Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism
Abstract
:1. Introduction
1.1. Lignocellulosic Biomass
1.2. Nanocellulose
1.3. Pickering Emulsion
1.4. Application of Nanocellulose-Based Pickering Emulsion
1.4.1. Food Industry
1.4.2. Pharmaceutical/Medical Industry
1.4.3. Cosmetic Industry
2. Characteristics of Effective Pickering Emulsifiers
2.1. Surface Wettability
2.2. Surface Charge
2.3. Dimension of Solid Particles
3. Mechanism of the CNC/CNF-Stabilized Oil–Water System
4. Factors Affecting the Stabilization Profile of CNC- and CNF-Based Pickering Emulsion
4.1. Influence of the Hydrophilic–Hydrophobic Interfaces of Nanocellulose
4.1.1. Cellulose Nanocrystal
4.1.2. Cellulose Nanofibril
4.2. Influence of Cationic, Anionic, and Neutral Phases of Raw or Modified Nanocellulose
4.2.1. Cellulose Nanocrystal
4.2.2. Cellulose Nanofibril
4.3. Morphology
4.3.1. Cellulose Nanocrystal
4.3.2. Cellulose Nanofibril
4.4. Influence of Other Non-Major Factors
4.4.1. Cellulose Nanocrystal
4.4.2. Cellulose Nanofibril
5. Toxicity and Safety Aspects of NC
6. Conclusions and Future Aspects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teo, H.L.; Wahab, R.A. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. Int. J.Biol. Macromol. 2020, 161, 1414–1430. [Google Scholar] [CrossRef] [PubMed]
- Saidane, D.; Perrin, E.; Cherhal, F.; Guellec, F.; Capron, I. Some modification of cellulose nanocrystals for functional Pickering emulsions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150139. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Pickering Emulsions: A Novel Tool for Cosmetic Formulators. Cosmetics 2022, 9, 68. [Google Scholar] [CrossRef]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef]
- Rayner, M.; Marku, D.; Eriksson, M.; Sjöö, M.; Dejmek, P.; Wahlgren, M. Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids Surf. A Physicochem. Eng. Asp. 2014, 458, 48–62. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Loh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 2017, 141, 285–298. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Rajesh Banu, J.; Rao, C.V.; Kim, Y.G.; Yang, Y.H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Cachero, S.; Gonzalez-Sanchez, C.; Montejo-Bernardo, J.; Pizarro, C.; Bueno, J.L. Novel method for holocellulose analysis of non-woody biomass wastes. Carbohydr. Polym. 2018, 189, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Z.; Li, S.; Wang, X.; Lin, R. Comparative study on the two-step pyrolysis of different lignocellulosic biomass: Effects of components. J. Anal. Appl. Pyrolysis 2020, 152, 104966. [Google Scholar] [CrossRef]
- Vanitjinda, G.; Nimchua, T.; Sukyai, P. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. Int. J. Biol. Macromol. 2019, 122, 503–516. [Google Scholar] [CrossRef]
- Khan, A.S.; Man, Z.; Bustam, M.A.; Nasrullah, A.; Ullah, Z.; Sarwono, A.; Shah, F.U.; Muhammad, N. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydr. Polym. 2018, 181, 208–214. [Google Scholar] [CrossRef]
- Luo, K.; Wang, Y.; Xiao, H.; Song, G.; Cheng, Q.; Fan, G. Preparation of convertible cellulose from rice straw using combined organosolv fractionation and alkaline bleaching. IOP Conf. Ser. Earth Environ. Sci. 2019, 237, 052053. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt Boix, A. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 2018, 191, 205–215. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Mathew, A.K.; Abraham, A.; Gnansounou, E.; Ummalyma, S.B.; Thomas, L.; Pandey, A. Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. Bioresour. Technol. 2017, 242, 146–151. [Google Scholar] [CrossRef]
- Mu, B.; Wang, H.; Hao, X.; Wang, Q. Morphology, Mechanical Properties and Dimensional Stability of Biomass Particles/High Density Polyethylene Composites: Effect of Species and Composition. Polymers 2018, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Haddadou, I.; Aliouche, D.; Brosse, N.; Amirou, S. Characterization of cellulose prepared from some Algerian lignocellulosic materials (zeen oak wood, Aleppo pine wood and date palm rachis). Eur. J. Wood Wood Prod. 2015, 73, 419–421. [Google Scholar] [CrossRef]
- Raud, M.; Tutt, M.; Olt, J.; Kikas, T. Dependence of the hydrolysis efficiency on the lignin content in lignocellulosic material. Int. J. Hydrog. Energy 2016, 41, 16338–16343. [Google Scholar] [CrossRef]
- Scholl, A.L.; Menegol, D.; Pitarelo, A.P.; Fontana, R.C.; Filho, A.Z.; Ramos, L.P.; Dillon, A.J.P.; Camassola, M. Elephant grass pretreated by steam explosion for inducing secretion of cellulases and xylanases by Penicillium echinulatum S1M29 solid-state cultivation. Ind. Crops Prod. 2015, 77, 97–107. [Google Scholar] [CrossRef]
- Reddy, K.O.; Maheswari, C.U.; Dhlamini, M.S.; Mothudi, B.M.; Kommula, V.P.; Zhang, J.; Zhang, J.; Rajulu, A.V. Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr. Polym. 2018, 188, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Muranaka, Y.; Nakagawa, H.; Hasegawa, I.; Maki, T.; Hosokawa, J.; Ikuta, J.; Mae, K. Lignin-based resin production from lignocellulosic biomass combining acidic saccharification and acetone-water treatment. Chem. Eng. J. 2017, 308, 754–759. [Google Scholar] [CrossRef]
- Semerci, I.; Güler, F.; Ersan, G.; Soysal, K.; Ozturk, O.; Altinisik, H.; Tirpan, S.; Ozcelik, F. Assessment of a protic ionic liquid with respect to fractionation and changes in the structural features of hardwood and softwood. Bioresour. Technol. Rep. 2019, 8, 100334. [Google Scholar] [CrossRef]
- Cabalova, I.; Belik, M.; Kucerova, V.; Jurczykova, T. Chemical and Morphological Composition of Norway Spruce Wood (Picea abies, L.) in the Dependence of Its Storage. Polymers 2021, 13, 1619. [Google Scholar] [CrossRef] [PubMed]
- Cruz, N.; Avila, C.; Aguayo, M.G.; Cloutier, A.; Castillo, R. Impact of the Chemical Composition of Pinus radiata Wood on its Physical and Mechanical Properties Following Thermo-Hygromechanical Densification. Bioresources 2018, 13, 2268–2282. [Google Scholar] [CrossRef]
- Farias-Sanchez, J.C.; Lopez-Miranda, J.; Castro-Montoya, A.J.; Saucedo-Luna, J.; Carrillo-Parra, A.; Lopez-Albarran, P.; Pineda-Pimentel, M.G.; Rutiaga-Quinones, J.G. Comparison of five pretreatments for the production of fermentable sugars obtained from Pinus pseudostrobus L. wood. EXCLI J. 2015, 14, 430–438. [Google Scholar] [CrossRef]
- Bajpai, P. Structure of Lignocellulosic Biomass. In Pretreatment of Lignocellulosic Biomass for Biofuel Production; SpringerBriefs in Molecular Science; Springer: Singapore, 2016; pp. 7–12. [Google Scholar]
- Lee, H.V.; Hamid, S.B.; Zain, S.K. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Sci. World J. 2014, 2014, 631013. [Google Scholar] [CrossRef] [Green Version]
- Lorenci Woiciechowski, A.; Dalmas Neto, C.J.; Porto de Souza Vandenberghe, L.; de Carvalho Neto, D.P.; Novak Sydney, A.C.; Letti, L.A.J.; Karp, S.G.; Zevallos Torres, L.A.; Soccol, C.R. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance—Conventional processing and recent advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef] [PubMed]
- Zoghlami, A.; Paes, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haldar, D.; Purkait, M.K. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydr. Polym. 2020, 250, 116937. [Google Scholar] [CrossRef]
- Sankaran, R.; Parra Cruz, R.A.; Pakalapati, H.; Show, P.L.; Ling, T.C.; Chen, W.H.; Tao, Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresour. Technol. 2020, 298, 122476. [Google Scholar] [CrossRef]
- Melati, R.B.; Shimizu, F.L.; Oliveira, G.; Pagnocca, F.C.; de Souza, W.; Sant’Anna, C.; Brienzo, M. Key Factors Affecting the Recalcitrance and Conversion Process of Biomass. BioEnergy Res. 2018, 12, 1–20. [Google Scholar] [CrossRef]
- Guleria, A.; Kumari, G.; Saravanamurugan, S. Cellulose valorization to potential platform chemicals. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 433–457. [Google Scholar]
- De Jong, E.; Higson, A.; Walsh, P.; Wellisch, M. Bio-Based Chemicals: Value Added Products from Biorefineries. 2012. Available online: http://www.iea-bioenergy.task42-biorefineries.com/ (accessed on 18 August 2022).
- Haldar, D.; Purkait, M.K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 2021, 264, 128523. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Shokri, J.; Adibki, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In Cellulose—Medical, Pharmaceutical and Electronic Applications; IntechOpen: London, UK, 2013. [Google Scholar]
- Gupta, P.K.; Raghunath, S.; Venkatesh Prasanna, D.; Venkat, P.; Shree, V.; Chithananthan, C.; Choudhary, S.; Surender, K.; Geetha, K. An Update on Overview of Cellulose, Its Structure and Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Naz, S.; Ali, J.S.; Zia, M. Nanocellulose isolation characterization and applications: A journey from non-remedial to biomedical claims. Bio-Des. Manuf. 2019, 2, 187–212. [Google Scholar] [CrossRef]
- De Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef]
- Nasir, M.; Hashim, R.; Sulaiman, O.; Asim, M. Nanocellulose: Preparation method and applications. In Cellulose-Reinforced Nanofibre Composites; Wiley-VCH Verlag GmbH & Co. KGaA.: Berlin, Germany, 2017; pp. 261–276. [Google Scholar]
- Ioelovich, M. Characterization of Various Kinds of Nanocellulose. In Handbook of Nanocellulose and Cellulose Nanocomposites; Kargarzadeh, H., Ahmad, I., Thomas, S., Dufresne, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA.: Berlin, Germany, 2017; Volume 1, pp. 51–100. [Google Scholar]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, Z.; Sajjad, W.; Khan, T.; Wahid, F. Production of bacterial cellulose from industrial wastes: A review. Cellulose 2019, 26, 2895–2911. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Ge, L.; Xie, W.; Wu, D. Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydr. Polym. 2021, 255, 117483. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. Methods for Extraction of Nanocellulose from Various Sources. In Handbook of Nanocellulose and Cellulose Nanocomposites; Kargarzadeh, H., Ahmad, I., Thomas, S., Dufresne, A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA.: Berlin, Germany, 2017; Volume 1, pp. 1–49. [Google Scholar]
- Zhang, J.; Elder, T.J.; Pu, Y.; Ragauskas, A.J. Facile synthesis of spherical cellulose nanoparticles. Carbohydr. Polym. 2007, 69, 607–611. [Google Scholar] [CrossRef]
- Chavez-Guerrero, L.; Sepulveda-Guzman, S.; Silva-Mendoza, J.; Aguilar-Flores, C.; Perez-Camacho, O. Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohydr. Polym. 2018, 181, 642–649. [Google Scholar] [CrossRef]
- Van de Ven, T.G.M.; Sheikhi, A. Hairy cellulose nanocrystalloids: A novel class of nanocellulose. Nanoscale 2016, 8, 15101–15114. [Google Scholar] [CrossRef]
- Dizge, N.; Shaulsky, E.; Karanikola, V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes. J. Membr. Sci. 2019, 590, 117271. [Google Scholar] [CrossRef]
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef] [Green Version]
- Salimi, S.; Sotudeh-Gharebagh, R.; Zarghami, R.; Chan, S.Y.; Yuen, K.H. Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustain. Chem. Eng. 2019, 7, 15800–15827. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose Processing Properties and Potential Applications. Curr. For. Rep. 2019, 5, 76–89. [Google Scholar] [CrossRef]
- Ludwicka, K.; Jedrzejczak-Krzepkowska, M.; Kubiak, K.; Kolodziejczyk, M.; Pankiewicz, T.; Bielecki, S. Medical and Cosmetic Applications of Bacterial NanoCellulose. In Bacterial Nanocellulose; Elsevier: Amsterdam, The Netherlands, 2016; pp. 145–165. [Google Scholar]
- Bianchet, R.T.; Cubas, A.L.; Machado, M.M.; Moecke, E.H. Applicability of bacterial cellulose in cosmetics—Bibliometric review. Biotechnol. Rep. 2020, 27, e00502. [Google Scholar] [CrossRef]
- Kamel, R.; El-Wakil, N.A.; Dufresne, A.; Elkasabgy, N.A. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. Int. J. Biol. Macromol. 2020, 163, 1579–1590. [Google Scholar] [CrossRef]
- Afrin, S.; Karim, Z. Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. ChemBioEng Rev. 2017, 4, 289–303. [Google Scholar] [CrossRef]
- Low, L.E.; Siva, S.P.; Ho, Y.K.; Chan, E.S.; Tey, B.T. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Adv. Colloid Interface Sci. 2020, 277, 102117. [Google Scholar] [CrossRef]
- Calabrese, V.; Courtenay, J.C.; Edler, K.J.; Scott, J.L. Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 2018, 12, 83–90. [Google Scholar] [CrossRef]
- Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 287. [Google Scholar] [CrossRef]
- Fujisawa, S.; Togawa, E.; Kuroda, K. Nanocellulose-stabilized Pickering emulsions and their applications. Sci. Technol. Adv. Mater. 2017, 18, 959–971. [Google Scholar] [CrossRef]
- Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Cui, F.; Zhao, S.; Guan, X.; McClements, D.J.; Liu, X.; Liu, F.; Ngai, T. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocoll. 2021, 119, 106812. [Google Scholar] [CrossRef]
- Yan, X.; Ma, C.; Cui, F.; McClements, D.J.; Liu, X.; Liu, F. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends Food Sci. Technol. 2020, 103, 293–303. [Google Scholar] [CrossRef]
- Dai, H.; Wu, J.; Zhang, H.; Chen, Y.; Ma, L.; Huang, H.; Huang, Y.; Zhang, Y. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends Food Sci. Technol. 2020, 102, 16–29. [Google Scholar] [CrossRef]
- Bertsch, P.; Fischer, P. Adsorption and interfacial structure of nanocelluloses at fluid interfaces. Adv. Colloid Interface Sci. 2020, 276, 102089. [Google Scholar] [CrossRef]
- Chu, Y.; Sun, Y.; Wu, W.; Xiao, H. Dispersion Properties of Nanocellulose: A Review. Carbohydr. Polym. 2020, 250, 116892. [Google Scholar] [CrossRef] [PubMed]
- Jutakridsada, P.; Pimsawat, N.; Sillanpää, M.; Kamwilaisak, K. Olive oil stability in Pickering emulsion preparation from eucalyptus pulp and its rheology behaviour. Cellulose 2020, 27, 6189–6203. [Google Scholar] [CrossRef]
- Szlapak Franco, T.; Martínez Rodríguez, D.C.; Jiménez Soto, M.F.; Jiménez Amezcua, R.M.; Urquíza, M.R.; Mendizábal Mijares, E.; de Muniz, G.I.B. Production and technological characteristics of avocado oil emulsions stabilized with cellulose nanofibrils isolated from agroindustrial residues. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 586, 124263. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Q.; Wang, B.; Feng, X.; Xu, H.; Mao, Z.; You, C.; Sui, X. Synthetic semicrystalline cellulose oligomers as efficient Pickering emulsion stabilizers. Carbohydr. Polym. 2021, 254, 117445. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Kuang, Y.; Guo, S.; Mo, L.; Ni, Y. Stabilization of Pickering emulsions with cellulose nanofibers derived from oil palm fruit bunch. Cellulose 2019, 27, 839–851. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, H.; Chen, Y.; Ma, L.; Wu, J.; Zhang, Y. Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocoll. 2021, 120, 106884. [Google Scholar] [CrossRef]
- Kasiri, N.; Fathi, M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 2018, 106, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.L.R.; Gomes, A.; Tibolla, H.; Menegalli, F.C.; Cunha, R.L. Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydr. Polym. 2018, 194, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Li, J.; Fan, L. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions. Int. J. Biol. Macromol. 2020, 149, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Wu, Y.; He, K.; Li, Y.; Luo, X.; Li, B.; Wang, C.; Liu, S. Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocoll. 2019, 88, 180–189. [Google Scholar] [CrossRef]
- Ahankari, S.S.; Subhedar, A.R.; Bhadauria, S.S.; Dufresne, A. Nanocellulose in food packaging: A review. Carbohydr. Polym. 2021, 255, 117479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, L.; Xu, H.; Feng, X.; Wang, B.; Pukanszky, B.; Mao, Z.; Sui, X. Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. Int. J. Biol. Macromol. 2019, 137, 197–204. [Google Scholar] [CrossRef]
- Sogut, E. Active whey protein isolate films including bergamot oil emulsion stabilized by nanocellulose. Food Packag. Shelf Life 2020, 23, 100430. [Google Scholar] [CrossRef]
- Souza, A.G.; Ferreira, R.R.; Paula, L.C.; Mitra, S.K.; Rosa, D.S. Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag. Shelf Life 2021, 27, 100615. [Google Scholar] [CrossRef]
- Satpute, S.K.; Zinjarde, S.S.; Banat, I.M. Recent updates on biosurfactant/s in Food industry. In Microbial Cell Factories; Taylor & Francis: Abingdon, Oxfordshire, 2018; pp. 1–20. [Google Scholar]
- Mikulcová, V.; Bordes, R.; Kašpárková, V. On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocoll. 2016, 61, 780–792. [Google Scholar] [CrossRef]
- Asabuwa Ngwabebhoh, F.; Ilkar Erdagi, S.; Yildiz, U. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydr. Polym. 2018, 201, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Winuprasith, T.; Khomein, P.; Mitbumrung, W.; Suphantharika, M.; Nitithamyong, A.; McClements, D.J. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoll. 2018, 83, 153–164. [Google Scholar] [CrossRef]
- Jimenez-Saelices, C.; Seantier, B.; Grohens, Y.; Capron, I. Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions. ACS Appl. Mater. Interfaces 2018, 10, 16193–16202. [Google Scholar] [CrossRef] [PubMed]
- Kedzior, S.A.; Dubé, M.A.; Cranston, E.D. Cellulose Nanocrystals and Methyl Cellulose as Costabilizers for Nanocomposite Latexes with Double Morphology. ACS Sustain. Chem. Eng. 2017, 5, 10509–10517. [Google Scholar] [CrossRef]
- Li, Q.; Xie, B.; Wang, Y.; Wang, Y.; Peng, L.; Li, Y.; Li, B.; Liu, S. Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocoll. 2019, 97, 105214. [Google Scholar] [CrossRef]
- Low, L.E.; Tey, B.T.; Ong, B.H.; Chan, E.S.; Tang, S.Y. Palm olein-in-water Pickering emulsion stabilized by Fe3O4-cellulose nanocrystal nanocomposites and their responses to pH. Carbohydr. Polym. 2017, 155, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Estevinho, B.; Rocha, F.; Dourado, F.; Gama, M. A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Carbohydr. Polym. 2020, 230, 115657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, S.H.; Park, S.G.; Kang, N.G. One-Pot Method of Synthesizing TEMPO-Oxidized Bacterial Cellulose Nanofibers Using Immobilized TEMPO for Skincare Applications. Polymers 2019, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Saad, M.A.; Kamil, M.; Abdurahman, N.H.; Yunus, R.M.; Awad, O.I. An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes 2019, 7, 470. [Google Scholar] [CrossRef]
- Capron, I.; Rojas, O.J.; Bordes, R. Behavior of nanocelluloses at interfaces. Curr. Opin. Colloid Interface Sci. 2017, 29, 83–95. [Google Scholar] [CrossRef]
- Saffarionpour, S. Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. Food Bioprocess Technol. 2020, 13, 1292–1328. [Google Scholar] [CrossRef]
- Whitby, C.P.; Wanless, E.J. Controlling Pickering Emulsion Destabilisation: A Route to Fabricating New Materials by Phase Inversion. Materials 2016, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Huan, S.; Zhu, Y.; Chu, G.; McClements, D.J.; Rojas, O.J. Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annu. Rev. Food Sci. Technol. 2021, 12, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release 2019, 309, 302–332. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll. 2017, 68, 219–231. [Google Scholar] [CrossRef]
- Joseph, C.; Savoire, R.; Harscoat-Schiavo, C.; Pintori, D.; Monteil, J.; Leal-Calderon, F.; Faure, C. O/W Pickering emulsions stabilized by cocoa powder: Role of the emulsification process and of composition parameters. Food Res. Int. 2019, 116, 755–766. [Google Scholar] [CrossRef]
- Perrin, L.; Gillet, G.; Gressin, L.; Desobry, S. Interest of Pickering Emulsions for Sustainable Micro/Nanocellulose in Food and Cosmetic Applications. Polymers 2020, 12, 2385. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Huang, Q. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends Food Sci. Technol. 2016, 55, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Abdullah; Weiss, J.; Ahmad, T.; Zhang, C.; Zhang, H. A review of recent progress on high internal-phase Pickering emulsions in food science. Trends Food Sci. Technol. 2020, 106, 91–103. [Google Scholar] [CrossRef]
- Kumar, N.; Gaur, T.; Mandal, A. Characterization of SPN Pickering emulsions for application in enhanced oil recovery. J. Ind. Eng. Chem. 2017, 54, 304–315. [Google Scholar] [CrossRef]
- Beck, S.; Méthot, M.; Bouchard, J. General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration. Cellulose 2014, 22, 101–116. [Google Scholar] [CrossRef]
- Garcia, J.; Schultz, L.D. Determination of Sulfate by Conductometric Titration: An Undergraduate Laboratory Experiment. J. Chem. Educ. 2016, 93, 910–914. [Google Scholar] [CrossRef]
- Niroula, A.; Gamot, T.D.; Ooi, C.W.; Dhital, S. Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocoll. 2021, 112, 106303. [Google Scholar] [CrossRef]
- Chen, L.; Ao, F.; Ge, X.; Shen, W. Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications. Molecules 2020, 25, 3202. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, G.H. Recent Studies of Pickering Emulsions: Particles Make the Difference. Small 2016, 12, 4633–4648. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.S. Pickering emulsions for food and drinks. Curr. Opin. Food Sci. 2019, 27, 57–63. [Google Scholar] [CrossRef]
- Meirelles, A.A.D.; Costa, A.L.R.; Cunha, R.L. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol. 2020, 158, 75–84. [Google Scholar] [CrossRef]
- Bai, L.; Lv, S.; Xiang, W.; Huan, S.; McClements, D.J.; Rojas, O.J. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocoll. 2019, 96, 699–708. [Google Scholar] [CrossRef]
- Bai, L.; Xiang, W.; Huan, S.; Rojas, O.J. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals. Biomacromolecules 2018, 19, 1674–1685. [Google Scholar] [CrossRef]
- Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 2013, 9, 952–959. [Google Scholar] [CrossRef]
- Silva, C.E.P.; Tam, K.C.; Bernardes, J.S.; Loh, W. Double stabilization mechanism of O/W Pickering emulsions using cationic nanofibrillated cellulose. J. Colloid Interface Sci. 2020, 574, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Zhou, H.; Bai, L.; Rojas, O.J.; McClements, D.J. Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocoll. 2021, 113, 106451. [Google Scholar] [CrossRef]
- Nomena, E.M.; Remijn, C.; Rogier, F.; van der Vaart, M.; Voudouris, P.; Velikov, K.P. Unravelling the Mechanism of Stabilization and Microstructure of Oil-in-Water Emulsions by Native Cellulose Microfibrils in Primary Plant Cells Dispersions. ACS Appl. Bio. Mater. 2018, 1, 1440–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Huan, S.; Xiang, W.; Rojas, O.J. Pickering emulsions by combining cellulose nanofibrils and nanocrystals: Phase behavior and depletion stabilization. Green Chem. 2018, 20, 1571–1582. [Google Scholar] [CrossRef]
- Du Le, H.; Loveday, S.M.; Singh, H.; Sarkar, A. Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Responsiveness to pH and ionic strength. Food Hydrocoll. 2020, 99, 105344. [Google Scholar] [CrossRef]
- Chen, Q.-H.; Zheng, J.; Xu, Y.-T.; Yin, S.-W.; Liu, F.; Tang, C.-H. Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocoll. 2018, 75, 125–130. [Google Scholar] [CrossRef]
- Gong, X.; Wang, Y.; Chen, L. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydr. Polym. 2017, 169, 295–303. [Google Scholar] [CrossRef]
- Tang, C.; Spinney, S.; Shi, Z.; Tang, J.; Peng, B.; Luo, J.; Tam, K.C. Amphiphilic Cellulose Nanocrystals for Enhanced Pickering Emulsion Stabilization. Langmuir 2018, 34, 12897–12905. [Google Scholar] [CrossRef]
- Tang, C.; Chen, Y.; Luo, J.; Low, M.Y.; Shi, Z.; Tang, J.; Zhang, Z.; Peng, B.; Tam, K.C. Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics. Cellulose 2019, 26, 7753–7767. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wang, Y.; Luo, X.; Li, Y.; Li, B.; Wang, J.; Liu, S. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocoll. 2019, 97, 105180. [Google Scholar] [CrossRef]
- Guo, S.; Li, X.; Kuang, Y.; Liao, J.; Liu, K.; Li, J.; Mo, L.; He, S.; Zhu, W.; Song, J.; et al. Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions. Carbohydr. Polym. 2021, 253, 117223. [Google Scholar] [CrossRef] [PubMed]
- Sulbarán-Rangel, B.; Hernández Díaz, J.A.; Guzmán González, C.A.; Rojas, O.J. Partially acetylated cellulose nanofibrils from Agave tequilana bagasse and Pickering stabilization. J. Dispers. Sci. Technol. 2020, 43, 1391–1398. [Google Scholar] [CrossRef]
- Xu, H.N.; Li, Y.H.; Zhang, L. Driving Forces for Accumulation of Cellulose Nanofibrils at the Oil/Water Interface. Langmuir 2018, 34, 10757–10763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qian, Y.; Chen, S.; Zhao, Y. Physicochemical characteristics and emulsification properties of cellulose nanocrystals stabilized O/W pickering emulsions with high -OSO3- groups. Food Hydrocoll. 2019, 96, 267–277. [Google Scholar] [CrossRef]
- Pandey, A.; Derakhshandeh, M.; Kedzior, S.A.; Pilapil, B.; Shomrat, N.; Segal-Peretz, T.; Bryant, S.L.; Trifkovic, M. Role of interparticle interactions on microstructural and rheological properties of cellulose nanocrystal stabilized emulsions. J. Colloid Interface Sci. 2018, 532, 808–818. [Google Scholar] [CrossRef]
- Cherhal, F.; Cousin, F.; Capron, I. Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules 2016, 17, 496–502. [Google Scholar] [CrossRef]
- Jimenez Saelices, C.; Capron, I. Design of Pickering Micro- and Nanoemulsions Based on the Structural Characteristics of Nanocelluloses. Biomacromolecules 2018, 19, 460–469. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Y.; Tian, J.; Guan, T.; Li, D.; Bao, C.; Norde, W.; Wen, P.; Li, Y. Inhibition of oil digestion in Pickering emulsions stabilized by oxidized cellulose nanofibrils for low-calorie food design. RSC Adv. 2019, 9, 14966–14973. [Google Scholar] [CrossRef] [Green Version]
- Aaen, R.; Brodin, F.W.; Simon, S.; Heggset, E.B.; Syverud, K. Oil-in-Water Emulsions Stabilized by Cellulose Nanofibrils-The Effects of Ionic Strength and pH. Nanomaterials 2019, 9, 259. [Google Scholar] [CrossRef]
- Wang, W.; Du, G.; Li, C.; Zhang, H.; Long, Y.; Ni, Y. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydr. Polym. 2016, 151, 1–8. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, W.; Shi, X.; Li, Q.; Huang, C.; Tian, Y.; Wang, S. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Carbohydr. Polym. 2020, 236, 115999. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Gong, J.; Kuang, Y.; Mo, L.; Song, T. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions. Carbohydr. Polym. 2018, 183, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zheng, J.; Huang, C.-H.; Tang, C.-H.; Ou, S.-Y. Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocoll. 2018, 82, 96–105. [Google Scholar] [CrossRef]
- Angkuratipakorn, T.; Chung, C.; Koo, C.K.W.; Mundo, J.L.M.; McClements, D.J.; Decker, E.A.; Singkhonrat, J. Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate. Food Chem. 2020, 327, 127039. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.G.; Ferreira, R.R.; Paula, L.C.; Setz, L.F.G.; Rosa, D.S. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils. J. Mol. Liq. 2020, 320, 114458. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, X.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chem. 2020, 331, 127108. [Google Scholar] [CrossRef]
- Buffiere, J.; Balogh-Michels, Z.; Borrega, M.; Geiger, T.; Zimmermann, T.; Sixta, H. The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydr. Polym. 2017, 178, 48–56. [Google Scholar] [CrossRef]
- Li, F.; Mascheroni, E.; Piergiovanni, L. The Potential of NanoCellulose in the Packaging Field: A Review. Packag. Technol. Sci. 2015, 28, 475–508. [Google Scholar] [CrossRef]
- Stoudmann, N.; Nowack, B.; Som, C. Prospective environmental risk assessment of nanocellulose for Europe. Environ. Sci. Nano 2019, 6, 2520–2531. [Google Scholar] [CrossRef]
- Ventura, C.; Pinto, F.; Lourenço, A.F.; Ferreira, P.J.T.; Louro, H.; Silva, M.J. On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose 2020, 27, 5509–5544. [Google Scholar] [CrossRef]
- Shatkin, J.A.; Kim, B. Cellulose nanomaterials: Life cycle risk assessment, and environmental health and safety roadmap. Environ. Sci. Nano 2015, 2, 477–499. [Google Scholar] [CrossRef]
- Endes, C.; Camarero-Espinosa, S.; Mueller, S.; Foster, E.J.; Petri-Fink, A.; Rothen-Rutishauser, B.; Weder, C.; Clift, M.J. A critical review of the current knowledge regarding the biological impact of nanocellulose. J. Nanobiotechnol. 2016, 14, 78. [Google Scholar] [CrossRef] [Green Version]
- Torlopov, M.A.; Drozd, N.N.; Paderin, N.M.; Tarabukin, D.V.; Udoratina, E.V. Hemocompatibility, biodegradability and acute toxicity of acetylated cellulose nanocrystals of different types in comparison. Carbohydr. Polym. 2021, 269, 118307. [Google Scholar] [CrossRef] [PubMed]
- Soo Min, K.; Eun Ji, G.; Seung Hwan, J.; Sang Mock, L.; Woo Jong, S.; Jin Sik, K. Toxicity Evaluation of Cellulose Nanofibers (Cnfs) for Cosmetic Industry Application. J. Toxicol. Risk Assess. 2019, 5, 29. [Google Scholar] [CrossRef]
- Harper, B.J.; Clendaniel, A.; Sinche, F.; Way, D.; Hughes, M.; Schardt, J.; Simonsen, J.; Stefaniak, A.B.; Harper, S.L. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose 2016, 23, 1763–1775. [Google Scholar] [CrossRef] [Green Version]
- DeLoid, G.M.; Cao, X.; Molina, R.M.; Silva, D.I.; Bhattacharya, K.; Ng, K.W.; Loo, S.C.J.; Brain, J.D.; Demokritou, P. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ. Sci. Nano 2019, 6, 2105–2115. [Google Scholar] [CrossRef]
- Ogonowski, M.; Edlund, U.; Gorokhova, E.; Linde, M.; Ek, K.; Liewenborg, B.; Konnecke, O.; Navarro, J.R.G.; Breitholtz, M. Multi-level toxicity assessment of engineered cellulose nanofibrils in Daphnia magna. Nanotoxicology 2018, 12, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Seabra, A.B.; Bernardes, J.S.; Favaro, W.J.; Paula, A.J.; Duran, N. Cellulose nanocrystals as carriers in medicine and their toxicities: A review. Carbohydr. Polym. 2018, 181, 514–527. [Google Scholar] [CrossRef]
- Lie, E.; Ålander, E.; Lindström, T. Possible Toxicological Effects of Nanocellulose—An Updated Literature Study; No 2; Innventia Report 916: Stockholm, Sweeden, 2017. [Google Scholar]
- Rauscher, H.; Rasmussen, K.; Sokull-Klüttgen, B. Regulatory Aspects of Nanomaterials in the EU. Chem. Ing. Tech. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef]
Source of Biomass | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Others, (Extractives, Protein) (%) | Reference |
---|---|---|---|---|---|
Agro-industrial waste | |||||
Hazelnut shell | 30 | 23 | 38 | 3.74 | [10] |
Extracted olive pomace | 19 | 22 | 40 | 35.29 | [10] |
Corncob | 43.09 | 35.42 | 12.85 | 3.85 | [11] |
Walnut shell | 20.47 | 20.16 | 45.93 | 6.22 | [11] |
Sugarcane bagasse | 43.65 | 29.29 | 20.63 | - | [12] |
Palm oil frond | 37.32 | 31.89 | 26.05 | 2.25 | [13] |
Rice straw | 36.4 | 20.4 | 14.3 | - | [14] |
Coffee husk | 35.4 | 18.2 | 23.2 | 17.8 | [15] |
Chili post-harvest residue | 39.95 | 17.85 | 25.32 | - | [16] |
Wheat straw | 40.10 | 32.93 | 18.39 | 10.60 | [17] |
Date palm rachis | 47.31 | 25.72 | 15.67 | 5.80 | [18] |
Grasses | |||||
Rye | 42.83 | 27.86 | 6.51 | - | [19] |
Silage | 39.27 | 25.96 | 9.02 | - | [19] |
Elephant grass | 35.97 | 22.43 | 20.77 | 14.39 | [20] |
Napier grass | 47.1 | 31.2 | 21.6 | - | [21] |
Hardwood | |||||
Rubber wood | 39.56 | 28.42 | 27.58 | 1.98 | [13] |
Poplar | 46.74 | 31.73 | 23.92 | 3.89 | [17] |
Zeen oak | 41.39 | 29.66 | 19.37 | 6.30 | [18] |
Encalyptus globulus | 44.9 | 28.9 | 26.2 | - | [22] |
Hornbeam | 34.2 | 17.0 | 26.3 | - | [23] |
Softwood | |||||
Aleppo pine | 37.32 | 30.48 | 25.04 | 6.97 | [18] |
Japanese cedar | 52.7 | 13.8 | 33.5 | - | [22] |
Spruce wood | 39.01–42.51 | 34.98–35.30 | 23.69–26.06 | 1.04–1.68 | [24] |
Pinus radiata | 38.4–41.7 | 28.9–29.5 | 26.5–29.3 | 1.84–2.11 | [25] |
Pinus pseudostrobus | 42.98 | 23.55 | 28.94 | 5.11 | [26] |
Types of Nanocellulose | Morphology | Properties | Synthesis Method |
---|---|---|---|
Cellulose nanocrystal (CNC), cellulose nanocrystalline, celulose nanowhiskers |
| Strengths:
|
|
Cellulose nanofibril (CNF), cellulose microfibril, microfibrillated cellulose, nanofibrillated cellulose |
| Strengths:
|
|
Bacterial cellulose (BC), microbial nanocellulose |
| Strengths:
|
|
Amorphous nanocellulose * |
| Strengths:
|
|
Cellulose nanoyarn, electrospun cellulose nanofiber * |
| Strengths:
|
|
Cellulose platelets * |
| Strengths:
|
|
Hairy cellulose nanocrystalloids * |
| Strengths:
|
|
Application of NC | Nanocellulose Content in Emulsion | Oil Phase Type and Ratio | Droplet Size | Research Findings | Ref. | |
---|---|---|---|---|---|---|
Food | CNC and CNF from lemon seeds co-stabilized sunflower oil Pickering emulsion | 1 wt.% | Sunflower oil O/W (1:1) | 60–160 µm in droplet size |
| [80] |
Pickering emulsion of corn oil stabilized by different lengths of CNC from ginkgo seed shells | 0.025–0.25% (w/v) | Corn oil O/W (1:9; 3:7; 5;5, 7:3) | 1–50 µm in droplet size |
| [83] | |
Oil-in-water Pickering emulsion stabilized by different lengths of BC | 0.1–0.5 wt.% | Dodecane O/W (1:9; 2:8; 3:7; 4:6; 5:5) | 10–40 µm in droplet size |
| [84] | |
Pickering emulsion of olive oil by different flexibility of NC | 0.07–4.0 wt,% | Olive oil O/W (2:8 and 3:7) | - |
| [52] | |
CNF from Miscanthus floridulus straw as Pickering emulsifier | 0.05–0.20 wt.% | Dodecane O/W (1:9) | ~10 µm in droplet size |
| [95] | |
Food packaging | Poly (lactic acid)/CNC composite via Pickering emulsion | 0.0017% (w/v) | Dichloromethane O/W (1:2) | - |
| [86] |
Whey protein isolate files with bergamot oil emulsified by CNC | 1.6 mg/mL 0.0016% (w/v) | Bergamot oil O/W (2:8) | - |
| [87] | |
Starch film containing essential oils emulsified by CNF | 0.15 wt.% | Cardamom, cinnamon cassia, ho wood essential oil O/W (8:2) | - |
| [88] | |
Biomedical | Antibacterial activity of emulsions stabilized by CNC and CNF | 0.1–1.0 wt.% | Cinnamaldehyde, eugenol, limonene O/W (1:9 to 4:6) | CNC (14–34µm) and CNF (27–51 nm) in droplet size |
| [90] |
Encapsulation of coumarin and curcumin stabilized by aminated-CNC | 0.1, 0.2, 0.3 wt.% | Natural coconut oil O/W (5:90 to 10:80) | ≥150 nm in droplet size |
| [91] | |
Encapsulation of vitamin D3 stabilized by CNF | 0.1–0.7% (w/w) | Oil in water Soybean oil O/W (1:9) 9–24 µm in droplet size |
| [92] | ||
Thermal super-insulating material made of CNF-stabilized Pickering emulsions | 0.2–30 g/L | Oil in water Hexadecane O/W (2:8) 10–20 µm in droplet size |
| [93] | ||
Dual stimuli-responsive Pickering emulsion stabilized by Fe3O4 and CNC nanocomposite | 0.05 wt.% | Oil in water Palm olein O/W (3:7) 11.90–109.00 µm in droplet size |
| [96] | ||
Cosmetic | Poly (methyl methacrylate) latex stabilized by methyl cellulose-coated CNC | 0.0021% (w/v) | Methyl methacrylate O/W (3:7) | 15 ± 3 µm and ~100–200 nm in droplet size |
| [94] |
Redispersible formulation of BC with carboxymethyl cellulose, CMC as oil-in-water emulsion stabilizer | 0.1, 0.25, 0.50% | Isohexadecane O/W (1:9) | <10 µm in droplet size |
| [97] | |
Preparation of bio-based polymer by TEMPO-oxidized BC nanofibers for skincare applications | - | - | - |
| [98] |
Modification of NC | Change in Contact Angle (Unmodified → Modified) | Particle Content in Emulsion | Oil Phase Type, (Ratio of Oil:Water) | Emulsion Droplet Size (Oil Phase of Droplet) | Summary of Findings | Ref | |
---|---|---|---|---|---|---|---|
CNC | Esterification with OSA | 56°→ 80.2° | 1 wt.% | Mixture of sunflower oil, tripropionin, and tributyrin (1:4) | 1.22 µm |
| [125] |
Esterification with OSA | 51.7° → 82.1 and 85.0° | 1.2 wt.% | Soy oil (8:2) | 30–70 µm |
| [126] | |
Modification with phenyl-trimethylammonium chloride | - | 3–5 g L−1 | Hexadecane (3:7) | 2.4 µm |
| [127] | |
Grafting of polystyrene via reductive amination | - | 1 wt.% | Toluene and hexadecane (1:2) | 14 µm (Toluene) 4.8 µm (Hexadecane) |
| [128] | |
CNF | Grafting of cinnamoyl chloride | 46.10° → 51.43° and 68.36° | 0.5 wt.% | Toluene and hexadecane (1:2) | ≈32.5 µm for 51.43° and 5.6 µm for 68.36° (Toluene) ≈2.5 µm (Hexadecane) |
| [129] |
Adsorption of soy protein isolate | 65° → 69° | 0.08–0.24% | Canola oil (1:1) | 10–40 μm |
| [130] | |
Different degrees of residual lignin in CNF | 29° and 34° | 0.75–2 mg mL−1 | Dodecane (2:8) | ≈16 µm |
| [131] | |
Acetylation of CNF | 30° and 81° | 0.5% | Toluene (1:1) | 10–60 µm for 81° and 20–80 µm for 30° |
| [132] |
Modification of NC | Zeta Potential (Unmodified → Modified) | Particle Content in Emulsion | Oil Phase Type, (Ratio of Oil:Water) | Emulsion Droplet Size | Summary of Findings | Ref | |
---|---|---|---|---|---|---|---|
CNC | Different surface charge densities of sulphated CNC | −30, −43, −60 mV | ≥4 mg mL−1 | Hexadecane (3:7) | ≈10–20 µm |
| [2] |
Different sulfur content of sulphated CNC | −30.49, −37.35, −47.96 mV | 0.3 wt.% | Medium-chain triglyceride oil (3:7) | 18.01, 10.14, 2.97 µm |
| [134] | |
Desulfation of sulphated CNC by acid or basic desulfation | (−42.5 mV → −15, −25 mV) | 0.5–20 mg mLoil−1 | Dodecane (1:1) | ≈10–500 µm |
| [135] | |
Desulfation of sulphated CNC by mild acid treatment | - | ≥10 mg mL−1 | Hexadecane (1:9, 2:8, 3:7) | ≈4 µm |
| [136] | |
CNF | TEMPO-oxidized CNF | - | 3–4 mg mL−1 | Hexadecane (2:8) | 0.1–0.6 µm |
| [137] |
TEMPO-oxidized CNF with different degrees of oxidation | (−2.6 mV → −50.8, −59.4 mV) | 0.1 wt.% | Palm fruit oil (1:10) | ≈15 µm |
| [138] | |
CNF with different surface charge densities by enzymatic treated (low charge) and TEMPO-oxidized (high charge) | - | 0.5 wt.% | Rapeseed oil (2:3) | 10–100 µm |
| [139] | |
Cationization of CNF by glycidyl trimethylammonium chloride | (−37 mV → +24 and +37 mV) | 0.5 and 1 wt.% | Almond oil (3:7) | ≈16–30 µm |
| [121] |
Modification of NC | Size | Particle Content in Emulsion | Oil Phase Type, (Ratio of Oil:Water) | Emulsion Droplet Size (Oil Phase of Droplet) | Summary of Findings | Ref | |
---|---|---|---|---|---|---|---|
CNC | High-pressure homogenization as a post-treatment for CNC | Length 406–1500 nm Diameter 24.72–50.21 nm Aspect ratio 16.58–31.96 | 0.15% | Corn oil (1:1) | ≈10–30 µm |
| [83] |
Various aspect ratios of CNC were obtained from different origins | Length 189, 855, ≈4000 nm Diameter 13, 17, 20 nm Aspect ratio 13, 47, 160 | 2 and 5 g L−1 | Hexadecane (3:7) | 4–10 µm |
| [120] | |
Varying duration of acid hydrolysis | Length 178.2–261.8 | 1 wt.% | Palm oil (3:7) | 1–10 µm |
| [140] | |
CNF | High-pressure homogenization as a post-treatment for BCNF | Length >3 µm Diameter ≈30–230 nm | 0.1–0.5 wt.% | Dodecane (1:9–5:5) | 11–40 µm |
| [84] |
Different duration of acid hydrolysis of modified CNF | Length >1 µm Diameter 295.3 and 575.8 nm | 0.5 wt.% | Toluene and hexadecane (1:2) | ≈5–20 µm (Toluene) ≈2.5 µm (Hexadecane) |
| [129] | |
TEMPO-oxidation of cellulase-treated CNF | Length 0.6–1.0 µm Diameter 10–20 nm | 0.075–0.9 wt.% | Sunflower oil (2:8) | <10 µm |
| [141] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teo, S.H.; Chee, C.Y.; Fahmi, M.Z.; Wibawa Sakti, S.C.; Lee, H.V. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules 2022, 27, 7170. https://doi.org/10.3390/molecules27217170
Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules. 2022; 27(21):7170. https://doi.org/10.3390/molecules27217170
Chicago/Turabian StyleTeo, Shao Hui, Ching Yern Chee, Mochamad Zakki Fahmi, Satya Candra Wibawa Sakti, and Hwei Voon Lee. 2022. "Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism" Molecules 27, no. 21: 7170. https://doi.org/10.3390/molecules27217170
APA StyleTeo, S. H., Chee, C. Y., Fahmi, M. Z., Wibawa Sakti, S. C., & Lee, H. V. (2022). Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules, 27(21), 7170. https://doi.org/10.3390/molecules27217170