Electro-Optical Characteristics of Polymer Dispersed Liquid Crystal Doped with MgO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
3. Results and Discussion
3.1. UV64-5/2-EHA Ratios Optimization for Non-MgO Doped PDLCs
3.1.1. Morphology of the Films
3.1.2. Electro-Optical Performance of PDLC
3.2. LC/Monomer Ratios Optimization for Non-MgO Doped PDLCs
3.2.1. Morphology of the Films
3.2.2. Electro-Optical Performance of PDLC
3.3. The Influence of MgO Content on PDLC Films
3.3.1. Morphology of the Films
3.3.2. Electro-Optical Performance of PDLC
3.3.3. UV Spectra and Photographs of MgO Doped PDLC Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beroguiaa, D.; Abdoune, F.Z.; Belaid, Z.H.; Méchernène, L. Influence of SiO2 nanoparticles on electro-optical and thermophysical properties of polyacrylate/liquid crystal composites. Liq. Cryst. 2019, 47, 799–809. [Google Scholar] [CrossRef]
- Higgins, D.; Hall, J.; Xie, A. Optical microscopy studies of dynamics within individual polymer-dispersed liquid crystal droplets. Acc. Chem Res. 2005, 38, 137–145. [Google Scholar] [CrossRef]
- Nicoletta, F.P.; Chidichimo, G.; Cupelli, D.; De Filpo, G.; De Benedittis, M.; Gabriele, B.; Salerno, G.; Fazio, A. Electrochromic polymer-dispersed liquid-crystal film: A new bifunctional device. Adv. Funct. Mater. 2005, 15, 995–999. [Google Scholar] [CrossRef]
- Gülnur, Ö.; Gülsüm, K.; Aliye, K.; Köysal, O. Influence of azo dye concentration on dielectric response in polymer dispersed liquid crystal composites. J. Mol. Liq. 2019, 284, 607–615. [Google Scholar]
- Ahmad, F.; Jamil, M.; Lee, J.W.; Kim, S.R.; Jeon, Y.J. The effect of UV intensities and curing time on polymer dispersed liquid crystal (PDLC) display: A detailed analysis study. Electron. Mater. Lett. 2016, 12, 685–692. [Google Scholar] [CrossRef]
- Chidichimo, G.; Beneduci, A.; Maltese, V.; Cospito, S.; Tursi, A.; Tassini, P.; Pandolfi, G. 2D/3D switchable displays through PDLC reverse mode parallax barrier. Liq. Cryst. 2018, 45, 2132–2138. [Google Scholar] [CrossRef]
- Cong, S.; Cao, Y.; Fang, X.; Wang, Y.; Liu, Q.; Gui, H.; Shen, C.; Cao, X.; Kim, E.X.; Zhou, C. Carbon nanotube macro-electronics for active matrix polymer-dispersed liquid crystal displays. ACS Nano 2016, 10, 10068–10074. [Google Scholar] [CrossRef]
- Liao, C.C.; Su, C.W.; Chen, M.Y. Mitigation of image blurring for performance enhancement in transparent displays based on polymer-dispersed liquid crystal. Displays 2019, 56, 30–37. [Google Scholar] [CrossRef]
- Ghosh, A.; Mallick, T.K. Evaluation of optical properties and protection factors of a PDLC switchable glazing for low energy building integration. Sol Energy Mater Sol. Cells 2018, 176, 391–396. [Google Scholar] [CrossRef]
- Khalid, M.; Shanks, K.; Ghosh, A.; Tahir, A.; Sundaram, S.; Mallick, T.K. Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal films. Renew. Energy 2020, 164, 96–108. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ding, X.Y.; Lin, S.S.; Shi, J.; Chiang, I.K.; Huang, T.J. Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals. Adv. Mater. 2011, 23, 1656–1659. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, J.K.; Ahmad, F.; Jamil, M.; Jeon, Y.J. Properties of thiol-vinyl PDLC films without additional photo-initiator. Liq. Cryst. 2014, 41, 1109–1115. [Google Scholar] [CrossRef]
- Hemaida, A.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Sol. Energy 2019, 195, 185–193. [Google Scholar] [CrossRef]
- Qi, L.F.; Li, J.; Zhu, C.T.; Yang, Y.; Zhao, S.; Song, W. Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device. RSC Adv. 2016, 6, 13531–13536. [Google Scholar] [CrossRef]
- Ouskova, E.; Sio, L.D.; Vergara, R.; White, T.J.; Tabiryan, N.; Bunning, T.J. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites. Appl. Phys. Lett. 2014, 105, 6988–6993. [Google Scholar] [CrossRef]
- Li, L.W.; Wang, L.; Deng, L.G. Low threshold random lasing in DDPDLCs, DDPDLC @ZnO nanoparticles and dye solution @ZnO nanoparticle capillaries. Laser Phys. Lett. 2014, 1, 25201–25206. [Google Scholar] [CrossRef]
- Favoino, F.; Fiorito, F.; Cannavale, A.; Ranzi, G.; Overend, M. Optimal control and performance of photovoltaic switchable glazing for building integration in temperate climates. Appl. Energy. 2016, 178, 943–961. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zheng, J.; Gui, K.; Wang, K.; Wang, Y. Electrically controlled hole-patterned tunable-focus lens with polymer dispersed liquid crystal doped with Ag nanoparticles. Optik 2016, 127, 7788–7793. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, Q.L.; Tang, L.L.; Zhong, Y.; Loh, K.P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956. [Google Scholar] [CrossRef]
- Phu, N.D.; Hoang, L.H.; Hai, P.V.; Huy, T.Q.; Chen, X.B.; Chou, W.C. Photocatalytic activity enhancement of Bi2WO6 nanoparticles by Ag doping and Ag nanoparticles modification-science Direct. J. Alloys Compd. 2020, 824, 153914. [Google Scholar] [CrossRef]
- Lu, J.G.; Ye, Z.Z.; Zhang, Y.Z. Self-assembled ZnO quantum dots with tunable optical properties. Appl. Phys. Lett. 2006, 89, 2256–2259. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab J. Chem. 2017, 12, 908–931. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, J.; Dang, B.; He, J. Effect of different nanoparticles on tuning electrical properties of polypropylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1380–1389. [Google Scholar] [CrossRef]
- Jiang, Z.P.; Zheng, J.H.; Liu, Y.R.; Zhu, Q. Investigation of dielectric properties in polymer dispersed liquid crystal films doped with CuO nanorods. J. Mol. Liq. 2019, 295, 111667. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Joshi, T.; Biradar, A.M. Electro-optical and dielectric characteristics of ferroelectric liquid crystal dispersed with palladium nanoparticles. J. Mol. Liq. 2020, 315, 113776. [Google Scholar] [CrossRef]
- Ni, M.; Chen, G.; Sun, H.; Peng, H.; Yang, Z.; Liao, Y.; Ye, Y.; Yang, Y.; Xie, X. Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles. Mater. Chem. Front. 2017, 1, 294–303. [Google Scholar] [CrossRef]
- Ganea, C.P.; Manaila, M.D.; Crcu, V. Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films. Eur Phys. J. Plus. 2020, 135, 797. [Google Scholar] [CrossRef]
- Yoshida, H.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Ozaki, M. Nanoparticle-dispersed liquid crystals fabricated by sputter doping. Adv. Mater. 2010, 22, 622–626. [Google Scholar] [CrossRef]
- Jayoti, D.; Malik, P.; Singh, A. Analysis of morphological behavior and electro-optical properties of silica nanoparticles doped polymer dispersed liquid crystal composites. J. Mol. Liq. 2017, 225, 456–461. [Google Scholar] [CrossRef]
- Urbanski, M.; Lagerwall, P.F. Nanoparticles dispersed in liquid crystals: Impact on conductivity, low-frequency relaxation and electro-optical performance. J. Mater. Chem. C 2016, 4, 3485–3491. [Google Scholar] [CrossRef]
- He, T.Y.; Yang, B.; Zhang, L.; Shi, Z.; Gong, X.; Geng, P.; Gao, Z.; Wang, Y. A study on electro-optical properties of polymer dispersed liquid crystal films doped with barium titanate nanoparticles prepared by nucleophile-initiated thiol-ene click reaction. Liq. Cryst. 2019, 47, 1004–1018. [Google Scholar] [CrossRef]
- John, V.N.; Varanakkottu, S.N.; Varghese, S. Flexible, ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation. Opt. Mater. 2018, 80, 233–240. [Google Scholar] [CrossRef]
- Raina, K.K.; Kumar, P.; Malik, P. Morphological control and polarization switching in polymer dispersed liquid crystal materials and devices. Bull. Mater. Sci. 2006, 29, 599–603. [Google Scholar] [CrossRef]
- Yaroshchuk, O.V.; Dolgov, L.O. Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials. Opt. Mater. 2007, 29, 1097–1102. [Google Scholar] [CrossRef]
- Zobov, K.V.; Zharkova, G.M.; Syzrantsev, V.V. Effect of dopant nanoparticles on reorientation process in polymer-dispersed liquid crystals. EPL 2016, 113, 24001. [Google Scholar] [CrossRef]
- Haraguchi, F.; Inoue, K.; Toshima, N.; Kobayashi, S.; Takatoh, K. Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles. J. Appl. Phys. 2007, 46, 796–797. [Google Scholar] [CrossRef]
- Kobayashi, S.; Shiraishi, Y.; Toshima, N.; Furue, H.; Takeishi, K.; Takatsu, H.; Chang, K.H.; Chien, L.C. Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices. J. Mol. Liq. 2018, 267, 303–307. [Google Scholar] [CrossRef]
Ingredient | Viscosity (cp) | n |
---|---|---|
methacrylate | 340~650 | 1.505~1.528 |
Sample | LC (wt.%) | UV64-5 (wt.%) | 2-EHA (wt.%) | MgO (wt.%) |
---|---|---|---|---|
Group A | ||||
a1 | 50 | 100 | 0 | 0 |
a2 | 50 | 95 | 5 | 0 |
a3 | 50 | 90 | 10 | 0 |
a4 | 50 | 85 | 15 | 0 |
a5 | 50 | 80 | 20 | 0 |
Group B | ||||
b1 | 45 | 95 | 5 | 0 |
b2 | 50 | 95 | 5 | 0 |
b3 | 55 | 95 | 5 | 0 |
b4 | 60 | 95 | 5 | 0 |
b5 | 65 | 95 | 5 | 0 |
Group C | ||||
c1 | 50 | 95 | 5 | 0 |
c2 | 50 | 95 | 5 | 0.2 |
c3 | 50 | 95 | 5 | 0.4 |
c4 | 50 | 95 | 5 | 0.6 |
c5 | 50 | 95 | 5 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, J.; Yu, Y.; Zhao, Y.; Guo, Z.; Yao, R.; Gao, J.; Zhang, Y.; Wang, D. Electro-Optical Characteristics of Polymer Dispersed Liquid Crystal Doped with MgO Nanoparticles. Molecules 2022, 27, 7265. https://doi.org/10.3390/molecules27217265
Zhao Y, Li J, Yu Y, Zhao Y, Guo Z, Yao R, Gao J, Zhang Y, Wang D. Electro-Optical Characteristics of Polymer Dispersed Liquid Crystal Doped with MgO Nanoparticles. Molecules. 2022; 27(21):7265. https://doi.org/10.3390/molecules27217265
Chicago/Turabian StyleZhao, Yuzhen, Jinqian Li, Yang Yu, Yang Zhao, Zhun Guo, Ruijuan Yao, Jianjing Gao, Yongming Zhang, and Dong Wang. 2022. "Electro-Optical Characteristics of Polymer Dispersed Liquid Crystal Doped with MgO Nanoparticles" Molecules 27, no. 21: 7265. https://doi.org/10.3390/molecules27217265
APA StyleZhao, Y., Li, J., Yu, Y., Zhao, Y., Guo, Z., Yao, R., Gao, J., Zhang, Y., & Wang, D. (2022). Electro-Optical Characteristics of Polymer Dispersed Liquid Crystal Doped with MgO Nanoparticles. Molecules, 27(21), 7265. https://doi.org/10.3390/molecules27217265