Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Profiling
2.1.1. Flavonoids
2.1.2. Chlorogenic Acids
2.1.3. Sesquiterpene Lactones (Guaianolides)
2.2. Zebrafish Toxicity
2.3. Cytotoxicity and Antineoplastic Selectivity
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Plant Extract
3.3. LC-MS and Qualitative Analysis
3.4. Zebrafish Embryo Toxicity (ZET) Assay
3.5. Cell Lines Maintenance, Cytotoxicity Testing, and Antineoplastic Selectivity
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Seca, A.M.L.; Grigore, A.; Pinto, D.C.G.A.; Silva, A.M.S. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014, 154, 286–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulos, L. Flora of Egypt; Al Hadara Publishing: Cairo, Egypt, 2002; Volume 3. [Google Scholar]
- Metwally, M. New dehydrothymol derivative from Iphiona mucronata. Z. Nat. B 1985, 40, 1597–1598. [Google Scholar] [CrossRef]
- Roeder, E.; Bourauel, T.; Meier, U.; Wiedenfeld, H. Diterpene glycosides from Iphiona aucheri. Phytochemistry 1994, 37, 353–355. [Google Scholar] [CrossRef]
- Ali, B.; Al-Qarawi, A.; Bashir, A.; Tanira, M. Acute toxicity studies on Iphiona (Grantia) aucheri and atractyloside in mice. Arab. Gulf. J. Sci. Res. 2000, 18, 81–85. [Google Scholar]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta. Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ismail, M.M.; Rocchetti, G.; Fayek, N.M.; Lucini, L.; Saber, F.R. The Untargeted Phytochemical Profile of Three Meliaceae Species Related to In Vitro Cytotoxicity and Anti-Virulence Activity against MRSA Isolates. Molecules 2022, 27, 435. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Kumar, D.; Agnihotri, V.K. UPLC/MS/MS method for quantification and cytotoxic activity of sesquiterpene lactones isolated from Saussurea lappa. J. Ethnopharmacol. 2014, 155, 1393–1397. [Google Scholar] [CrossRef]
- March, R.; Brodbelt, J. Analysis of flavonoids: Tandem mass spectrometry, computational methods, and NMR. J. Mass Spectrom. 2008, 43, 1581–1617. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Melek, F.R.; EI-Din, A.A.S.; Mabry, T.J. Polysulfated flavonoids from Iphiona mucronata. Rev. Latinoam. Quim. 1988, 19, 107–109. [Google Scholar]
- Simirgiotis, M.J.; Cuevas, H.; Tapia, W.; Borquez, J. Edible Passiflora (banana passion) fruits: A source of bioactive C-glycoside flavonoids obtained by HSCCC and HPLC-DAD-ESI/MS/MS. Planta Med. 2012, 78, 1242–1243. [Google Scholar] [CrossRef]
- Davis, B.D.; Brodbelt, J.S. Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J. Am. Soc. Mass. Spectr. 2004, 15, 1287–1299. [Google Scholar] [CrossRef] [PubMed]
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC-PDA-ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food. Chem. 2008, 110, 718–728. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentao, P.; Tomas-Barberan, F.A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef]
- Ablajan, K.; Abliz, Z.; Shang, X.Y.; He, J.M.; Zhang, R.P.; Shi, J.G. Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass. Spectrom. 2006, 41, 352–360. [Google Scholar] [CrossRef]
- Otify, A.M.; El-Sayed, A.M.; Michel, C.G.; Farag, M.A. Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: A multiplex approach of MS and NMR metabolomics. Metabolomics 2019, 15, 119. [Google Scholar] [CrossRef]
- Ferreres, F.; Llorach, R.; Gil-Izquierdo, A. Characterization of the interglycosidic linkage in di-, tri-, tetra-and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass. Spectrom. 2004, 39, 312–321. [Google Scholar] [CrossRef]
- Abid, R.; Qaiser, M. Chemotaxonomic study of Inula L.(s. str.) and its allied genera (Inuleae-Compositae) from Pakistan and Kashmir. Pak. J. Bot. 2003, 35, 127–140. [Google Scholar]
- Cuyckens, F.; Rozenberg, R.; de Hoffmann, E.; Claeys, M. Structure characterization of flavonoid O-diglycosides by positive and negative nano-electrospray ionization ion trap mass spectrometry. J. Mass. Spectrom. 2001, 36, 1203–1210. [Google Scholar] [CrossRef]
- Justesen, U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass. Spectrom. 2001, 36, 169–178. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Mabry, T.J. Flavonoids of Iphiona scabra. Phytochemistry 1987, 26, 1517–1518. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Kirkpatrick, J.; Kuhnert, N.; Roozendaal, H.; Salgado, P.R. LC–MSn analysis of the cis isomers of chlorogenic acids. Food. Chem. 2008, 106, 379–385. [Google Scholar] [CrossRef]
- Abdullaev, U.A.; Rashkes, Y.V.; Sham’yanov, I.D.; Sidyakin, G.P. Mass spectra of guaianolides related to chlorohyssopifolin B. Chem. Nat. Compd. 1982, 18, 53–59. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herbal. Med. 2021, 25, 100405. [Google Scholar] [CrossRef]
- Zhao, T.; Li, S.-J.; Zhang, Z.-X.; Zhang, M.-L.; Shi, Q.-W.; Gu, Y.-C.; Dong, M.; Kiyota, H. Chemical constituents from the genus Saussurea and their biological activities. Heterocycl. Comm. 2017, 23, 331–358. [Google Scholar] [CrossRef]
- Frederick, C.S. Sesquiterpene Lactones as Taxonomic Characters in the Asteraceae. Bot. Rev. 1982, 48, 121–595. [Google Scholar]
- Tastan, P.; Hajdú, Z.; Kúsz, N.; Zupkó, I.; Sinka, I.; Kivcak, B.; Hohmann, J. Sesquiterpene Lactones and Flavonoids from Psephellus pyrrhoblepharus with Antiproliferative Activity on Human Gynecological Cancer Cell Lines. Molecules 2019, 24, 3165. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Baruah, R.N.; Sharma, R.P.; Baruah, J.N.; Kulanthaivel, P.; Herz, W. Guaianolides from Saussurea affinis. Phytochemistry 1983, 22, 1989–1991. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Seif El-Din, A.A. Sesquiterpene xylosides from Iphiona mucronata. J. Nat. Prod. 1990, 53, 1031–1033. [Google Scholar] [CrossRef]
- Rosselli, S.; Maggio, A.; Bellone, G.; Bruno, M. The first example of natural cyclic carbonate in terpenoids. Tetrahedron Lett. 2006, 47, 7047–7050. [Google Scholar] [CrossRef]
- Yumnamcha, T.; Roy, D.; Devi, M.D.; Nongthomba, U. Evaluation of developmental toxicity and apoptotic induction of the aqueous extract of Millettia pachycarpa using zebrafish as model organism. Toxicol. Environ. Chem. 2015, 97, 1363–1381. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Wang, X.; He, Q.; Chen, X. Toxic effects of celastrol on embryonic development of zebrafish (Danio rerio). Drug Chem. Toxicol. 2011, 34, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ba, Q.; Duan, J.; Tian, J.-Q.; Wang, Z.-L.; Chen, T.; Li, X.-G.; Chen, P.-Z.; Wu, S.-J.; Xiang, L.; Li, J.-Q.; et al. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish. Acta Pharmacol. Sinica. 2013, 34, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Bugel, S.M.; Bonventre, J.A.; Tanguay, R.L. Comparative developmental toxicity of flavonoids using an integrative zebrafish system. Toxicol. Sci. 2016, 154, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Ma, J.-P.; Guo, T.; Zhang, J.-B.; Chang, J. Phenol Glycosides from Root Bark of Phellodendron chinense. Chem. Nat. Compd. 2019, 55, 743–744. [Google Scholar] [CrossRef]
- Echeverri, F.; Torres, F.; Quiñones, W.; Cardona, G.; Archbold, R.; Roldan, J.; Brito, I.; Luis, J.G.; Lahlou, E.-H. Danielone, a phytoalexin from Papaya fruit. Phytochemistry 1997, 44, 255–256. [Google Scholar] [CrossRef]
- Noleto-Dias, C.; Wu, Y.; Bellisai, A.; Macalpine, W.; Beale, M.H.; Ward, J.L. Phenylalkanoid Glycosides (Non-Salicinoids) from Wood Chips of Salix triandra × dasyclados Hybrid Willow. Molecules 2019, 24, 1152. [Google Scholar] [CrossRef] [Green Version]
- Eklund, P.C.; Backman, M.J.; Kronberg, L.Å.; Smeds, A.I.; Sjöholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass. Spectrom. 2008, 43, 97–107. [Google Scholar] [CrossRef]
- Ohta, S.; Fujimaki, T.; Uy, M.M.; Yanai, M.; Yukiyoshi, A.; Hirata, T. Antioxidant hydroxycinnamic acid derivatives isolated from Brazilian bee pollen. Nat. Prod. Res. 2007, 21, 726–732. [Google Scholar] [CrossRef]
- Sary, H.G.; Singab, A.N.B.; Orabi, K.Y. New cytotoxic guaianolides from Centaurea aegyptiaca. Nat. Prod. Commun. 2016, 11, 1934578X1601100603. [Google Scholar] [CrossRef] [Green Version]
- Tackholm, V. Students’ Flora of Egypt, 2nd ed.; Cairo University Press: Cairo, Egypt, 1974. [Google Scholar]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.A.; Nothias, L.-F.; Ludwig, M.; Fleischauer, M.; Gentry, E.C.; Witting, M.; Dorrestein, P.C.; Dührkop, K.; Böcker, S. Assigning confidence to structural annotations from mass spectra with COSMIC. BioRxiv 2021. [Google Scholar] [CrossRef]
- Świątek, Ł.; Sieniawska, E.; Mahomoodally, M.F.; Sadeer, N.B.; Wojtanowski, K.K.; Rajtar, B.; Polz-Dacewicz, M.; Paksoy, M.Y.; Zengin, G. Phytochemical Profile and Biological Activities of the Extracts from Two Oenanthe Species (O. aquatica and O. silaifolia). Pharmaceuticals 2021, 15, 50. [Google Scholar] [CrossRef] [PubMed]
No. | Compound Name | RT (min) | Neutral Formula | Error (ppm) | mσ | Measured m/z (Formula) | Major Fragments m/z (Formula) | Reference |
---|---|---|---|---|---|---|---|---|
1. | Mixture of polar constituents | 0.8–1.4 | - | - | - | - | - | - |
2. | N-Fructosyl pyroglutamate | 1.52 | C11H17NO8 | 0.0 | 15.3 | 290.0881 (C11H16NO8−) | 200.0564 (C8H10NO5−), 128.0353 (C5H6NO3−) | - |
3. | Adenosine | 1.62 | C10H13N5O4 | −0.4 | 23.1 | 268.1045 (C10H14N5O4+) | 268.1041 (C10H14N5O4+), 136.0617 (C4H10NO4+) | - |
4. | N-Fructosyl (iso)leucine | 1.78 | C12H23NO7 | −1.6 | 14.0 | 294.1552 (C12H24NO7+) | 276.1442 (C12H22NO6+), 258.1336 (C12H20NO5+), 248.1492 (C11H22NO5+), 230.1387 (C11H20NO4+) | - |
5. | Erigeside C [1-O-(4-hydroxy-3,5-dimethoxybenzoyl-hexose] | 4.51 | C15H20O10 | −1.9 | 3.7 | 359.0984 (C15H19O10−) | 197.0455 (C9H9O5−), 182.0221 (C8H6O5−), 153.0557 (C8H9O3−), 138.0322 (C7H6O3−) | [34] |
6. | 3-CQA | 4.63 | C16H18O9 | −2.1 | 2.3 | 353.0878 (C16H17O9−) | 191.0561 (C7H11O6−), 179.0350 (C9H7O4−), 173.0455 (C7H9O5−), 135.0452 (C8H7O2−) | [24] |
7. | Danielone [3′,5′-Dimethoxy-4′-hydroxy-(2-hydroxy)acetophenone] | 4.68 | C10H12O5 | −2.4 | 11.3 | 211.0612 (C10H11O5−) | 196.0377 (C9H8O5−), 181.0506 (C9H9O4−), 166.0272 (C8H6O4−), 163.0401 (C9H7O3−) | [35] |
8. | Picein (4-acetylphenyl hexoside) | 5.10 | C14H18O7 | −2.3 | 65.8 | 343.1035 * (C15H19O9−) | 135.0452 (C8H7O2−) | [36] |
9. | 5-CQA | 6.03 | C16H18O9 | −2.7 | 3.8 | 353.0878 (C16H17O9−) | 191.0561 (C7H11O6−), 179.0350 (C9H7O4−), 161.0244 (C9H5O3−) | [24] |
10. | 3-FQA | 6.47 | C17H20O9 | −2.3 | 3.5 | 367.1035 (C17H19O9−) | 193.0506 (C10H9O4−), 191.0561 (C7H11O6−), 134.0373 (C8H6O2−) | [24] |
11. | Unidentified | 6.71 | C14H20O8 | −2.3 | 14.4 | 315.1093 (C14H19O8−) | - | - |
12. | Unidentified | 6.90 | C24H33NO10 | −2.3 | 5.6 | 494.2032 (C24H32NO10−) | 114.0565 (C5H8NO2−) | - |
13. | Apigenin 6,8-di-C-hexoside | 7.48 | C27H30O15 | −3.0 | 9.2 | 593.1512 (C27H29O15−) | 503.1195 (C24H23O12−), 473.1089 (C23H21O11−), 383.0772 (C20H15O8−), 353.0667 (C19H13O7−) | [16] |
14. | trans-5-FQA | 8.16 | C17H20O9 | −1.9 | 2.9 | 367.1035 (C17H19O9−) | 193.0506 (C10H9O4−), 191.0561 (C7H11O6−), 173.0455 (C7H9O5−), 134.0373 (C8H6O2−) | [24,25] |
15. | Apigenin 6-C-pentoside-8-C-hexoside | 8.42 | C26H28O14 | −3.3 | 5.3 | 563.1406 (C26H27O14−) | 545.1301 (C26H25O13−), 503.1195 (C24H23O12−), 473.1089 (C23H21O11−), 443.0984 (C22H19O10−), 383.0772 (C20H15O8−), 353.0667 (C19H13O7−) | [16] |
16. | cis-5-FQA | 9.00 | C17H20O9 | −2.3 | 4.4 | 367.1035 (C17H19O9−) | 191.0561 (C7H11O6−), 173.0455 (C7H9O5−) | [24,25] |
17. | 15-Hydroxy-janerin | 9.23 | C19H24O8 | −2.4 | 2.9 | 381.1544 (C19H25O8+) | 363.1438 (C19H23O7+), 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+) | [30] |
18. | Unidentified | 9.49 | C11H16O3 | −1.4 | 14.1 | 197.1172 (C11H17O3+) | 179.1067 (C11H15O2+), 161.0961 (C11H13O+), 135.1168 (C10H15+) | - |
19. | Kaempferol 3-O-hexoside | 9.64 | C21H20O11 | −2.5 | 24.9 | 447.0933 (C21H19O11−) | 284.0326 (C15H8O6−) | [18] |
20. | Tetrahydroxyflavone-O-hexosyl-deoxyhexoside | 9.64 | C27H30O15 | −2.1 −2.1 | 11.46.8 | 593.1524 (C27H29O15−) 595.1657 (C27H31O15+) | 285.0411 (C15H9O6−) 449.1078 (C21H21O11+), 287.0550 (C15H11O6+) | [19] |
21. | 8-Angeloyloxy-4-hydroxy-4-hydroxymethyl-GUAI | 10.61 | C20H26O8 | −1.0 | 5.2 | 395.1700 (C20H27O8+) | 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+), 215.1067 (C14H15O2+), 197.0961 (C14H13O+) | - |
22. | Methoxy-tetrahydroxyflavone-O-hexoside | 10.71 | C22H22O12 | −1.7 | 8.5 | 477.1038 (C22H21O12−) | 462.0804 (C21H18O12−), 357.0616 (C18H13O8−), 315.0510 (C16H11O7−), 299.0197 (C15H7O7−), 272.0326 (C14H8O6−) | - |
23. | 15-Hydroxy-janerin diacetate | 11.27 | C23H28O10 | −0.9 | 4.8 | 465.1755 (C23H29O10+) | 447.1650 (C23H27O9+), 345.1333 (C19H21O6+), 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+) | - |
24. | Trihydroxy-methoxy-flavone O-deoxyhexosyl-hexoside | 11.34 | C28H32O15 | −0.9 −2.6 | 38.129.1 | 607.1674 (C28H31O15−) 609.1814 (C28H33O15+) | 299.0562 (C16H11O6−), 284.0323 (C15H8O6−) 463.1235 (C22H23O11+), 301.0708 (C16H13O6+) | [21] |
25. | 15-Hydroxy-janerin acetate | 11.54 | C21H26O9 | −0.7 | 6.2 | 423.1650 (C21H27O9+) | 405.1544 (C21H25O8+), 303.1227 (C17H19O5+), 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+) | - |
26. | Hololeucin | 11.86 | C20H22O9 | −0.8 | 10.7 | 407.1337 (C20H23O9+) | 305.1020 (C16H17O6+), 287.0914 (C16H15O5+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+), 215.1067 (C14H15O2+), 197.0961 (C14H13O+) | [33] |
27. | 15-Hydroxy-janerin acetate | 11.93 | C21H26O9 | −0.9 | 8.4 | 423.1650 (C21H27O9+) | 405.1544 (C21H25O8+), 345.1333 (C19H21O6+), 305.1020 (C16H17O6+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+) | - |
28. | Secoisolariciresinol | 12.27 | C20H26O6 | −0.4 | 61.5 | 361.1509 (C20H25O6−) | 346.1274 (C19H22O6−), 165.0477 (C9H9O3−) | [37] |
29. | Chlorojanerin | 12.35 | C19H23ClO7 | 0.3 | 5.3 | 399.1205 (C19H24ClO7+) | 279.0782 (C15H16ClO3+), 261.0677 (C15H14ClO2+), 233.0728 (C14H14ClO+), 201.0677 (C10H14ClO2+) | [30] |
30. | Dimethoxy-trihydroxyflavone-O-hexoside (tricin-O-hexoside) | 12.60 | C23H24O12 | −0.9 | 9.7 | 491.1195 (C23H23O12−) | 476.0960 (C22H20O12−), 461.0725 (C21H17O12−), 329.0667 (C17H13O7−), 313.0354 (C16H9O7−), 299.0197 (C15H7O7−), 285.0405 (C15H9O6−), | [20] |
31. | 8-Angeloyloxy-4-hydroxy-4-hydroxymethyl-GUAI acetate | 12.83 | C22H28O9 | −0.9 | 23.4 | 437.1806 (C22H29O9+) | 419.1700 (C22H27O8+), 303.1227 (C17H19O5+), 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+) | - |
32. | Unidentified sesquiterpenoid lactone | 13.10 | C38H48O16 | −0.8 | 8.7 | 761.3015 (C38H49O16+) | 707.2698 (C38H43O13+), 429.1544 (C23H25O8+), 363.1438 (C19H23O7+), 345.1333 (C19H21O6+), 279.1227 (C15H19O5+), 243.1016 (C15H15O3+), | - |
33. | Cebellin D | 13.61 | C20H25ClO7 | −1.4 | 11.6 | 413.1362 (C20H26ClO7+) | 297.0888 (C15H18ClO4+), 279.0782 (C15H16ClO3+), 261.0677 (C15H14ClO2+), 233.0728 (C14H14ClO+), 183.0571 (C10H12ClO+) | - |
34. | Cynaropicrin | 13.98 | C19H22O6 | −1.0 | 1.4 | 347.1489 (C19H23O6+) | 245.1172 (C15H17O3+), 227.1067 (C15H15O2+), 217.1223 (C14H17O2+), 199.1117 (C14H15O+), 181.1012 (C14H13+) | [30] |
35. | 8-(2-hydroxymethyl)acryloyloxy-4-methyl-GUAI | 14.97 | C19H24O6 | −1.8 | 21.1 | 366.1911 ** (C19H28NO6+) | 247.1329 (C15H19O3+), 229.1223 (C15H17O2+), 211.1117 (C15H15O+), 201.1274 (C14H17O+), 183.1168 (C14H15+) | [31] |
36. | Unidentified sesquiterpenoid lactone | 15.14 | C38H47ClO15 | −1.3 | 40.3 | 779.2676 (C38H48ClO15+) | 587.2276 (C34H3O9+), 429.1544 (C23H25O8+), 399.1205 (C19H24ClO7+), 381.1121 (C25H17O4+), 363.1016 (C25H15O3+), 345.1333 (C19H21O6+), 279.0782 (C15H16ClO3+), 261.1121 (C15H17O4+), 233.0728 (C14H14ClO+), 225.0910 (C15H13O2+) | - |
37. | Unidentified sesquiterpenoid lactone | 15.26 | C38H46O15 | −1.3 | 12.2 | 743.2909 (C38H47O15+) | 345.1333 (C19H21O6+), 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+), 197.0961 (C14H13O+) | - |
38. | 8-Methacryoyloxy-4-hydroxy-4-hydroxymethyl-GUAI | 15.52 | C19H24O7 | −2.1 | 3.2 | 365.1595 (C19H25O7+) | 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+), 215.1067 (C14H15O2+), 197.0961 (C14H13O+) | - |
39. | 8-Isobutyroyloxy-4-hydroxy-4-hydroxymethyl-GUAI | 15.89 | C19H26O7 | −2.7 | 20.6 | 367.1751 (C19H27O7+) | 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 231.1016 (C14H15O3+), 215.1067 (C14H15O2+) | - |
40. | N,N,N,N-Tetra-p-coumaroyl-spermine | 16.87 | C46H50N4O8 | 2.0 | 5.4 | 787.3524 (C46H51N4O8+) | 641.3199 (C37H45N4O6+), 623.3098 (C37H43N4O5+), 478.2612 (C28H38N4O3+) | [38] |
41. | Methoxy-trihydroxyflavone (hispidulin) | 16.99 | C16H12O62 | 3.1 | 12.9 | 299.0561 (C16H11O6−) | 284.0326 (C15H8O6−), 227.0350 (C13H17O4−) | - |
42. | Unidentified sesquiterpenoid lactone | 17.04 | C38H46O15 | −1.3 | 8.2 | 743.2909 (C38H47O15+) | 689.2593 (C38H41O12+), 447.1650 (C23H27O9+), 429.1544 (C23H25O8+), 411.1438 (C23H23O7+), 279.1227 (C15H19O5+), 261.1121 (C15H17O4+), 243.1016 (C15H15O3+), 225.0910 (C15H13O2+), 197.0961 (C14H13O+), 187.0601 (C8H11O5+), 169.0495 (C8H9O4+) | - |
43. | Linichlorin A | 19.33 | C19H23ClO6 | −2.6 | 27.5 | 383.1256 (C19H24ClO6+) | 297.0888 (C15H18ClO4+), 279.0782 (C15H16ClO3+), 261.0677 (C15H14ClO2+), 233.0728 (C14H14ClO+), 183.0571 (C10H12ClO+) | [30] |
44. | Unidentified | 21.54 | C37H38O15 | 2.8 | 16.2 | 721.2138 (C37H37O15−) | 660.1848 (C35H32O13−), 645.1614 (C34H29O13−), 573.1766 (C32H29O10−), 313.0718 (C17H13O6−), 298.0483 (C16H10O6−), 283.0248 (C22H30O9−) | - |
45. | Unidentified | 22.33 | C29H40O18 | 5.4 | 30.0 | 677.2287 (C29H41O18+) | 659.2182 (C29H39O17+), 575.1970 (C25H35O15+), 557.1865 (C25H33O14+), 315.0922 (C10H19O11+), 243.1074 (C8H19O8+) | - |
46. | Trimethoxy-hydroxyflavone (salvigenin) | 24.12 | C18H16O6 | −2.4 | 5.7 | 329.1028 (C18H17O6+) | 329.1027 (C18H17O6+), 314.0794 (C17H14O6+), 296.0688 (C17H13O5+) | - |
47. | Pentacyclic terpenoid derivative (pentahydroxy-oleanen) | 27.86 | C29H48O5 | 0.3 | 7.3 | 477.3575 (C29H48O5+) | 459.3469 (C29H47O4+), 441.3363 (C29H45O3+), 431.3520 (C28H47O3+), 413.3414 (C28H45O2+), 395.3308 (C28H43O+) | - |
48. | Unidentified | 28.77 | C28H44O11 | −5.9 | 38.6 | 557.2956 (C28H45O11+) | 465.2483 (C25H37O8+) | - |
VERO | FaDu | HeLa | RKO | ||||
---|---|---|---|---|---|---|---|
CC50 | CC50 | SI | CC50 | SI | CC50 | SI | |
Iphiona mucronata extract | 100.5 ± 18.2 | 101.7 ± 17.5 | 0.99 | 91.6 ± 18.5 | 1.1 | 54.5 ± 6.8 | 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecio, Ł.; Otify, A.M.; Saber, F.R.; El-Amier, Y.A.; Shalaby, M.E.; Kozachok, S.; Elmotayam, A.K.; Świątek, Ł.; Skiba, A.; Skalicka-Woźniak, K. Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles. Molecules 2022, 27, 7529. https://doi.org/10.3390/molecules27217529
Pecio Ł, Otify AM, Saber FR, El-Amier YA, Shalaby ME, Kozachok S, Elmotayam AK, Świątek Ł, Skiba A, Skalicka-Woźniak K. Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles. Molecules. 2022; 27(21):7529. https://doi.org/10.3390/molecules27217529
Chicago/Turabian StylePecio, Łukasz, Asmaa M. Otify, Fatema R. Saber, Yasser A. El-Amier, Moataz Essam Shalaby, Solomiia Kozachok, Amira K. Elmotayam, Łukasz Świątek, Adrianna Skiba, and Krystyna Skalicka-Woźniak. 2022. "Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles" Molecules 27, no. 21: 7529. https://doi.org/10.3390/molecules27217529
APA StylePecio, Ł., Otify, A. M., Saber, F. R., El-Amier, Y. A., Shalaby, M. E., Kozachok, S., Elmotayam, A. K., Świątek, Ł., Skiba, A., & Skalicka-Woźniak, K. (2022). Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles. Molecules, 27(21), 7529. https://doi.org/10.3390/molecules27217529