.A.; AlAjmi, M.F. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Nuxia oppositifolia. Biomolecules 2020, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Jannapureddy, S.; Sharma, M.; Yepuri, G.; Schmidt, A.M.; Ramasamy, R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front. Endocrinol. 2021, 12, 636267. [Google Scholar] [CrossRef]
- Kazeem, M.I.; Adeyemi, A.A.; Adenowo, A.F.; Akinsanya, M.A. Carica papaya Linn. fruit extract inhibited the activities of aldose reductase and sorbitol dehydrogenase: Possible mechanism for amelioration of diabetic complications. Future J. Pharm. Sci. 2020, 6, 96. [Google Scholar] [CrossRef]
- Ali, A.N.M.; Saeed, N.; Omear, H.A. The Anticancer Properties of Artemisia aucheri Boiss Extract on HT29 Colon Cancer Cells. J. Gastrointest. Cancer 2021, 52, 113–119. [Google Scholar] [CrossRef]
- Mashati, P.; Esmaeili, S.; Dehghan-Nayeri, N.; Bashash, D.; Darvishi, M.; Gharehbaghian, A. Methanolic Extract from Aerial Parts of Artemisia annua L. Induces Cytotoxicity and Enhances Vincristine-Induced Anticancer Effect in Pre-B Acute Lymphoblastic Leukemia Cells. Int. J. Hematol. Oncol. Stem Cell Res. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, G.H. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells. Chin. J. Cancer Res. Chung-Kuo Yen Cheng Yen Chiu 2013, 25, 536–543. [Google Scholar] [CrossRef]
- Choi, E.; Park, H.; Lee, J.; Kim, G. Anticancer, antiobesity, and anti-inflammatory activity of Artemisia species in vitro. J. Tradit. Chin. Med. Chung I Tsa Chih Ying Wen Pan 2013, 33, 92–97. [Google Scholar] [CrossRef]
- Ghanbar, F.; Mirzaie, A.; Ashrafi, F.; Noorbazargan, H.; Dalirsaber Jalali, M.; Salehi, S.; Sadat Shandiz, S.A. Antioxidant, antibacterial and anticancer properties of phyto-synthesised Artemisia quttensis Podlech extract mediated AgNPs. IET Nanobiotechnol. 2017, 11, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Shandiz, S.A.; Ghanbar, F.; Darvish, M.R.; Ardestani, M.S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 2016, 11, 1835–1846. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights (Review). Int. J. Funct. Nutr. 2020, 1, 9. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Chen, X.; Song, X.; Chen, Y.; Jia, R.; Zou, Y.; Li, L.; Yin, L.; He, C.; Liang, X.; et al. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp. Ther. Med. 2020, 19, 1824–1834. [Google Scholar] [CrossRef] [Green Version]
- Yücel, G.; Zhao, Z.; El-Battrawy, I.; Lan, H.; Lang, S.; Li, X.; Buljubasic, F.; Zimmermann, W.-H.; Cyganek, L.; Utikal, J.; et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 2017, 7, 2935. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. Biomed. Res. Int. 2019, 2019, 7039802. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Park, W. Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid. Molecules 2016, 21, 450. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.; Cho, K.-J.; Kim, J.-H. MyD88–BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp. Mol. Med. 2015, 47, e156. [Google Scholar] [CrossRef] [Green Version]
- Sakai, J.; Cammarota, E.; Wright, J.A.; Cicuta, P.; Gottschalk, R.A.; Li, N.; Fraser, I.D.C.; Bryant, C.E. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci. Rep. 2017, 7, 1428. [Google Scholar] [CrossRef]
- Shukla, A.; Vats, S.; Shukla, R.K. Phytochemical Screening, Proximate Analysis and Antioxidant Activity of Dracaena reflexa Lam. Leaves. Indian J. Pharm. Sci. 2015, 77, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Agidew, M.G. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull. Natl. Res. Cent. 2022, 46, 87. [Google Scholar] [CrossRef]
- Owolabi, O.O.; James, D.B.; Sani, I.; Andongma, B.T.; Fasanya, O.O.; Kure, B. Phytochemical analysis, antioxidant and anti-inflammatory potential of FERETIA APODANTHERA root bark extracts. BMC Complement. Altern. Med. 2018, 18, 12. [Google Scholar] [CrossRef] [Green Version]
- House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. S. Afr. J. Bot. 2020, 135, 408–412. [Google Scholar] [CrossRef]
- Ortiz-Cruz, R.A.; Ramírez-Wong, B.; Ledesma-Osuna, A.I.; Torres-Chávez, P.I.; Sánchez-Machado, D.I.; Montaño-Leyva, B.; López-Cervantes, J.; Gutiérrez-Dorado, R. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods Hum. Nutr. 2020, 75, 252–257. [Google Scholar] [CrossRef]
- Wang, B.; Liu, L.; Huang, Q.; Luo, Y. Quantitative Assessment of Phenolic Acids, Flavonoids and Antioxidant Activities of Sixteen Jujube Cultivars from China. Plant Foods Hum. Nutr. 2020, 75, 154–160. [Google Scholar] [CrossRef]
- Liu, D.; Guo, Y.; Wu, P.; Wang, Y.; Kwaku Golly, M.; Ma, H. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chem. 2020, 311, 125960. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, J.; Chen, C.; Zhang, D.; Li, P.; Ma, F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chem. 2014, 152, 205–209. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. J. King Saud Univ. Sci. 2020, 32, 643–647. [Google Scholar] [CrossRef]
- Tonisi, S.; Okaiyeto, K.; Mabinya, L.V.; Okoh, A.I. Evaluation of bioactive compounds, free radical scavenging and anticancer activities of bulb extracts of Boophone disticha from Eastern Cape Province, South Africa. Saudi J. Biol. Sci. 2020, 27, 3559–3569. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-safi, I.; Louba, A.; Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alharbi, M.S.; Alqahtani, A.; Bari, A.; et al. In Vitro Alpha-Amylase and Alpha-Glucosidase Inhibitory Activity and In Vivo Antidiabetic Activity of Withania frutescens L. Foliar Extract. Molecules 2021, 26, 293. [Google Scholar] [CrossRef]
- Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol. 2018, 56, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Kim, J.K.; Kang, Y.-H.; Lee, J.-Y.; Kang, I.J.; Lim, S.S. Aldose Reductase Inhibitory Activity of Compounds from Zea mays L. Biomed. Res. Int. 2013, 2013, 727143. [Google Scholar] [CrossRef] [Green Version]
- Al-Yousef, H.M.; Fantoukh, O.I.; El-Sayed, M.A.; Amina, M.; Adel, R.; Hassan, W.H.B.; Abdelaziz, S. Metabolic profiling and biological activities of the aerial parts of Micromeria imbricata Forssk. growing in Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 5609–5616. [Google Scholar] [CrossRef]
Physicochemical Parameters | Result |
---|---|
Moisture content (%) | 87.4 ± 2.12 |
Carbohydrate (%) | 55.80 ± 4.1 |
Protein (%) | 3.90 ± 0.16 |
Crude fat (%) | 2.12 ± 0.18 |
Ash content (%) | 0.74 ± 0.04 |
Test | Reaction |
---|---|
Alkaloids | |
Marqui’s test | ++ |
Wagner’s test | ++ |
Mayer’s test | +++ |
Hager’s test | + |
Froehde’s test | ++ |
Dragendorff test | ++ |
Glycosides | |
Legal’s test | + |
Keller-Kiliani test | + |
Flavonoids | |
Alkaline reagent test | ++ |
Lead acetate test | ++ |
Shinoda’s test | +++ |
Tannins | |
Ferric Chloride test | ++ |
Gelatin test | ++ |
Phytosterols | |
Salkowski’s test | ++ |
Liebermann-Burchard test | +++ |
Saponins | |
Froth test | + |
Foam test | + |
Carbohydrates | |
Fehling test | ++ |
Molish test | ++ |
Benedict’s test | ++ |
Phenols | |
Folin-Ciocalteu test | +++ |
Resin | |
Acetone-water test | + |
Fixed oils and fats | |
Stain test | - |
Triterpenes | |
Liebermann-Burchardt’s test | +++ |
Sl. No. | RT (mins) | Compound Name | Formula | Mass |
---|---|---|---|---|
1 | 2.53 | Ferulic acid | C10H10O4 | 194.00 |
2 | 6.38 | Eugenol | C10H12O2 | 164.08 |
3 | 8.18 | Β-caryophyllene | C21H20O11 | 448.40 |
4 | 9.06 | Luteolin | C15H10O6 | 286.00 |
5 | 10.71 | caffeic acid | C9H8O4 | 180.16 |
6 | 11.29 | Quercetin | C15H10O7 | 302.00 |
7 | 12.14 | Myricetin | C15H10O8 | 318.00 |
8 | 12.89 | Apigenin | C15H10O5 | 270.05 |
9 | 14.03 | Luteolin 5-0-beta-d-glucopyranoside | C21H20O11 | 448.13 |
10 | 15.52 | Kaempferol | C15H10O6 | 286.23 |
11 | 21.56 | Carnosic acid | C20H28O4 | 332.19 |
12 | 25.09 | Artemisinin | C20H20O8 | 388.11 |
13 | 29.36 | 2alpha, 3 beta-Dihydroxyolean-12en-28-oic acid | C30H48O4 | 472.35 |
14 | 30.45 | Menthyl acetate | C12H22O2 | 198.16 |
15 | 33.61 | Oleanolic acid | C30H48O3 | 456.36 |
16 | 44.12 | Basilimoside | C36H60O6 | 588.47 |
Assay | mg Equivalent/g |
---|---|
Total phenolic content | 89.51 ± 2.5 |
Total flavonoid content | 14.35 ± 0.9 |
RT (mins) | Compound Name | Quantity (µg/g Extract) |
---|---|---|
2.50 | Ferulic acid | 18.51 ± 1.82 |
9.05 | Luteolin | 146.87 ± 5.29 |
10.70 | caffeic acid | 88.62 ± 1.30 |
11.30 | Quercetin | 240.39 ± 4.87 |
12.87 | Apigenin | 103.41 ± 3.35 |
Antioxidant Activity | IC50 Value (µg/mL) | |
---|---|---|
AN | Ascorbic Acid | |
DPPH scavenging | 23.12 ± 1.28 | 9.64 ± 0.89 |
ABTS scavenging | 27.44 ± 1.88 | 35.19 ± 1.47 |
H2O2 scavenging | 12.92 ± 1.05 | 19.08 ± 1.65 |
FRAP value (EC50) | 5.42 ± 0.19 | 3.22 ± 0.15 |
Nitric oxide scavenging | 367.09 ± 12.05 | 68.10 ± 2.11 |
Enzyme | IC50 Value (µg/mL) |
---|---|
α-Amylase | 38.42 ± 2.71 |
α-Glucosidase | 55.31 ± 2.16 |
Aldose reductase | 17.42 ± 0.87 |
Sorbitol dehydrogenase | 29.57 ± 1.46 |
Nature | Tumor Necrosis Factor α | Interleukin 6 | Interleukin 1β | NO | |
---|---|---|---|---|---|
Untreated | 97.6 ± 2.8 | 76.4 ± 3.1 | 67.8 ± 2.8 | 7.4 ± 0.57 | |
Negative Control (LPS alone) | 420.8 ± 10.6 | 795.2 ± 11.7 | 628.9 ± 14.2 | 52.1 ± 2.0 | |
Quercetin (4.5 µg/mL) | 279.1 ± 11.3 ** | 414.2 ± 10.7 *** | 334.8 ± 11.7 ** | 30.7 ± 1.2 * | |
Artemisia nilagirica extract | 2.5 µg/mL | 314.1 ± 14.5 * | 698.0 ± 17.3 ** | 477.6 ± 11.8 ** | 40.7 ± 1.6 * |
5.0 µg/mL | 265.7 ± 10.7 ** | 524.3 ± 15.6 ** | 389.5 ± 14.6 ** | 32.2 ± 2.4 * | |
7.5 µg/mL | 190.9 ± 14.8 *** | 388.2 ± 15.8 *** | 298.7 ± 15.2 *** | 25.7 ± 2.1 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albaqami, J.J.; Benny, T.P.; Hamdi, H.; Altemimi, A.B.; Kuttithodi, A.M.; Job, J.T.; Sasidharan, A.; Narayanankutty, A. Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp. Molecules 2022, 27, 7119. https://doi.org/10.3390/molecules27207119
Albaqami JJ, Benny TP, Hamdi H, Altemimi AB, Kuttithodi AM, Job JT, Sasidharan A, Narayanankutty A. Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp. Molecules. 2022; 27(20):7119. https://doi.org/10.3390/molecules27207119
Chicago/Turabian StyleAlbaqami, Jawaher J., Tancia P. Benny, Hamida Hamdi, Ammar B. Altemimi, Aswathi Moothakoottil Kuttithodi, Joice Tom Job, Anju Sasidharan, and Arunaksharan Narayanankutty. 2022. "Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp" Molecules 27, no. 20: 7119. https://doi.org/10.3390/molecules27207119
APA StyleAlbaqami, J. J., Benny, T. P., Hamdi, H., Altemimi, A. B., Kuttithodi, A. M., Job, J. T., Sasidharan, A., & Narayanankutty, A. (2022). Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp. Molecules, 27(20), 7119. https://doi.org/10.3390/molecules27207119