Fatty Acids of Ten Commonly Consumed Pulses
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Samples
3.2. Reagents and Solvents
3.3. Extraction of Lipids from Pulse Samples
3.4. FAME Derivatization
3.5. GC Standards
3.6. Gas Chromatography and Mass Spectrometry
3.6.1. GC and GC-MS Apparatus
- (a)
- Gas Chromatograph—Agilent Technologies (Santa Clara, CA, USA) 6890N GC with G2613A injector, split/splitless inlet, flame ionization detector (FID), and using OpenLab CDS ChemStation Edition for GC Systems (Rev. C.01.05 [Build 35]) software.
- (b)
- GC-MS—Agilent Technologies 5975C Inert XL EI/CI MSD with 7890A GC System and G4513A injector, split/splitless inlet, G3180B two-way splitter with makeup gas, FID, and using MassHunter GC/MS Acquisition (B.07.00 SP1.1549) software.
3.6.2. 6890. N GC-FID Method
- (a)
- GC Column—Supelco (Bellefonte, PA, USA) SP-2560 (100 m × 0.25 mm × 0.2 µm film thickness).
- (b)
- Carrier Gas—Hydrogen with operation in constant flow mode at 1.3 mL/min.
- (c)
- Inlet—Temperature 250 °C; 1 µL injection; operation in split mode at 100:1 split.
- (d)
- FID—Temperature 260 °C with total hydrogen flow at 35 mL/min, air flow at 350 mL/min, and make-up gas (N2) flow at 25 mL/min.
- (e)
- Oven—Initial temperature 70 °C, temperature gradient of 7.8 °C/min to 130 °C; gradient of 3.1 °C/min to 189 °C with 2 min hold; gradient of 1.6 °C/min to 200 °C; gradient of 3.2 °C/min to 230 °C with 22 min hold.
- (f)
- Run Time—67 min.
3.6.3. 5975. C/7890A GC-MSD-FID Method
- (a)
- GC Column—Supelco SP-2560 (100 m × 0.25 mm × 0.2 µm film thickness).
- (b)
- Carrier Gas—Helium with operation in constant flow mode at 1 mL/min.
- (c)
- Inlet—Temperature 250 °C; 1 µL injection; operation in split mode at 50:1 split.
- (d)
- FID—Temperature 260 °C with hydrogen flow at 35 mL/min, air flow at 350 mL/min, and make-up gas (N2) flow at 25 mL/min.
- (e)
- Oven—Initial temperature 70 °C, temperature gradient of 5 °C/min to 130 °C; gradient of 2 °C/min to 180 °C; gradient of 1 °C/min to 196 °C; gradient of 2 °C/min to 230 °C with 30 min hold.
- (f)
- Run Time—100 min.
- (g)
- MSD Parameters—Operation in positive chemical ionization mode with methane reagent gas (PCI-CH4); scan from m/z 50 to m/z 450 at 1.9 Hz.
3.7. Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- United Nations Food and Agriculture Organization Definition and Classification of Commodities: Pulses and Derived Products. Available online: http://www.fao.org/faoterm/viewEntry/en/?entryId=70035 (accessed on 20 September 2022).
- Baughman, W.F.; Jamieson, G.S. The chemical composition of soya bean oil. J. Am. Chem. Soc. 1922, 44, 2947–2952. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.; Hillen, C.; Robinson, J.G. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Padhi, E.M.T.; Liu, R.; Hernandez, M.; Tsao, R.; Ramdath, D.D. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. J. Funct. Foods 2017, 38, 602–611. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, G.; Giusti, F.; Ballini, R.; Sagratini, G.; Vila-Donat, P.; Vittori, S.; Fiorini, D. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition. Food Chem. 2016, 192, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.; Pinho, O.; Pinto, E.; Casal, S.; Mota, C.; Ferreira, I.M.P.L.V.O. Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. walp) and bambara groundnuts (Vigna subterranea L. verdc) from Mozambique. J. Food Meas. Charact. 2017, 11, 442–450. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, L.; Zhang, X.; Wang, M.; Liu, H.; Zhu, Y. Nutritional components, volatile constituents and antioxidant activities of 6 chickpea species. Food Biosci. 2021, 41, 100964. [Google Scholar] [CrossRef]
- Tzen, J.T.C.; Cao, Y.; Laurent, P.; Ratnayake, C.; Huang, A.H.C. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 1993, 101, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froese, C.D.; Nowack, L.; Cholewa, E.; Thompson, J.E. Molecular composition and surface properties of storage lipid particles in wax bean (Phaseolus vulgaris). J. Plant Physiol. 2003, 160, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Zhu, Y.; Chen, X.; Wang, X.D.; Rose, R.J.; Song, Y. Seed oil storage in three contrasted legume species: Implications for oil improvement. Acta Physiol. Plant. 2020, 42, 141. [Google Scholar] [CrossRef]
- Yoshida, H.; Tomiyama, Y.; Saiki, M.; Mizushina, Y. Tocopherol content and fatty acid distribution of peas (Pisum sativum L.). JAOCS J. Am. Oil Chem. Soc. 2007, 84, 1031–1038. [Google Scholar] [CrossRef]
- Yoshida, H.; Tomiyama, Y.; Kita, S.; Mizushina, Y. Lipid classes, fatty acid composition and triacylglycerol molecular species of kidney beans (Phaseolus vulgaris L.). Eur. J. Lipid Sci. Technol. 2005, 107, 307–315. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, M.; Iqbal, S. Characteristics of oil from seeds of 4 mungbean [Vigna radiata (L.) wilczek] cultivars grown in Pakistan. JAOCS J. Am. Oil Chem. Soc. 2008, 85, 851–856. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, M.; Iqbal, S.; Ahmad, S.; Ali, H. Characterization and compositional studies of oil from seeds of desi chickpea (Cicer arietinum L.) cultivars grown in Pakistan. JAOCS J. Am. Oil Chem. Soc. 2007, 84, 1143–1148. [Google Scholar] [CrossRef]
- Kotha, R.R.; Finley, J.W.; Luthria, D.L. Determination of soluble mono, di, and oligosaccharide content in 23 dry beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2020, 68, 6412–6419. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Ologhobo, A.D.; Fetuga, B.L. Varietal differences in the fatty acid composition of oils from cowpea (Vigna unguiculata) and limabean (Phaseolus lunatus). Food Chem. 1983, 10, 267–274. [Google Scholar] [CrossRef]
- Onwuliri, V.A.; Obu, J.A. Lipids and other constituents of Vigna unguiculata and Phaseolus vulgaris grown in northern Nigeria. Food Chem. 2002, 78, 1–7. [Google Scholar] [CrossRef]
- Grela, E.R.; Günter, K.D. Fatty acid composition and tocopherol content of some legume seeds. Anim. Feed Sci. Technol. 1995, 52, 325–331. [Google Scholar] [CrossRef]
- Gopala Krishna, A.G.; Prabhakar, J.V.; Aitzetmüller, K. Tocopherol and fatty acid composition of some Indian pulses. JAOCS J. Am. Oil Chem. Soc. 1997, 74, 1603–1606. [Google Scholar] [CrossRef]
- Lajara, J.R.; Diaz, U.; Quidiello, R.D. Definite influence of location and climatic conditions on the fatty acid composition of sunflower seed oil. J. Am. Oil Chem. Soc. 1990, 67, 618–623. [Google Scholar] [CrossRef]
- DeLany, J.P.; Windhauser, M.M.; Champagne, C.M.; Bray, G.A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 2000, 72, 905–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, R.J.; Kinsella, J.E. Oxidation of polyunsaturated fatty acids: Mechanisms, products, and inhibition with emphasis on fish. Adv. Food Nutr. Res. 1989, 33, 233–341. [Google Scholar] [PubMed]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef]
- Spencer, G.F.; Earle, F.R.; Wolff, I.A.; Tallent, W.H. Oxygenation of unsaturated fatty acids in seeds during storage. Chem. Phys. Lipids 1973, 10, 191–202. [Google Scholar] [CrossRef]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef]
- Goldschmidt, R.; Byrdwell, W.C. GC analysis of seven seed oils containing conjugated fatty acids. Separations 2021, 8, 51. [Google Scholar] [CrossRef]
FA | Baby Lima Beans | Black Beans | Black-Eyed Peas | Butter Beans | Cran-berry Beans | Gar-banzo Beans | Green Split Peas | Lentils | Navy Beans | Pinto Beans |
---|---|---|---|---|---|---|---|---|---|---|
C12:0 a | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 | 0.00 |
C14:0 | 0.20 | 0.12 | 0.15 | 0.44 | 0.07 | 0.15 | 0.25 | 0.52 | 0.06 | 0.10 |
C15:0 | 0.42 | 0.22 | 0.08 | 0.55 | 0.13 | 0.09 | 0.24 | 0.19 | 0.12 | 0.21 |
C16:0 | 27.95 | 18.99 | 28.62 | 33.26 | 19.12 | 11.35 | 15.17 | 17.37 | 17.70 | 20.59 |
C16:1 | 0.18 | 0.37 | 0.12 | 0.24 | 0.34 | 0.33 | 0.17 | 0.20 | 0.20 | 0.35 |
b Δ9c-16:1 (Po) | 50.92 | 65.37 | 17.68 | 42.74 | 64.84 | 78.25 | 44.78 | 50.91 | 62.62 | 66.65 |
Δ9t-16:1 (Po) | 53.72 | |||||||||
c 16:1X1 | 6.40 | 11.05 | 7.65 | 3.70 | 25.35 | 12.67 | 7.08 | |||
16:1X2 | 23.31 | 16.49 | 28.60 | 20.84 | 14.36 | 12.45 | 29.87 | 36.42 | 21.69 | 10.54 |
16:1X3 | 25.78 | 11.73 | 25.37 | 13.15 | 5.60 | 15.69 | 15.73 | |||
C17:1 | 0.03 | 0.12 | 0.02 | 0.04 | 0.19 | 0.01 | 0.03 | 0.09 | 0.09 | 0.08 |
C18:0 | 4.45 | 2.07 | 3.58 | 5.55 | 1.96 | 1.49 | 4.32 | 1.55 | 1.93 | 1.62 |
C18:1 | 6.22 | 21.53 | 5.24 | 5.33 | 12.96 | 34.43 | 26.18 | 24.08 | 12.69 | 8.60 |
Δ9c-18:1 (O) | 81.07 | 89.83 | 92.42 | 75.42 | 82.13 | 95.49 | 97.62 | 96.05 | 86.00 | 75.86 |
Δ11c-18:1 | 17.32 | 9.83 | 7.58 | 21.75 | 17.20 | 4.36 | 2.30 | 3.86 | 13.43 | 23.20 |
18:1X1 | 1.61 | 0.34 | 2.84 | 0.68 | 0.15 | 0.08 | 0.09 | 0.57 | 0.94 | |
C18:2 | 45.10 | 25.97 | 35.73 | 38.93 | 29.29 | 48.36 | 46.06 | 44.96 | 32.53 | 27.73 |
Δ9c,12c-18:2 (L) | 99.81 | 99.76 | 99.78 | 99.67 | 99.78 | 99.90 | 99.84 | 99.87 | 99.81 | 99.73 |
Δ9c,12t-18:2 | 0.15 | 0.24 | 0.18 | 0.24 | 0.22 | 0.09 | 0.13 | 0.13 | 0.19 | 0.27 |
Δ9t,12c-18:2 | 0.04 | 0.04 | 0.09 | 0.01 | 0.03 | |||||
C18:3 | 13.49 | 28.27 | 21.96 | 13.37 | 33.92 | 2.24 | 6.20 | 8.61 | 32.61 | 38.85 |
Δ9c,12c,15c-18:3 (Ln) | 99.54 | 99.58 | 99.48 | 99.38 | 99.61 | 99.56 | 99.47 | 99.44 | 99.64 | 99.60 |
ttc/cct-18:3 | 0.46 | 0.42 | 0.52 | 0.62 | 0.39 | 0.44 | 0.53 | 0.56 | 0.36 | 0.40 |
C19:0 | 0.02 | 0.03 | 0.02 | 0.04 | 0.03 | 0.01 | 0.04 | 0.04 | 0.02 | 0.03 |
C20:0 | 0.50 | 0.43 | 0.77 | 0.57 | 0.37 | 0.52 | 0.47 | 0.45 | 0.36 | 0.31 |
C20:1 | 0.11 | 0.15 | 0.29 | 0.10 | 0.12 | 0.40 | 0.28 | 0.60 | 0.14 | 0.10 |
C20:2 | 0.03 | 0.02 | 0.09 | 0.03 | 0.03 | 0.05 | 0.05 | 0.08 | 0.03 | 0.03 |
C20:3 | 0.00 | 0.02 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.02 | 0.02 |
C22:0 | 0.36 | 0.82 | 1.60 | 0.40 | 0.51 | 0.30 | 0.12 | 0.45 | 0.55 | 0.42 |
C22:1 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.01 | 0.01 | 0.10 | 0.00 | 0.00 |
C23:0 | 0.16 | 0.24 | 0.24 | 0.24 | 0.19 | 0.07 | 0.06 | 0.18 | 0.18 | 0.25 |
C24:0 | 0.67 | 0.54 | 1.26 | 0.79 | 0.58 | 0.14 | 0.24 | 0.36 | 0.66 | 0.61 |
C24:1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 |
C25:0 | 0.06 | 0.05 | 0.07 | 0.08 | 0.10 | 0.01 | 0.04 | 0.07 | 0.07 | 0.07 |
C26:0 | 0.04 | 0.03 | 0.09 | 0.04 | 0.08 | 0.01 | 0.05 | 0.03 | 0.05 | 0.04 |
Sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Analyte | Baby Lima Beans | Black Beans | Black-Eyed Peas | Butter Beans | Cranberry Beans | Garbanzo Beans | Green Split Peas | Lentils | Navy Beans | Pinto Beans |
---|---|---|---|---|---|---|---|---|---|---|
Squalene a | 0.18 | 0.22 | 0.02 | 0.04 | 0.16 | 0.00 | 0.02 | 0.00 | 0.70 | 0.14 |
oxo-FA | 0.33 | 0.55 | 1.53 | 0.09 | 0.99 | 0.75 | 2.52 | 3.29 | 0.38 | 0.29 |
Non-oxo-FA | 99.49 | 99.23 | 98.45 | 99.87 | 98.84 | 99.24 | 97.46 | 96.71 | 98.92 | 99.57 |
Sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Baby Lima Beans | Black Beans | Black-Eyed Peas | Butter Beans | Cranberry Beans | Garbanzo Beans | Green Split Peas | Lentils | Navy Beans | Pinto Beans | |
---|---|---|---|---|---|---|---|---|---|---|
18:1 | 9.60 | 28.42 | 8.33 | 9.28 | 17.01 | 40.51 | 33.38 | 31.01 | 16.31 | 11.44 |
18:2 | 69.59 | 34.28 | 56.78 | 67.52 | 38.46 | 56.85 | 58.71 | 57.89 | 41.79 | 36.89 |
18:3 | 20.81 | 37.31 | 34.89 | 23.19 | 44.53 | 2.65 | 7.90 | 11.09 | 41.90 | 51.67 |
Sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
oxo-O | 0.00 | 0.00 | 2.92 | 0.00 | 0.00 | 20.63 | 5.58 | 24.47 | 0.00 | 0.00 |
oxo-L | 19.44 | 2.78 | 27.55 | 53.36 | 1.88 | 72.88 | 70.02 | 52.54 | 0.00 | 0.00 |
oxo-Ln a | 80.56 | 97.22 | 69.53 | 46.64 | 98.12 | 6.49 | 24.40 | 22.99 | 100.00 | 100.00 |
Sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Baby Lima Beans | Black Beans | Black-Eyed Peas | Butter Beans | Cranberry Beans | Garbanzo Beans | Green Split Peas | Lentils | Navy Beans | Pinto Beans | |
---|---|---|---|---|---|---|---|---|---|---|
oxo-O | 0.00 | 0.00 | 2.92 | 0.00 | 0.00 | 20.63 | 5.58 | 24.47 | 0.00 | 0.00 |
oxo-L1 | 13.53 | 2.78 | 5.83 | 28.16 | 1.88 | 24.58 | 61.11 | 20.90 | 0.00 | 0.00 |
oxo-L2 | 5.91 | 0.00 | 21.72 | 25.20 | 0.00 | 48.30 | 8.91 | 31.63 | 0.00 | 0.00 |
oxo-Ln? a | 0.00 | 0.00 | 1.41 | 0.00 | 1.85 | 0.82 | 9.82 | 6.81 | 0.00 | 0.00 |
oxo-Ln1 | 80.56 | 97.22 | 32.03 | 46.64 | 96.26 | 2.99 | 11.21 | 2.51 | 100.00 | 100.00 |
oxo-Ln2 | 0.00 | 0.00 | 36.09 | 0.00 | 0.00 | 2.68 | 3.36 | 13.68 | 0.00 | 0.00 |
Sum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrdwell, W.C.; Goldschmidt, R.J. Fatty Acids of Ten Commonly Consumed Pulses. Molecules 2022, 27, 7260. https://doi.org/10.3390/molecules27217260
Byrdwell WC, Goldschmidt RJ. Fatty Acids of Ten Commonly Consumed Pulses. Molecules. 2022; 27(21):7260. https://doi.org/10.3390/molecules27217260
Chicago/Turabian StyleByrdwell, William Craig, and Robert J. Goldschmidt. 2022. "Fatty Acids of Ten Commonly Consumed Pulses" Molecules 27, no. 21: 7260. https://doi.org/10.3390/molecules27217260
APA StyleByrdwell, W. C., & Goldschmidt, R. J. (2022). Fatty Acids of Ten Commonly Consumed Pulses. Molecules, 27(21), 7260. https://doi.org/10.3390/molecules27217260