Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of CQDs Colloidal Solution
2.3. Preparation of the TiO2/CdIn2S4 Photocatalyst
2.4. Preparation of the TiO2/CQDs/CdIn2S4 Photocatalysts
2.5. Characterization
2.6. Photocatalytic Experiment
3. Result and Discussions
3.1. Characterizations of Structure and Morphology
3.2. Band Structure of TiO2/CQDs/CdIn2S4 Photocatalysts
3.3. Influence of S Defects Formation
3.4. Influence of CQDs Content on Oxidation Performance
3.5. Photocatalytic Performance for PAHs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Chao, H.; Sun, M.; Wu, Y.; Xia, R.; Yuan, S.; Hu, F. Quantitative relationship between earthworms’ sensitivity to organic pollutants and the contaminants’ degradation in soil: A meta-analysis. J. Hazard. Mater. 2022, 429, 128286. [Google Scholar] [CrossRef]
- Huang, M.; Fang, G.; Chen, N.; Zhou, D. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite. J. Hazard. Mater. 2022, 429, 128380. [Google Scholar] [CrossRef]
- Zeng, W.; Qiu, J.; Wang, D.; Wu, Z.; He, L. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation. Sci. Total Environ. 2022, 810, 151294. [Google Scholar] [CrossRef]
- Zhan, H.; Wu, Q.; Liu, B.; Zhou, G. Exploration of Hydrogeochemical Characterization and Assessment of Organic Pollution Characteristics of Shallow Groundwater near a Chemical Plant That Discharged Sewage Illegally. Sustainability 2022, 14, 660. [Google Scholar] [CrossRef]
- Andreoli, R.; Spatari, G.; Pigini, D.; Poli, D.; Banda, I.; Goldoni, M.; Riccelli, M.G.; Petyx, M.; Protano, C.; Vitali, M.; et al. Urinary biomarkers of exposure and of oxidative damage in children exposed to low airborne concentrations of benzene. Environ. Res. 2015, 142, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Feng, B.; Li, Q.; Tian, C.; Ma, L.; Li, Z. The Application of Bi-Doped TiO2 for the Photocatalytic Oxidation of Formaldehyde. Cryst. Res. Technol. 2022, 57, 2100231. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Cao, J.; Chen, C. Complexation of Triptycene-Derived Macrotricyclic Host with Bisparaquat Derivative and Self-Folding Guest: A Switchable Process Controlled by K+Ions. Chin. J. Chem. 2013, 31, 607–611. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, M.; Zheng, Z.; Wang, K.; Liu, X.; Chen, Q.; Luo, D. Photocatalytic Degradation of Tobacco Tar Using CsPbBr3 Quantum Dots Modified Bi2WO6 Composite Photocatalyst. Nanomaterials 2021, 11, 2422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Dong, X.X.; Lv, Y.K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144. [Google Scholar] [CrossRef]
- Jacob, P., 3rd; Benowitz, N.L.; Destaillats, H.; Gundel, L.; Hang, B.; Martins-Green, M.; Matt, G.E.; Quintana, P.J.; Samet, J.M.; Schick, S.F.; et al. Thirdhand Smoke: New Evidence, Challenges, and Future Directions. Chem. Res. Toxicol. 2017, 30, 270–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahsavari, E.; Schwarz, A.; Aburto-Medina, A.; Ball, A.S. Biological Degradation of Polycyclic Aromatic Compounds (PAHs) in Soil: A Current Perspective. Curr. Pollut. Rep. 2019, 5, 84–92. [Google Scholar] [CrossRef]
- Ochiai, T.; Aoki, D.; Saito, H.; Akutsu, Y.; Nagata, M. Analysis of Adsorption and Decomposition of Odour and Tar Components in Tobacco Smoke on Non-Woven Fabric-Supported Photocatalysts. Catalysts 2020, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Huang, C.; Tong, P.; Feng, Z.; Wu, X.; Zhang, L. Moisture stable Ni-Zn MOF/g-C3N4 nanoflowers: A highly efficient adsorbent for solid-phase microextraction of PAHs. J. Chromatogr. A 2018, 1556, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Anubha, M.; Jayashree, S. Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environ. Pollut. 2022, 298, 118844. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Zuo, G.; Kong, J.; Guo, Y.; Sun, C.; Xian, Q. Photocatalytic degradation mechanism of phenanthrene over visible light driven plasmonic Ag/Ag3PO4/g-C3N4 heterojunction nanocomposite. Chemosphere 2022, 293, 133575. [Google Scholar] [CrossRef]
- Hakami, O. Construction of Co-doped NiS/S-g-C3N4 heterojunction for boosting degradation of dye and inactivation of pathogens in visible light. J. Photochem. Photobiol. A Chem. 2022, 425, 113704. [Google Scholar] [CrossRef]
- Thirukumaran, P.; Atchudan, R.; Parveen, A.S.; Kalaiarasan, K.; Lee, Y.R.; Kim, S.C. Fabrication of ZnO nanoparticles adorned nitrogen-doped carbon balls and their application in photodegradation of organic dyes. Sci. Rep. 2019, 9, 19509. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, T.; Zhao, Z.; Wang, R.; Wang, C.; Zhou, F.; Li, S.; Zhao, L.; Feng, M. Regulation of oxygen vacancies in SrTiO3 perovskite for efficient photocatalytic nitrogen fixation. J. Alloys Compd. 2022, 902, 163865. [Google Scholar] [CrossRef]
- Asaithambi, S.; Balaji, V.; Karuppaiah, M.; Sakthivel, P.; Muhil Eswari, K.; Yuvakkumar, R.; Selvakumar, P.; Velauthapillai, D.; Ravi, G. The electrochemical energy storage and photocatalytic performances analysis of rare earth metal (Tb and Y) doped SnO2@CuS composites. Adv. Powder Technol. 2022, 33, 103442. [Google Scholar] [CrossRef]
- Wu, Q.; Lu, D.; Kumar Kondamareddy, K.; Ho, W.; Cao, D.; Zeng, Y.; Zhang, B.; Zhang, Y.; Xie, L.; Zhao, B.; et al. Highly efficient photocatalytic degradation for antibiotics and mechanism insight for Bi2S3/g-C3N4 with fast interfacial charges transfer and excellent stability. Arab. J. Chem. 2022, 15, 103689. [Google Scholar] [CrossRef]
- Yang, J.; Hu, C.; Jin, Y.; Chen, H.; Zhu, W.; Zhou, X. Fabrication of TiO2 mesoporous microspheres sensitized with CdS nanoparticles and application in photodegradation of organic dye. Res. Chem. Intermed. 2018, 47, 3453–3468. [Google Scholar] [CrossRef]
- Keshipour, S.; Mohammad-Alizadeh, S. Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Sci. Rep. 2021, 11, 16148. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, D.; Yu, J.; Zhang, X.; Zhao, P.; Ren, Z.; Sun, Y.; Li, M.; Han, S. Photocatalytic Penicillin Degradation Performance and the Mechanism of the Fragmented TiO2 Modified by CdS Quantum Dots. Adv. Mater. 2021, 6, 18178–18189. [Google Scholar] [CrossRef] [PubMed]
- Keshipour, S.; Khezerloo, M. Nanocomposite of hydrophobic cellulose aerogel/graphene quantum dot/Pd: Synthesis, characterization, and catalytic application. RSC Adv. 2019, 9, 17129–17136. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Tang, H.; Zhou, N.; Zhang, Q.; Peng, B.; Shen, Y. Enhanced photocatalytic activity of TiO2/Ag2O heterostructures by optimizing the separation of electric charges. Vacuum 2021, 190, 110283. [Google Scholar] [CrossRef]
- Keshipour, S.; Mohammad-Alizadeh, S.; Razeghi, M.H. Copper phthalocyanine@graphene oxide as a cocatalyst of TiO2 in hydrogen generation. J. Phys. Chem. Solids 2022, 161, 110434. [Google Scholar] [CrossRef]
- Karuppasamy, P.; Ramzan Nilofar Nisha, N.; Pugazhendhi, A.; Kandasamy, S.; Pitchaimuthu, S. An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105254. [Google Scholar] [CrossRef]
- Mahammed Shaheer, A.R.; Thangavel, N.; Rajan, R.; Abraham, D.A.; Vinoth, R.; Sunaja Devi, K.R.; Shankar, M.V.; Neppolian, B. Sonochemical assisted impregnation of Bi2WO6 on TiO2 nanorod to form Z-scheme heterojunction for enhanced photocatalytic H2 production. Adv. Powder Technol. 2021, 32, 4734–4743. [Google Scholar] [CrossRef]
- Mahadadalkar, M.A.; Gosavi, S.W.; Kale, B.B. Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel. J. Mater. Chem. A 2018, 6, 16064–16073. [Google Scholar] [CrossRef]
- Xu, W.; Tian, W.; Meng, L.; Cao, F.; Li, L. Ion Sputtering–Assisted Double-Side Interfacial Engineering for CdIn2S4 Photoanode toward Improved Photoelectrochemical Water Splitting. Adv. Mater. Interfaces 2020, 7, 1901947. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Liu, X.; Huo, P.; Yan, Y.; Wang, L.; Liao, G.; Liu, C. Interface engineering of Co9S8/CdIn2S4 ohmic junction for efficient photocatalytic H2 evolution under visible light. J. Colloid Interface Sci. 2021, 600, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.-Y.; Chen, Y.-G.; Wang, L.; Chen, W.; Huang, G.-B. Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation. Appl. Surf. Sci. 2021, 535, 147682. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Zhang, F.; Li, W.; Li, Y.; Yu, H.; Wang, M.; Yu, H. Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer. Chem. Eng. J. 2022, 428, 131218. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Zhang, X.-G.; Niu, C.-G.; Feng, H.-P.; Qin, P.-Z.; Guo, H.; Liang, C.; Zhang, L.; Liu, H.-Y.; Li, L. Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: New insight into interfacial charge transfer and molecular oxygen activation. Appl. Catal. B Environ. 2020, 264, 118465. [Google Scholar] [CrossRef]
- Li, Y.; Huo, H.; Wang, X.; Xia, Y.; Zhang, A.; Gao, L. Enhancement of photocatalysis performance of CdIn2S4/g-C3N4 heterojunction by H2O2 synergism. J. Mater. Sci. Mater. Electron. 2021, 32, 14218–14234. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chin. J. Catal. 2019, 40, 335–342. [Google Scholar] [CrossRef]
- Zhao, P.; Jin, B.; Zhang, Q.; Peng, R. Facile synthesis of quantum dots/TiO2 photocatalyst with superior photocatalytic activity: The effect of carbon nitride quantum dots and N-doped carbon dots. Res. Chem. Intermed. 2021, 47, 5229–5247. [Google Scholar] [CrossRef]
- Qu, X.; Liu, M.; Yang, J.; Wang, C.; Meng, H.; Li, S.; Shi, L.; Du, F. A novel ternary TiO2 /CQDs/BiOX (X = Cl, Br, I) heterostructure as photocatalyst for water purification under solar irradiation. J. Solid State Chem. 2018, 264, 77–85. [Google Scholar] [CrossRef]
- Feng, S.; Chen, T.; Liu, Z.; Shi, J.; Yue, X.; Li, Y. Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Sci. Total Environ. 2020, 704, 135404. [Google Scholar] [CrossRef]
- Kırbıyık Kurukavak, Ç.; Yılmaz, T.; Çetin, Ş.; Alqadasi, M.M.; Al-Khawlany, K.M.; Kuş, M. Synthesis of boron-doped CQDs and its use as an additive in P3HT:PCBM layer for efficiency improvement of organic solar cell. Microelectron. Eng. 2021, 235, 111465. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.; Shi, J.W.; Zou, Y.; Fan, Z.; Shi, J.; Cheng, L.; Sun, D.; Wang, Z.; Niu, C. Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production. Nanoscale 2018, 10, 7860–7870. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, L.; Chen, J.; Ma, F.; Yu, Y. Broad spectrum response flower spherical-like composites CQDs@CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting. Int. J. Hydrogen Energy 2020, 45, 1822–1836. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Dong, X.; Xin, Z.; Guan, J.; Gao, X.; Zu, W.; Zhang, W. Minimalist preparation and photocatalysis properties of a spinyball-like indium-based composite suitable for different light conditions. J. Alloys Compd. 2022, 909, 164701. [Google Scholar] [CrossRef]
- Ding, J.; Yan, W.; Sun, S.; Bao, J.; Gao, C. Hydrothermal synthesis of CaIn2S4-reduced graphene oxide nanocomposites with increased photocatalytic performance. ACS Appl. Mater. Interfaces 2014, 6, 12877–12884. [Google Scholar] [CrossRef]
- Luo, D.; Chen, Q.; Qiu, Y.; Liu, B.; Zhang, M. Carbon Dots-Decorated Bi2WO6 in an Inverse Opal Film as a Photoanode for Photoelectrochemical Solar Energy Conversion under Visible-Light Irradiation. Materials 2019, 12, 1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Mehta, S.K.; Ibhadon, A.O.; Kansal, S.K. Fabrication of novel carbon quantum dots modified bismuth oxide (alpha-Bi2O3/C-dots): Material properties and catalytic applications. J. Colloid Interface Sci. 2019, 533, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Biswal, R.; Khan, B.; Singh, M.K. Synthesis, optical, dielectric, and magneto-dielectric properties of graphene quantum dots (GQDs). J. Mater. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Sharma, D.; Malik, B.P.; Gaur, A. Pulsed laser induced optical nonlinearities in undoped, copper doped and chromium doped CdS quantum dots. J. Opt. 2015, 17, 045502. [Google Scholar] [CrossRef]
- Yadav, I.; Ahlawat, D.S.; Ahlawat, R. Cu-doped Cd1−x Zn x S alloy: Synthesis and structural investigations. Appl. Phys. A 2016, 122, 245. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, S.; Mao, H.; Wang, J.; Zhu, Z. Influence of annealing temperature on the photoluminescence properties of ZnO quantum dots. Appl. Surf. Sci. 2010, 256, 3862–3865. [Google Scholar] [CrossRef]
- Peng, Z.; Jiang, Y.; Wang, X.; Zhang, R.; Xu, H.; Xiao, Y.; Jing, X.; Zhang, J.; Liu, Y.; Ni, L. Novel CdIn2S4 nano-octahedra/TiO2 hollow hybrid heterostructure: In-situ synthesis, synergistic effect and enhanced dual-functional photocatalytic activities. Ceram. Int. 2019, 45, 15942–15953. [Google Scholar] [CrossRef]
- Hu, J.; Yang, M.; Ke, X.; Yang, S.; Wang, K.; Huang, H.; Wang, W.; Luo, D.; Zheng, Z.; Huang, L.; et al. Cubic-cubic perovskite quantum dots/PbS mixed dimensional materials for highly efficient CO2 reduction. J. Power Sources 2021, 481, 228838. [Google Scholar] [CrossRef]
- Bae, H.-S.; Patil, R.P.; Chae, W.-S.; Ryu, J.; Mahadik, M.A.; Jang, J.S. Morphology control and phase transformation of ZIS/TiO2 into CdSe(en)0.5/CIS/TiO2 photoanode for enhanced solar hydrogen generation. Chem. Eng. J. 2020, 385, 123871. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Liang, Q.; Zhou, M.; Li, Z.; Xu, S. Coupling MOF-derived titanium oxide with CdIn2S4 formed 2D/3D core–shell heterojunctions with enhanced photocatalytic performance. Sep. Purif. Technol. 2021, 279, 119765. [Google Scholar] [CrossRef]
- Karthik, R.; Vinoth Kumar, J.; Chen, S.M.; Karuppiah, C.; Cheng, Y.H.; Muthuraj, V. A Study of Electrocatalytic and Photocatalytic Activity of Cerium Molybdate Nanocubes Decorated Graphene Oxide for the Sensing and Degradation of Antibiotic Drug Chloramphenicol. ACS Appl. Mater. Interfaces 2017, 9, 6547–6559. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Huang, A.; Liang, C.; Chen, H.C.; Han, T.; Lin, R.; Peng, Q.; Zhuang, Z.; Shen, R.; Chen, H.M.; et al. Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation. J. Am. Chem. Soc. 2022, 144, 3386–3397. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, P.; Karthik, R.; Chen, S.M.; Vinoth Kumar, J.; Muthuraj, V.; Nagarajan, E.R. Ultrasonication-assisted synthesis of sphere-like strontium cerate nanoparticles (SrCeO3 NPs) for the selective electrochemical detection of calcium channel antagonists nifedipine. Ultrason. Sonochem. 2019, 53, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Poolwong, J.; Del Gobbo, S.; D’Elia, V. Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. J. Ind. Eng. Chem. 2021, 104, 43–60. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.; Tang, P.; Li, B. A hybrid density functional design of intermediate band semiconductor for photovoltaic application based on group IV elements (Si, Ge, Sn, and Pb)-doped CdIn2S4. J. Appl. Phys. 2022, 131, 135702. [Google Scholar] [CrossRef]
- Wang, H.; Xia, Y.; Li, H.; Wang, X.; Yu, Y.; Jiao, X.; Chen, D. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat. Commun. 2020, 11, 3078. [Google Scholar] [CrossRef]
- Qu, Z.; Su, Y.; Sun, L.; Liang, F.; Zhang, G. Study of the Structure, Electronic and Optical Properties of BiOI/Rutile-TiO2 Heterojunction by the First-Principle Calculation. Materials 2020, 13, 323. [Google Scholar] [CrossRef] [Green Version]
- Galinato, M.G.; Niedzwiedzki, D.; Deal, C.; Birge, R.R.; Frank, H.A. Cation radicals of xanthophylls. Photosynth Res. 2007, 94, 67–78. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.K.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources. J. Hazard. Mater. 2019, 364, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Abbaspour, S.; Rouki, M.; Tayebee, R.; Jarrahi, M.; Shahri, E.E. Synergistic promotion of the photocatalytic efficacy of CuO nanoparticles by heteropolyacid-attached melem: Robust photocatalytic efficacy and anticancer performance. Appl. Organomet. Chem. 2022, 36, e6878. [Google Scholar] [CrossRef]
- El-Shabasy, R.; Yosri, N.; El-Seedi, H.; Shoueir, K.; El-Kemary, M. A green synthetic approach using chili plant supported Ag/AgO@P25 heterostructure with enhanced photocatalytic properties under solar irradiation. Optik 2019, 192, 162943. [Google Scholar] [CrossRef]
- Guo, Y.; Dai, Y.; Zhao, W.; Li, H.; Xu, B.; Sun, C. Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p–n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure. Appl. Catal. B Environ. 2018, 237, 273–287. [Google Scholar] [CrossRef]
- Mukwevho, N.; Kumar, N.; Fosso-Kankeu, E.; Waanders, F.; Bunt, J.; Ray, S.S. Visible light-excitable ZnO/2D graphitic-C3N4 heterostructure for the photodegradation of naphthalene. Desalination Water Treat. 2019, 163, 286–296. [Google Scholar] [CrossRef]
- Martínez-Vargas, B.L.; Díaz-Real, J.A.; Reyes-Vidal, Y.; Rodríguez-López, J.L.; Ortega Borges, R.; Ortiz-Frade, L. Competition between the reaction medium and nanostructured ZnO in the photocatalytic degradation of anthracene. Toward an optimal process for polycyclic aromatic hydrocarbons remediation. Química Nova 2017, 40, 6–16. [Google Scholar] [CrossRef]
- Lu, G.; Song, B.; Li, Z.; Liang, H.; Zou, X. Photocatalytic degradation of naphthalene on CeVO4 nanoparticles under visible light. Chem. Eng. J. 2020, 402, 125645. [Google Scholar] [CrossRef]
- Rani, M.; Rachna; Shanker, U. Metal oxide-chitosan based nanocomposites for efficient degradation of carcinogenic PAHs. J. Environ. Chem. Eng. 2020, 8, 103810. [Google Scholar] [CrossRef]
- Bai, H.; Zhou, J.; Zhang, H.; Tang, G. Enhanced adsorbability and photocatalytic activity of TiO2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids Surf. B Biointerfaces 2017, 150, 68–77. [Google Scholar] [CrossRef]
- Sliem, M.A.; Salim, A.Y.; Mohamed, G.G. Photocatalytic degradation of anthracene in aqueous dispersion of metal oxides nanoparticles: Effect of different parameters. J. Photochem. Photobiol. A Chem. 2019, 371, 327–335. [Google Scholar] [CrossRef]
- Kozlov, D.V.; Paukshtis, E.A.; Savinov, E.N. The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method. Appl. Catal. B Environ. 2000, 24, 7–12. [Google Scholar] [CrossRef]
- Zheng, C.; Li, X.; Zhao, Q.; Qu, Z.; Quan, X. Photo-oxidation of gas-phase cyclohexane species over nanostructured TiO2 fabricated by different strategies. Sep. Purif. Technol. 2009, 67, 326–330. [Google Scholar] [CrossRef]
- Chen, L.; Guo, F.; Wu, J.; Li, P.; Zhang, Y. Research on Coal Tar Pitch Catalytic Oxidation and Its Effect on the Emission of PAHs during Co-Carbonation with Coal. Catalysts 2021, 11, 1428. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Huang, D.; Li, L.; Tao, J.; Ghany, N.A.A.; Jiang, F. CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Appl. Catal. B Environ. 2021, 286, 119872. [Google Scholar] [CrossRef]
Sample | β (rad) | 2θ (°) | D311 (nm) |
---|---|---|---|
TiO2/CQDs/CdIn2S4 | 86.873 × 10−4 | 27.181 | 16.275 |
TiO2/CdIn2S4 | 75.534 × 10−4 | 27.220 | 18.681 |
CQDs | 546.01 × 10−4 | 22.570 | 2.5615 |
Photocatalyst | Light Source | Weight of Photocatalyst | Amount of PAHs | Irradiation Time (min) | Degradation Efficiency (%) | Reference |
---|---|---|---|---|---|---|
TiO2TiO2/CQDs/CdIn2S4 | Xe lamp (300 W) with a cutoff filter (>400 nm) | 50 mg | 50 mL aqueous solution, 1 mg/L | 60 | 87.79 | This work |
Co3O4/Bi2O2CO3 | 500 W xenon lamp | 25 mg | 50 mL aqueous solution, 10 mg/L | 150 | 91.02 | [74] |
ZnO/g-C3N4 | Visible light | Not mentioned | Not mentioned | 240 | 84.50 | [75] |
ZnO | 15 W UVC lamp with emission at 254 nm | Not mentioned | 3.5 mL of anthracene | 55 | 60.00 | [76] |
CeVO4 nanoparticles | Xe lamp (300 W) with a 420 nm cutoff filter | 50 mg | 200 mL Nap solution, 30 mg/L | 60 | ~60.00 | [77] |
ZnFe2O4-CS | daylight | 20 mg | 5 mL aqueous solution, 2−10 mgL−1 | 720 | 95.00 | [78] |
TiO2-Graphene | 300 W high pressure mercury lamp (λ > 320 nm) | 25 mg | 250 mL aqueous solution, 0.5–5.0 μg/mL | 120 | ~80.00 | [79] |
ZnO NPs | UV lamp (368 nm, 40 W) | 10 mg | 50 mL aqueous solution, 23 mg/L | 230 | 90.00 | [80] |
Peak | Retention Time | m/z | Empirical Formula | Product |
---|---|---|---|---|
2 | 4.472 | 112 | C8H16 | dimethylcyclohexane |
3 | 4.565 | 112 | C8H16 | dimethylcyclohexane |
4 | 4.743 | 112 | C8H16 | dimethylcyclohexane |
5 | 4.859 | 112 | C8H16 | dimethylcyclohexane |
6 | 4.938 | 154 | C12H8 | acenaphthene |
7 | 5.447 | 106 | C7H6O | benzaldehyde |
8 | 5.588 | 106 | C7H6O | benzaldehyde |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yu, F.; Ke, X.; Yu, H.; Guo, P.; Du, L.; Zhang, M.; Luo, D. Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde. Molecules 2022, 27, 7292. https://doi.org/10.3390/molecules27217292
Zhang J, Yu F, Ke X, Yu H, Guo P, Du L, Zhang M, Luo D. Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde. Molecules. 2022; 27(21):7292. https://doi.org/10.3390/molecules27217292
Chicago/Turabian StyleZhang, Jiangwei, Fei Yu, Xi Ke, He Yu, Peiyuan Guo, Lei Du, Menglong Zhang, and Dongxiang Luo. 2022. "Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde" Molecules 27, no. 21: 7292. https://doi.org/10.3390/molecules27217292
APA StyleZhang, J., Yu, F., Ke, X., Yu, H., Guo, P., Du, L., Zhang, M., & Luo, D. (2022). Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde. Molecules, 27(21), 7292. https://doi.org/10.3390/molecules27217292