Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Computational Details
2.2. HOMO–LUMO Analysis
2.3. Natural Bond Orbital Analysis
2.4. Quantum Theory of Atoms in Molecules (QTAIM)
2.5. UV Excitation Analysis
3. Experimental
3.1. Materials and Methods
3.2. Synthesis of Ti3C2Tx MXene and Doping of PEDOT:PSS
3.3. Device Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Qin, Z.; Chen, Y.; Zhu, K.; Zhao, Y.J.A.M.L. Two-Dimensional Materials for Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Mater. Lett. 2021, 3, 1402–1416. [Google Scholar] [CrossRef]
- Huang, X.Q.; Gan, T.; Lu, Y.Z.; Xu, Z.K.; Wang, Z.X.; Liao, W.Q. Evident Dielectric Relaxation in an Organic-Inorganic Halide Perovskite. Eur. J. Inorg. Chem. 2021, 2021, 2749–2754. [Google Scholar] [CrossRef]
- Pascoe, A.R.; Yang, M.; Kopidakis, N.; Zhu, K.; Reese, M.O.; Rumbles, G.; Fekete, M.; Duffy, N.W.; Cheng, Y.-B. Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. Nano Energy 2016, 22, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, 1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.F.; Wu, W.Q.; Jiang, Y.; Kuang, D.B.; Wang, L.J. Maze-Like Halide Perovskite Films for Efficient Electron Transport Layer-Free Perovskite Solar Cells. Solar RRL 2019, 3, 1800268. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Vasilopoulou, M.; Soultati, A.; Haider, M.I.; Briscoe, J.; Fotopoulos, V.; Di Girolamo, D.; Davazoglou, D.; Chroneos, A.; Yusoff, A.R.; et al. Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar RRL 2020, 5, 2000555. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Prochowicz, D.; Sponseller, M.; Osherov, A.; Bulović, V.; Kong, J.J. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803587. [Google Scholar] [CrossRef]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Jones, T.W.; Yang, T.C.J.; Duffy, N.W.; Li, J.; Zhao, L.; Chi, B.; Wang, X.; Wilson, G.J. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2008300. [Google Scholar] [CrossRef]
- Ali, J.; Gao, P.; Zhou, G.; Li, Y.; Hao, T.; Song, J.; Xu, J.; Qian, K.; Zhang, Q.; Zhu, L.J. Elucidating the Roles of Hole Transport Layers in p-i-n Perovskite Solar Cells. Adv. Electron. Mater. 2020, 6, 2000149. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, Y.; Shi, Y.; Ma, X.; Sun, M.; Li, T.; Yang, B.; Shao, Y.J. Improving the Performance of Perovskite Solar Cells with Insulating Additive-Modified Hole Transport Layers. Appl. Mater. Interface 2022, 14, 11500–11508. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Mei, S.; Feng, J.; Sun, D.; Mei, F.; Xu, J.; Cao, X.J. Effects of PEDOT: PSS: GO composite hole transport layer on the luminescence of perovskite light-emitting diodes. RSC Adv. 2020, 10, 26381–26387. [Google Scholar] [CrossRef]
- Kanwat, A.; Rani, V.S.; Jang, J.J. Improved power conversion efficiency of perovskite solar cells using highly conductive WO x doped PEDOT: PSS. New J. Chem. 2018, 42, 16075–16082. [Google Scholar] [CrossRef]
- Niu, J.; Yang, D.; Ren, X.; Yang, Z.; Liu, Y.; Zhu, X.; Zhao, W.; Liu, S.F. Graphene-oxide doped PEDOT: PSS as a superior hole transport material for high-efficiency perovskite solar cell. Org. Electron. 2017, 48, 165–171. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Zhang, C.; Liu, Y.; Zheng, C.; Lv, W.; Li, M.; Chen, Y.; Huang, W.; Chen, R.J.; et al. Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT: PSS. Solar Energy Mater. 2020, 206, 110316. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Cao, Y.; Wang, G.J. Functional MXene materials: Progress of their applications. Chem. Asian J. 2018, 13, 2742–2757. [Google Scholar] [CrossRef]
- Saranin, D.; Pescetelli, S.; Pazniak, A.; Rossi, D.; Liedl, A.; Yakusheva, A.; Luchnikov, L.; Podgorny, D.; Gostischev, P.; Didenko, S.J. Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 2021, 82, 105771. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, Q.; Jin, Y.; Liu, X.; Sun, H.; Ghazaly, A.E.; Fabiano, S.; Li, Z.; Luo, J.; Rosen, J.J. Mo1. 33C MXene-assisted PEDOT: PSS hole transport layer for high-performance bulk-heterojunction polymer solar cells. ACS Appl. Electron. Mater. 2019, 2, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Du, J.-B.; Yang, L.; Jin, X.; Liu, C.-L.; Wang, H.-H.; Wang, X.-F. Spray deposition of vinyl tris (2-methoxyethoxy) silane-doped Ti3C2Tx MXene hole transporting layer for planar perovskite solar cells. J. Alloys Compd. 2022, 900, 163372. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q.J. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 2015, 160, 537–540. [Google Scholar] [CrossRef]
- Bassey, V.M.; Apebende, C.G.; Idante, P.S.; Louis, H.; Emori, W.; Cheng, C.-R.; Agwupuye, J.A.; Unimuke, T.O.; Wei, K.; Asogwa, F.C. Vibrational Characterization and Molecular Electronic Investigations of 2-acetyl-5-methylfuran using FT-IR, FT-Raman, UV–VIS, NMR, and DFT Methods. J. Flourescence 2022, 32, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Louis, H.; Emori, W.; Idante, P.S.; Agwamba, E.C.; Cheng, C.-R.; Eno, E.A.; Unimuke, T.O. Antispasmodic activity of carnosic acid extracted from rosmarinus officinalis: Isolation, spectroscopic characterization, DFT studies, and in silico molecular docking investigations. J. Mol. Struct. 2022, 1260, 132795. [Google Scholar] [CrossRef]
- Louis, H.; Ifediora, L.P.; Enudi, O.C.; Unimuke, T.O.; Asogwa, F.C.; Moshood, Y.L. Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-\pi π-acceptor system. J. Mol. Model. 2021, 27, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gao, L.; Xu, Z.; Teo, S.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 2018, 14, 1802738. [Google Scholar] [CrossRef]
Phases | HOMO/eV | LUMO/eV | Energy Gap (e/V) |
---|---|---|---|
Cluster | −6.474 | −0.333 | 6.141 |
Polymer | −4.951 | −2.780 | 2.171 |
Interaction | −3.679 | −1.841 | 1.838 |
Phases | Donor (ἰ) | Acceptor (j) | (kcal/mol) | Occupancies | E(j)–E(ἰ) (a.u) | F(ἰ,j) (a.u) |
---|---|---|---|---|---|---|
Cluster | LpC2 | Lp*Ti23 | 542.56 | 1.08977 | 0.08 | 0.209 |
σ*C1–Ti19 | σC1–Ti23 | 469.80 | 1.77480 | 0.06 | 0.235 | |
σ*C1–Ti19 | Lp*Ti19 | 359.85 | 1.43478 | 0.04 | 0.194 | |
πC1–Ti19 | πC1–Ti23 | 131.97 | 1.78948 | 0.05 | 0.102 | |
LpTi23 | π*C1–Ti23 | 126.01 | 0.77931 | 0.05 | 0.086 | |
Polymer | πC28–C31 | π*C26–C27 | 40.08 | 1.67461 | 0.38 | 0.112 |
πC29–C33 | π*C28–C31 | 38.17 | 1.66383 | 0.38 | 0.109 | |
πC26–C27 | π*C29–C33 | 36.21 | 1.64736 | 0.40 | 0.105 | |
πC29–C33 | π*C26–C27 | 32.49 | 1.67461 | 0.38 | 0.099 | |
πC26–C27 | π*C28–C31 | 30.44 | 1.66383 | 0.40 | 0.098 | |
Interaction | π*c44–Ti66 | πC45–Ti66 | 299.45 | 1.61583 | 0.01 | 0.073 |
Lp*Ti66 | Lp*Ti65 | 239.05 | 1.43721 | 0.01 | 0.121 | |
Lp*Ti56 | Lp*Ti57 | 196.02 | 1.64411 | 0.01 | 0.120 | |
Lp*Ti59 | Lp*Ti56 | 174.42 | 1.67911 | 0.01 | 0.106 | |
σ*C46–Ti65 | Lp*Ti65 | 127.39 | 1.69166 | 0.12 | 0.259 |
Compound | Bond | BCP | e (r) | e(r) | G(r) | K(r) | V(r) | ELF |
---|---|---|---|---|---|---|---|---|
Interaction | H12–C52 | 92 | 0.1425 | −0.1021 | 0.3056 | 0.2859 | −0.3165 | 0.9926 |
H16–C48 | 104 | 0.9501 | 0.2824 | 0.5721 | −0.1338 | −0.4383 | 0.4360 | |
O7–C23 | 127 | 0.2819 | 0.1063 | 0.1992 | −0.6651 | −0.1327 | 0.6469 | |
Polymer | O37–H10 | 49 | 0.1828 | 0.6892 | 0.1456 | −0.2668 | −0.1189 | 0.5876 |
C31–H11 | 63 | 0.1840 | −0.3969 | 0.3772 | 0.1370 | −0.1747 | 0.9535 | |
C28–O7 | 73 | 0.3704 | 0.1352 | 0.2712 | −0.6685 | −0.2044 | 0.8674 |
Compound | Excited State | Energy (eV) | Wavelength (nm) | Oscillator Strength (f) | Orbital Contribution (%) |
---|---|---|---|---|---|
Cluster | S0S1 | 2.5294 | 490.17 | 0.0000 | 169 = (34.9) |
17 = (12.581) | |||||
170 = (39.16) | |||||
Polymer | S0S1 | 5.1629 | 240.14 | 0.1970 | 98 = (4.732) |
100 = (6.885) | |||||
103 = (2.253) | |||||
Interaction | S0S1 | 2.4258 | 511.10 | 0.0006 | 267 = (3.773) |
266 = (61.60) | |||||
268 = (5.518) |
Dopant Concentration | VoC (V) | Jsc (mA/cm2) | FF (%) | PCE (%) Reverse Scan | PCE (%) Forward Scan |
---|---|---|---|---|---|
0 wt.% | 1.00 ± 0.01 | 18.01 ± 01 | 68.6 ± 04 | 12.5 ± 0.3 | 12.0 ± 0.2 |
0.03 wt.% | 1.07 ± 0.01 | 19.02 ± 0.5 | 76.5 ± 03 | 15.1 ± 0.4 | 15.0 ± 0.3 |
0.05 wt.% | 1.02 ± 0.01 | 18.70 ± 0.5 | 76.3 ± 04 | 14.5 ± 0.4 | 14.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Faraz Ud Din, M.; Cuzzupè, D.T.; Fakharuddin, A.; Louis, H.; Nabi, G.; Gu, Z.-G. Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells. Molecules 2022, 27, 7452. https://doi.org/10.3390/molecules27217452
Ali I, Faraz Ud Din M, Cuzzupè DT, Fakharuddin A, Louis H, Nabi G, Gu Z-G. Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells. Molecules. 2022; 27(21):7452. https://doi.org/10.3390/molecules27217452
Chicago/Turabian StyleAli, Israt, Muhammad Faraz Ud Din, Daniele T. Cuzzupè, Azhar Fakharuddin, Hitler Louis, Ghulam Nabi, and Zhi-Gang Gu. 2022. "Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells" Molecules 27, no. 21: 7452. https://doi.org/10.3390/molecules27217452
APA StyleAli, I., Faraz Ud Din, M., Cuzzupè, D. T., Fakharuddin, A., Louis, H., Nabi, G., & Gu, Z. -G. (2022). Ti3C2Tx-Modified PEDOT:PSS Hole-Transport Layer for Inverted Perovskite Solar Cells. Molecules, 27(21), 7452. https://doi.org/10.3390/molecules27217452