Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mechanism of Modification
2.2. Effect of Modification Conditions on Oil Absorption
2.2.1. Effect of Alkali Modification Conditions
2.2.2. Effect of Cationic Surfactant Modification Conditions
2.3. Comparison of Agricultural Straw Materials
2.4. Characterization of Straw
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Pretreatment of Rice Straw
3.2.2. Modification of Rice Straw
3.3. Determination of Oil Absorption Value
3.4. Characterization of Rice Straw
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bierkens, J.; Geerts, L. Environmental hazard and risk characterisation of petroleum substances: A guided “walking tour” of petroleum hydrocarbons. Environ. Int. 2014, 339, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, G.; Ghorbanian, M. The biodegradation of petroleum hydrocarbons in an upflow sludge blanket/fixed-film hybrid bioreactor under nitrate-reducing conditions: Performance evaluation and microbial identification. Chem. Eng. J. 2015, 280, 121–131. [Google Scholar] [CrossRef]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard. Mater. 2018, 349, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, Z.; Xu, Z.; Zhang, J.; Qu, C.; Zhang, Z. Synthesis of hierarchical MgO based on a cotton template and its adsorption properties for efficient treatment of oilfield wastewater. RSC Adv. 2020, 10, 28695–28704. [Google Scholar] [CrossRef]
- Zhou, L.; Slaný, M.; Bai, B.; Du, W.; Qu, C.; Zhang, J.; Tang, Y. Enhanced removal of sulfonated lignite from oil wastewater with multidimensional MgAl-LDH nanoparticles. Nanomaterials 2021, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Qu, C.; Tang, Y.; Slaný, M. Synthesis of Mg-Al hydrotalcite clay with high adsorption capacity. Materials 2021, 14, 7231. [Google Scholar] [CrossRef]
- Amin, J.S.; Abkenar, M.V.; Zendehboudi, S. A natural sorbent for oil spill cleanup from water surface: Environmental implication. Ind. Eng. Chem. Res. 2015, 54, 10315–10321. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Tai, N.-H.; Lee, S.-B.; Kuo, W.-S. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energ. Environ. Sci. 2012, 5, 7908–7912. [Google Scholar] [CrossRef]
- Rajak, V.K.; Singh, I.; Kumar, A.; Mandal, A. Optimization of separation of oil from oil-in-water emulsion by demulsification using different demulsifiers. Petrol. Sci. Technol. 2013, 34, 1023–1032. [Google Scholar] [CrossRef]
- Annunciado, T.R.; Sydenstricker, T.H.D.; Amico, S.C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar. Pollut. Bull. 2005, 50, 1340–1343. [Google Scholar] [CrossRef]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of sorbents for oil spill cleanup focusing on natural-based modified materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef]
- Bi, H.; Yin, Z.; Cao, X.; Xie, X.; Tan, C.; Huang, X.; Chen, B.; Chen, F.; Yang, Q.; Bu, X.; et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5913–5921. [Google Scholar] [CrossRef]
- Chen, H.; Saleemi, S.; Liu, X.H.; Qiu, Y.P.; Xu, F.J. Hydrophobic lipophilic modified cotton fabric for ol adsorption applications. J. Nat. Fibers 2018, 17, 143–154. [Google Scholar] [CrossRef]
- Sun, X.F.; Sun, S.; Sun, J.X. Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J. Agric. Food Chem. 2002, 50, 3428–3433. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, B. Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column. Bioresour. Technol. 2013, 143, 519–524. [Google Scholar] [CrossRef]
- Rungrodnimitchai, S. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. Sci. World J. 2014, 2014, 634837. [Google Scholar] [CrossRef]
- Yu, P.; Wang, X.; Zhang, K.; Wu, M.; Wu, Q.; Liu, J.; Yang, J.; Zhang, J. Continuous purification of simulated wastewater based on rice straw composites for oil/water separation and removal of heavy metal ions. Cellulose 2020, 27, 5223–5239. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, S.; Pang, Y. Rice straw biochar modified by aluminum chloride enhances the dewatering of the sludge from municipal sewage treatment plant. Sci. Total Environ. 2019, 354, 338–344. [Google Scholar] [CrossRef]
- Tran, T.D.; Nguyen, S.T.; Do, N.D.; Thai, N.T.N.; Thai, Q.B.; Huynh, H.K.P.; Nguyen, V.T.T.; Phan, A.N. Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater. Chem. Phys. 2020, 253, 123363. [Google Scholar] [CrossRef]
- Tan, G.Q.; Xiao, D. Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 2009, 134, 1359–1363. [Google Scholar] [CrossRef]
- Yanfeng, H.E.; Xiujin, L.I.; Fang, W. Effect of solid-state pretreatment with sodium hydroxide on the lignin structure of rice straw. J. Acta Sci. Circumstantiae 2008, 28, 534–539. [Google Scholar] [CrossRef]
- Li, Y.L.; Gao, J.H.; Wang, L. Effect of Alkali Treatment on lignin content in crop straw. J. Chem. Bioeng. 2017, 34, 58–60. [Google Scholar] [CrossRef]
- Li, D.; Zhu, F.Z.; Li, J.Y.; Na, P.; Wang, N. Preparation and characterization of cellulose fibers from corn straw as natural oil sorbents. Ind. Eng. Chem. Res. 2013, 52, 513–524. [Google Scholar] [CrossRef]
- Wiśniewska, S.K.; Nalaskowski, J.; Witka-Jeżewska, E.; Hupka, J.; Miller, J.D. Surface properties of barley straw. Colloids Surf. B Biointerfaces 2003, 29, 131–142. [Google Scholar] [CrossRef]
- Jiang, F.; Kondo, T.; Hsieh, Y.-L. Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustain. Chem. Eng. 2013, 4, 1397–1703. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Hsieh, Y.L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 2013, 95, 32–40. [Google Scholar] [CrossRef]
- Shin, Y.S.; Han, K.S.; Arey, B.W.; Bonheyo, G.T. Cotton fiber-based sorbents for treating crude oil spills. ACS Omega 2020, 5, 13894–13901. [Google Scholar] [CrossRef]
- Dilamian, M.; Noroozi, B. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. 2020, 251, 117013. [Google Scholar] [CrossRef]
- Chai, W.B.; Liu, X.Y.; Zhang, X.Y.; Li, B.B.; Yin, T.T.; Zou, J.C. Preparation and characterization of polypropylene fibergrafted polybutylmethacrylate as oil sorbent. Desalin. Water. Treat. 2015, 57, 18530–18571. [Google Scholar] [CrossRef]
- Law, K.Y.; Zhao, H. Contact Angle Measurements and Surface Characterization Techniques. In Surface Wetting; Springe: Cham, Switzerland, 2016; Volume 3, pp. 7–34. [Google Scholar] [CrossRef]
Surfactant | DTAC | CTAC | OTAC | BTAC |
---|---|---|---|---|
Contact angle | 88° | 95° | 84° | 79° |
No. | Material | Oil Absorption Value (g/g) |
---|---|---|
1 | Rice straw (unmodified) | 0.83 |
2 | Alfalfa (modified) | 3.06 |
3 | Alfalfa leaf (modified) | 3.91 |
4 | Humus (modified) | 6.21 |
5 | Corn stalk (modified) | 6.52 |
6 | Rice straw (modified) | 8.49 |
Rice Straw | Corn Stalk | Humus | Alfalfa | Alfalfa Leaf | |
---|---|---|---|---|---|
unmodified | 10.20° | 19.20° | 21.25° | 4.38° | 4.62° |
modified | 70.10° | 71.02° | 72.28° | 68.20° | 43.25° |
Pore Properties | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
unmodified | 6.67 | 0.024 | 14.92 |
modified | 43.46 | 0.101 | 10.24 |
μ30 /(mPa·s) | Pour Point t/°C | ρ20 /(g·cm−3) | Resins W/% | Asphaltenes W/% | Aromatic Hydrocarbons W/% | Saturated Hydrocarbons W/% |
---|---|---|---|---|---|---|
36.9 | 18.5 | 0.86 | 12.1 | 6.8 | 25.2 | 55.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Ma, L.; Hou, S.; Dou, M.; Li, Y.; Du, W.; Chen, G. Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment. Molecules 2022, 27, 7459. https://doi.org/10.3390/molecules27217459
Shi Y, Ma L, Hou S, Dou M, Li Y, Du W, Chen G. Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment. Molecules. 2022; 27(21):7459. https://doi.org/10.3390/molecules27217459
Chicago/Turabian StyleShi, Ya, Liwa Ma, Shan Hou, Miao Dou, Yongfei Li, Weichao Du, and Gang Chen. 2022. "Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment" Molecules 27, no. 21: 7459. https://doi.org/10.3390/molecules27217459
APA StyleShi, Y., Ma, L., Hou, S., Dou, M., Li, Y., Du, W., & Chen, G. (2022). Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment. Molecules, 27(21), 7459. https://doi.org/10.3390/molecules27217459