Selective Conversion of Glycerol to Methanol over CaO-Modified HZSM-5 Zeolite
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Catalyst
CaO/HZSM-5 Catalysts Preparation
2.2. Characterizations
2.3. Catalyst Performance
3. Results and Discussion
3.1. Characterization of the Catalysts
3.2. Activity of the Bifunctional Catalyst in Glycerol Conversion to Methanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uprety, B.K.; Chaiwong, W.; Ewelike, C.; Rakshit, S.K. Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers. Manag. 2016, 115, 191–199. [Google Scholar] [CrossRef]
- Nomanbhay, S.; Ong, M.Y.; Chew, K.W.; Show, P.-L.; Lam, M.K.; Chen, W.-H. Organic carbonate production utilizing crude glycerol derived as by-product of biodiesel production: A review. Energies 2020, 13, 1483. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 2019, 5, 2520–2546. [Google Scholar] [CrossRef]
- Xiao, Y.; Varma, A. Conversion of glycerol to hydrocarbon fuels via bifunctional catalysts. ACS Energy Lett. 2016, 1, 963–968. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.H.; Dummer, N.F.; Knight, D.W.; Jenkins, R.L.; Howard, M.; Moulijn, J.; Taylor, S.H.; Hutchings, G.J. Efficient green methanol synthesis from glycerol. Nat. Chem. 2015, 7, 1028–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcinkowski, M.D.; Yuk, S.F.; Doudin, N.; Smith, R.S.; Nguyen, M.-T.; Kay, B.D.; Glezakoual, M.-T.; Rousseay, R.; Dohnálek, Z.D. Low-temperature oxidation of methanol to formaldehyde on a model single-atom catalyst: Pd atoms on Fe3O4 (001). ACS Catal. 2019, 9, 10977–10982. [Google Scholar] [CrossRef]
- Kalck, P.; Le Berre, C.; Serp, P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev. 2020, 402, 213078. [Google Scholar] [CrossRef]
- Bateni, H.; Able, C. Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: A review. Catal. Ind. 2019, 11, 7–33. [Google Scholar] [CrossRef]
- Shozi, M.L.; Dasireddy, V.D.B.C.; Singh, S.; Govender, A.; Mohlala, P.; Friedrich, H.B. The effect of rhenium on the conversion of glycerol to mono-alcohols over nickel catalysts under continuous flow conditions. Sustain. Energy Fuels 2019, 3, 2038–2047. [Google Scholar] [CrossRef]
- van Bennekom, J.G.; Venderbosch, R.H.; Assink, D.; Lemmens, K.P.J.; Heeres, H.J. Bench scale demonstration of the Supermethanol concept: The synthesis of methanol from glycerol derived syngas. J. Chem. Eng. 2012, 207, 245–253. [Google Scholar] [CrossRef]
- Shozi, M.L.; Dasireddy, V.D.B.C.; Singh, S.; Mohlala, P.; Morgan, D.J.; Friedrich, H.B. Hydrogenolysis of glycerol to monoalcohols over supported Mo and W catalysts. ACS Sustain. Chem. Eng. 2016, 4, 5752–5760. [Google Scholar] [CrossRef] [Green Version]
- van Ryneveld, E.; Mahomed, A.S.; van Heerden, P.S.; Green, M.J.; Friedrich, H.B. A catalytic route to lower alcohols from glycerol using Ni-supported catalysts. Green Chem. 2011, 13, 1819–1827. [Google Scholar] [CrossRef]
- Mitran, G.; Neațu, F.; Neațu, Ș.; Trandafir, M.M.; Florea, M. VAlPOs as Efficient catalysts for glycerol conversion to methanol. Catalysts 2020, 10, 728. [Google Scholar] [CrossRef]
- Hernandez, D.; Velasquez, M.; Ayrault, P.; Lopez, D.; Fernandez, J.J.; Santamaria, A.; Batiot-Dupeyrat, C. Gas phase glycerol conversion over lanthanum based catalysts: LaNiO3 and La2O3. Appl. Catal. A Gen. 2013, 467, 315–324. [Google Scholar] [CrossRef]
- Samad, W.Z.; Goto, M.; Kanda, H.; Nordin, N.; Liew, K.H.; Yarmo, M.A.; Yusop, M.R. Fluorine-doped tin oxide catalyst for glycerol conversion to methanol in sub-critical water. J. Supercrit. Fluids 2017, 120, 366–378. [Google Scholar] [CrossRef]
- Kalla, R.; Sumarno, S.; Mahfud, M. Non-catalytic and γ-Al2O3 catalyst-based degradation of glycerol by sonication method. Bull. Chem. React. 2015, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.T.; Jung, K.-D.; Park, E.D. Gas-phase dehydration of glycerol over ZSM-5 catalysts. Microporous Mesoporous Mater. 2010, 131, 28–36. [Google Scholar] [CrossRef]
- Dong, H.; Yu, H.; Wang, L.; Wang, Y.; Zhong, J.; Lian, Y. Catalytic performance of phosphorus modified HZSM-5 zeolite catalysts in the co-cracking reaction of n-hexane and methanol. Catal. Lett. 2022, 152, 1233–1243. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Fei, Z.; Liu, Q.; Chen, X.; Zhang, Z.; Tang, J.; Cui, M.; Qiao, X. Enhanced light olefin production in chloromethane coupling over Mg/Ca modified durable HZSM-5 catalyst. Ind. Eng. Chem. Res. 2019, 58, 5131–5139. [Google Scholar] [CrossRef]
- Mozgawa, W. The influence of some heavy metals cations on the FTIR spectra of zeolites. J. Mol. Struct. 2000, 555, 299–304. [Google Scholar] [CrossRef]
- Ghaedi, M.; Izadbakhsh, A. Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation. J. Fuel Chem. Technol. 2021, 49, 1468–1486. [Google Scholar] [CrossRef]
- Qiao, K.; Shi, X.; Zhou, F.; Chen, H.; Fu, J.; Ma, H.; Huang, H. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical zsm-5 zeolites treated with various alkalis. Appl. Catal. Gen. 2017, 547, 274–282. [Google Scholar] [CrossRef]
- Xu, Q.-L.; Li, T.-C.; Yan, Y.-J. Effects of CaO-modified zeolite on one-step synthesis of dimethyl ether. J. Fuel Chem. Technol. 2008, 36, 176–180. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Zhan, G.; Huang, J.; Li, Q. Design and synthesis of bioinspired ZnZrOx&Bio-ZSM-5 integrated nanocatalysts to boost CO2 hydrogenation to light olefins. ACS Sustain. Chem. Eng. 2021, 9, 6446–6458. [Google Scholar]
- Giammaria, G.; Lefferts, L. Catalytic effect of water on calcium carbonate decomposition. J. CO2 Util. 2019, 33, 341–356. [Google Scholar] [CrossRef]
- José de Ribamar, M.C.; Santos, R.C.; Coutinho, L.P.; Silva, O.R.; Barros, H.O.; Freire, V.N.; Valentini, A. CO2 role on the glycerol conversion over catalyst containing CaO-SiO2 doped with Ag and Pt. Catal. Today 2020, 344, 199–211. [Google Scholar]
- Emdadi, L.; Mahoney, L.; Lee, I.C.; Leff, A.C.; Wu, W.; Liu, D.; Nguyen, C.K.; Tran, D.T. Assessment of coke deposits on lamellar metal-modified MFI zeolites in ethylene transformation to aromatic liquids. Appl. Catal. Gen. 2020, 595, 117510. [Google Scholar] [CrossRef]
- Atchimarungsri, T.; Gao, X.; Ma, Q.; Zhang, J.; Fan, S.-B.; He, F.; Tian, J.; Reubroycharoen, P.; Zhao, T. Highly efficient conversion of glycerol to acetaldehyde over In2O3/HZSM-5 catalysts. ACS Sustain. Chem. Eng. 2022, 10, 11078–11087. [Google Scholar] [CrossRef]
- Corma, A.; Huber, G.W.; Sauvanauda, L.; O’Connor, P. Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catal. 2008, 257, 163–171. [Google Scholar] [CrossRef]
- Mohamed, M.; Sie, T.T.; Amin, N.A.S.; Abdullah, T.A.T.; Mat, R. Conversion of Glycerol to Methanol in the Presence of Zeolite Based Catalysts. In Proceedings of the 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, 27–29 June 2011; pp. 389–393. [Google Scholar]
- Ruslan, K.; Sumarno, S.; Mahfud, M. The influence of using sonicator type to produce alcohol in the glycerol degradation process. AIP Conf. Proc. 2017, 1840, 040004. [Google Scholar]
- Ricardo, V.L.; Guilherme, K.M.; Anderson, T.; José, H.A.; Lucas da, S.R.; Bruno da, S.N.; Marcia, T.E.; Antoninho, V.; Luiz, F.D.P.; Neftali, L.V.C. Vanadium effect over γ-Al2O3-supported Ni catalysts for valorization of glycerol. Fuel Process. Technol. 2021, 216, 106773. [Google Scholar]
Catalyst | ABET (m2 g−1) | Pore Volume v/(cm3 g−1) a | Total Basicity (mmol g−1) b | Total Acidity (mmol g−1) c |
---|---|---|---|---|
HZSM-5(38) | 388.02 | 0.18 | 1.22 | 0.88 |
5%CaO/HZSM-5(38) | 274.37 | 0.13 | 1.53 | 1.02 |
10%CaO/HZSM-5(38) | 198.39 | 0.10 | 1.77 | 1.02 |
20%CaO/HZSM-5(38) | 22.25 | 0.01 | 1.28 | 0.71 |
Catalyst | Amount of Acid Sites (mmol g−1) (150 °C) | Amount of Acid Sites (mmol g−1) (250 °C) | Amount of Acid Sites (mmol g−1) (350 °C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L | B | L+B | L/B | L | B | L+B | L/B | L | B | L+B | L/B | |
HZSM-5(38) | 3.34 | 165.4 | 168.7 | 0.02 | 2.9 | 165.2 | 168.2 | 0.02 | 2.7 | 164.2 | 167.0 | 0.02 |
10%CaO/HZSM-5(38) | 157.0 | 18.7 | 175.7 | 8.4 | 143.3 | 2.6 | 145.9 | 55.1 | 87.2 | 0.6 | 87.8 | 145.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atchimarungsri, T.; Gao, X.; Wang, K.; Ma, Q.; Zhang, J.; Fan, S.; He, F.; Tian, J.; Reubroycharoen, P.; Zhao, T. Selective Conversion of Glycerol to Methanol over CaO-Modified HZSM-5 Zeolite. Molecules 2022, 27, 7221. https://doi.org/10.3390/molecules27217221
Atchimarungsri T, Gao X, Wang K, Ma Q, Zhang J, Fan S, He F, Tian J, Reubroycharoen P, Zhao T. Selective Conversion of Glycerol to Methanol over CaO-Modified HZSM-5 Zeolite. Molecules. 2022; 27(21):7221. https://doi.org/10.3390/molecules27217221
Chicago/Turabian StyleAtchimarungsri, Thachapan, Xinhua Gao, Kangzhou Wang, Qingxiang Ma, Jianli Zhang, Subing Fan, Fugui He, Jumei Tian, Prasert Reubroycharoen, and Tiansheng Zhao. 2022. "Selective Conversion of Glycerol to Methanol over CaO-Modified HZSM-5 Zeolite" Molecules 27, no. 21: 7221. https://doi.org/10.3390/molecules27217221
APA StyleAtchimarungsri, T., Gao, X., Wang, K., Ma, Q., Zhang, J., Fan, S., He, F., Tian, J., Reubroycharoen, P., & Zhao, T. (2022). Selective Conversion of Glycerol to Methanol over CaO-Modified HZSM-5 Zeolite. Molecules, 27(21), 7221. https://doi.org/10.3390/molecules27217221