Next Article in Journal
Toward Depth-Resolved Analysis of Plant Metabolites by Nanospray Desorption Electrospray Ionization Mass Spectrometry
Next Article in Special Issue
The Ultratrace Determination of Fluoroquinolones in River Water Samples by an Online Solid-Phase Extraction Method Using a Molecularly Imprinted Polymer as a Selective Sorbent
Previous Article in Journal
Preparation and Characterization of Water-borne Polyurethane Based on Benzotriazole as Pendant Group with Different N-Alkylated Chain Extenders and Its Application in Anticorrosion
Previous Article in Special Issue
Lab-in-Syringe, a Useful Technique for the Analysis and Detection of Pollutants of Emerging Concern in Environmental and Food Samples
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms

by
María del Carmen Gómez-Regalado
1,
Laura Martín-Pozo
1,
Julia Martín
2,*,
Juan Luis Santos
2,
Irene Aparicio
2,
Esteban Alonso
2 and
Alberto Zafra-Gómez
1,3,*
1
Department of Analytical Chemistry, Sciences Faculty, University of Granada, E-18071 Granada, Spain
2
Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África 7, E-41011 Seville, Spain
3
Instituto de Investigación Biosanitaria ibs, E-18016 Granada, Spain
*
Authors to whom correspondence should be addressed.
Molecules 2022, 27(21), 7569; https://doi.org/10.3390/molecules27217569
Submission received: 14 October 2022 / Revised: 31 October 2022 / Accepted: 2 November 2022 / Published: 4 November 2022

Abstract

:
There is increasing scientific evidence that some pharmaceuticals are present in the marine ecosystems at concentrations that may cause adverse effects on the organisms that inhabit them. At present, there is still very little scientific literature on the (bio)accumulation of these compounds in different species, let alone on the relationship between the presence of these compounds and the adverse effects they produce. However, attempts have been made to optimize and validate analytical methods for the determination of residues of pharmaceuticals in marine biota by studying the stages of sample treatment, sample clean-up and subsequent analysis. The proposed bibliographic review includes a summary of the most commonly techniques, and its analytical features, proposed to determine pharmaceutical compounds in aquatic organisms at different levels of the trophic chain in the last 10 years.

Graphical Abstract

1. Introduction

Pollution is one of the biggest environmental challenges worldwide. Like climate change or the depletion of water supplies, pollution threatens the stability of the earth’s support systems and is a growing concern for human health [1]. Ocean pollution is a very important, but under-recognised, component of global pollution [2]. Seawater covers 97% of surface waters and is considered one of the most abundant resources on our planet [1]. The unsustainable use of marine waters and resources by humans has altered the structure of marine ecosystems, relating to the phenomenon of eutrophication, loss of diversity or the presence of polluting chemicals [3].
Human activities have introduced a large number of contaminants of emerging concern (CECs) into the environment [4]. CECs include a wide variety of compounds such as disinfection by-products, natural toxins, flame retardants, personal care products or pharmaceutical active compounds (PhACs) [5]. Nowadays, an increasing number of people and animals are in need of health care, which means that the number and amount of PhACs consumed, and consequently excreted, is very high [6,7,8]. Approximately 3000 compounds are used as pharmaceuticals, with an annual production exceeding hundreds of tonnes [7]. It is well known that the wastewater treatment plants (WWTPs) are often unable to remove them completely, allowing their release into the environment [9,10]. In the case of PhACs, due to their constant release into the seas, even those that can undergo degradation may behave as pseudopersistent contaminants [11]. This continued exposure may present unexpected risks in the organisms that inhabit them such as reproductive disorders, survival of susceptible species, growth rate or development of bacterial resistance and endocrine disruption, among others [8,12,13].
The European Union has developed several laws for the monitoring and protection of the seas and their ecosystem. The Water Framework [14] and the Marine Strategy Framework Directive [15] are based on the maintenance as well as the protection and restoration of the marine environment. In addition, the European Commission has drawn up a first list for the monitoring of CECs in 2015, and then it was updated in 2018, 2020 and 2022. The decision 2022/1307/EC [16], includes some PhACs such as the antibiotics sulfamethoxazole and trimethoprim, or the antidepressant venlafaxine and its main metabolite, O-desmethylvenlafaxine, with a maximum permitted detection limit of 100 ng g−1 for the antibiotics and 6 ng g−1 for the others. Although quantitative analysis of PhACs in aquatic ecosystems is limited, as dilution makes detection difficult, the use of bioindicator species is valuable in assessing system contamination, since they are able to reflect bioavailability in a variability of concentrations in both water and sediment [11].
Due to the evidence of the presence of these active compounds in the environment and the concern that it raises, as well as the published EU directives, there is a need for the development of analytical methods with the appropriate characteristics to determine these PhACs in biomarkers. Furthermore, taking into account that the PhAC’s consumption depends on factors such as seasonal diseases, the health system and prescribing practices or the economic level of the population, the methodology developed must take into account local needs [10]. The present work deals with a comprehensive overview of the recent methods proposed for the determination of several groups of PhACs in aquatic organisms belonging to different levels of the trophic chain, emphasizing the sample treatment and contrasting the analytical results obtained. For that, we have focused mainly on methodological studies that include analytical quality parameters and relay on liquid chromatography (LC), the most useful separation technique for the multiresidue determination of PhACs [17]. Huerta et al. [18] already reviewed the state of the art of the analysis of PhACs in aquatic biota up to 2012. Thus, the present review provides an update on the current analytical methods since 2012 onwards.

2. Multi-Level Biological Groups as Biomarkers of Exposure

Biomarkers are defined as suborganic changes that occur at the cellular, physiological or molecular level, measurable in cells or tissues of an organism, which may be indicative of exposure [19]. To be a useful bioindicator, an organism must have certain characteristics such as a wide geographical distribution, long life duration, being easy to capture, a feeding mode that allows the accumulation of contaminants present in the environment (e.g., filtration) or the ability to accumulate and tolerate high concentrations of organic and inorganic contaminants in their tissues [20,21]. The use of sentinel species to monitor environmental pollution allows knowledge of the bioavailability of pollutants in the environment over prolonged periods of time [22]. In addition, information on the concentration of pollutants in different organisms is quite useful for considering toxicological and public health aspects of pollution in natural systems [23]. Among the distinct species used as bioindicators, fish and bivalves, particularly mussels, stand out, as the latter are present on coasts all over the world, are easy to capture and are filter-feeders [24,25]. However, it is necessary to study pollution in species other than mussels to assess trophic transfer in aquatic ecosystems. Figure 1 displays the number of studies devoted to the analysis of PhACs for each group of marine organisms according to the literature consulted in scientific databases. It shows that fish have been by far the most investigated in this field. This section summarises the use of some species belonging to the diverse levels of the trophic chain as bioindicators of pollution.

2.1. Phytoplankton

Phytoplankton is the group of organisms that form part of the exclusively plant-based plankton. They underlie productivity in aquatic environments and are widely used as biomarkers. Among the different species, pigments and fatty acids are mainly used in the study of pollution [3]. Primary aquatic production is carried out by phytoplanktons, which absorb pollutants from the surrounding water and incorporate large quantities into their cellular compartments. In the case, for example, of arsenic, it has been shown that phytoplankton can excrete it after metabolization into the environment, transferring it to higher trophic levels [26,27,28]. Yan et al. [29] studied the bioaccumulation of antibiotics and analgesics in cyanobacteria as target organisms.

2.2. Zooplankton

Zooplankton is the fraction of exclusively animal organisms that are part of the plankton. They are very sensitive indicators of the ecological state of an aquatic system since they are able to respond rapidly to environmental changes with modifications in their composition and structure [30]. Zooplankton has an ecologically important role in marine ecosystems being the primary consumer of the food chain. Furthermore, depending on their life stage and the availability of prey, their feeding behaviour varies, being able to combine the selection with chemoreceptors and mechanoreceptors [31]. The same authors mentioned in the previous section also investigated the bioaccumulation of PhACs in several zooplankton species including Daphnia magna, Cepopeda, Caldocera and Rotifers [27,28,29].

2.3. Benthos

Benthic macro-invertebrate organisms are those that are found interred in the sand, attached to rocks or those that walk on the bottom, such as clams and cockles, mussels or crabs. Mussels have been recognised as ideal sentinels for the assessment of aquatic pollution because they have a wide geographical distribution, are easy to collect and are filter-feeders that accumulate pollutants in their bodies [32]. In addition, they have a long life-cycle, which allows the study of the effects of pollution over a long period of time [33]. However, although these organisms have often been used as bioindicators of marine pollution, pharmaceutical bioaccumulation is poorly developed, and the presence of these compounds in benthic species differs between sampling sites. Some authors have proposed the used of caged organisms rather than in wild ones, as it varies between species and the distribution and abundance of these specimens’ changes spatially and temporally [34]. In the literature, the most studied molluscs were bivalves, specifically mussels, but also oysters, clams, limpets and sea snails [35,36,37]. Other molluscs also studied have been gastropods (conch, snail) and cephalopods, such as octopus [38,39,40]. Oher benthos organisms such as crustaceans and echinoderms were studied for the determination on pharmaceuticals in aquatic environments, such as starfish as echinoderm [37] and barnacles, shrimp and crabs as crustaceans [27,38,41]. The most studied drugs include the antibiotic sulfamethoxazole, the analgesic naproxen, the antiepileptic carbamazepine and the antidepressant venlafaxine [37,42,43,44].

2.4. Fish

Fish are considered one of the most important bioindicators in both fresh and salt waters to estimate the level of pollution in the environment [3]. They have the ability to accumulate pollutants present in the surrounding environment in their fatty tissues [45]. Biomonitoring of these species is important due to human consumption, as they are a higher link in the food chain and, besides the inhalation exposure, the presence of contaminants in their bodies may be due to biomagnification (dietary exposure). Human exposure is the main reason to study the bioaccumulation of PhACs in different fish species as well as other biota across trophic levels [34]. Among the different fish species ussually used in bioaccumulation studies are carp [38], flatfish [43], salmon and rainbow trout [46] or mullet [47,48]. Regarding the PhACs studied, they belong to many families of drugs, including antibiotics such as quinolones, sulphonamides, and tetracyclines [39,40], analgesics such as naproxen, diclofenac, and acetaminophen [49,50,51] and other families such as antidepressants, β-blockers or antiepileptics [52,53].

3. Analytical Methodologies for the Determination of Pharmaceuticals in Biota Samples

The growing concern about the contamination of the environment has led to an increase in the number of publications focused on the detemination of PhACs in aquatic organisms in recent years. Table 1a–i summarizes the most relevant methods from the analytical point of view classified by taxonomic groups. Additionally, the graphs shown in Figure 2 represent the extraction techniques (a) and clean-up procedures (b) most commonly used for the sample treatment in the reviewed articles.

3.1. Sample Collection

In most of the literature consulted, specimens were captured by professional divers in different sampling areas, although in some cases, they were purchased in local supermarkets, either to be used as an analyte-free matrix [53], or as study sample [64,74,75]. Once captured, they were transported on ice, in order to avoid decomposition, at −10 °C and stored frozen at −20 °C [53,72,77], or deep-frozen (around −80 °C) until analysis [64,73,78].

3.2. Sample Pretreatment

Prior to storage, in order to guarantee the homogeneity of the sample as well as to reduce the particle size, and therefore, to achieve better extraction efficiency, most of the articles consulted pulverized the sample. The fish were cleaned before spraying the specimens and then, according to the literature, the vast majority of studies homogenised the sample by analysing a pool of all the body cavities of the different fish. However, in some cases, fish were deboned [80], only the muscle was analysed [39,42,46,69,78] or the different body cavities were analysed separately (fillet, gills, liver, intestine or brain) [49,53,56,82]. In addition, usually the samples were freeze-dried, so that spraying in the absence of humidity would be easier, although several studies worked with wet weight [50,79]. In case of molluscs, cephalopods or crustaceans were generally pooled without differentiating body cavities, removed from the shell if present, freeze-dried and ground into powder [34,60,68]. Ojemaye and Petrick [36], for the study of algae and echinoderms, rinsed, shelled and dissected by freeze-drying, and in the case of plankton, they were washed, homogenized and stored at −20 °C [37,62]. Storage consisted of frozen maintenance until analysis at −20 °C.

3.3. Sample Treatment (Extraction and/or Clean-Up)

3.3.1. Ultrasound USE and FUSLE

An ultrasound consists of a mechanical wave propagation that is formed by cycles of compression and refraction, that is, waves of high and low pressures combined. The wave frequencies are above 20 kHz. Ultrasonic solvent extraction (USE) is able to induce these compressions and refractions of solvent molecules resulting in the formation of bubbles due to temperature and pressure variations. Collisions between particles as well as ultrasonic waves are able to induce fragmentation, which reduces the particle size, helping the mass transfer. The implosion of bubbles on the matrix surface results in erosion, which improves solvent accessibility [56]. Ultrasonic irradiation can be indirect or direct, both of which will be explained below. Argüello-Pérez et al. [77] determine four analgesics in fourteen different fish species using USE at 20 °C at 400 W power with a surface area of 3.8 cm2, achieving recoveries close to 100% in all cases. Focused ultrasound solid-liquid extraction (FUSLE) is a relatively new extraction technique, which started gaining popularity because the ultrasonic bath often provides low power. By introducing a probe directly into the extraction mixture, a sonication power up 100 times higher is achieved, as well as greater reproducibility and efficiency. The ultrasound energy is concentrated at the tip of the probe and is hence focused [83], and when ultrasound waves cross the liquid, many gaseous bubbles are formed which, when they implode, produce locally very high temperatures as well as high pressures and velocities of solvent micro-jets [84]. Mijangos et al. used FUSLE to extract antibiotics, analgesics and antiepileptics, among others from mussels and sea bream. For the extraction, authors used 30 s and 10% amplitude with 7 µL of MeOH/H2O (95:5, v/v) as solvent at 0 °C (extraction efficiencies from 71 to 126%) [85]. Some works apply ultrasound in a simpler way, by sonication in a common laboratory ultrasound machine. In this case, ultrasonic irradiation takes place indirectly, i.e., through the sample container. This equipment works at a single frequency, therefore the wave amplitude cannot be controlled. Danesaki et al. [74] used an ultrasonic bath at 60 °C (20 min) followed by a precipitation of lipids and proteins to recover 143 veterinary drugs from fish, while Ali et al. [51], analyzed different PhACs at room temperature (15 min) obtaining recoveries between 30% and 103% and limits of detection (LODs) from 0.1 to 13 ng mL−1.

3.3.2. Pressurized Liquid Extraction

Pressurized liquid extraction (PLE), also called accelerated solvent extraction (ASE), is used for the extraction of analytes from solid or semi-solid matrices, by combining the use of different solvents with high temperatures and pressures. This allows higher recoveries and good extraction efficiencies while decreasing extraction time [65]. MeOH, acetonitrile (ACN) and water, or a mixture of them, have frequently used as extractant solvents. In addition, working temperatures are around 50 °C. Rojo et al. [52] studied different families of PhACs in fish muscle tissue, achieving recoveries between 26 and 115%. Other authors have proposed this technique to investigated different drugs in several types of fish as well as biofilm, plankton, bivalves, crustaceans and cephalopods obtaining LODs between 0.0004 and 6 ng g−1 and recoveries ranging from 20 to 151% [26,34,39,47,75,86].

3.3.3. Microwave Assisted Extraction

Microwave-assisted extraction (MAE) was first used to replace Soxhlet extraction with the aim of reducing the amount of extraction solvent, achieving similar or better recoveries than Soxhlet extraction and reducing digestion time. It consists of heating the closed vessel to warm the solvent and decrease its viscosity, while increasing the solubility of the analytes in the extraction solvent and to facilitate the penetration into the matrix [54]. In the literature consulted, only the research by Argüello-Pérez et al. used this assisted extraction technique, for the analysis of several antimicrobials in fish as matrix [72]. ACN was used as solvent and it was carried out for 5 min at 40 °C with a power of 400 W. They obtained recoveries higher than 87% for all analytes and LODs between 4.54 and 101.3 pg kg−1.

3.3.4. Solid-Phase Extraction

Solid phase extraction (SPE) allows the concentration of a target analyte by removing interferents present in the matrix via a solid stationary phase. This is an absorbent, which will be chosen according to the physicochemical properties of target compounds, in order to correctly separate the analytes from the rest of the interferents [76]. There are different types of sorbents; some of them retain the analytes and others the inteferents.
Boulard et al. [61] used silica gel for cleaning fish liver and fillet extracts in bream together with water and ACN to remove non-polar compounds from the extract. They achieved low LODs for the different PhACs, between 0.05 and 5.5 ng mL−1. Another sorbent used in SPE is the alumina column, which is capable of retaining compounds with an acidic character. It is used for the separation of compounds with medium polarity [87]. Huang et al. [72] used an alumina column in the clean-up phase for the determination of 6 antibiotics in fish muscle. This clean-up took place in two steps, after the alumina column in which ACN was used; a DLLME was carried out. They achieved recoveries higher than 87%.
According to the scientific literature consulted, SPE with cartridges is the most commonly cleun-up technique. Among all the sorbents, the most widely used cartridge is the HLB, as it is a universal for acidic, neutral or alkaline compounds. Other sorbents packed in the cartridges are SAX and PSA, which are multilayer cartridges suitable for polar interactions. Chen et al. used this type combined with the HLB cartridge, facilitating the separation of polar and non-polar compounds for sulfonamides and tetracyclines in crabs, shrimps and different types of fish, reaching recoveries between 50 and 150% [41]. McEneff et al. used a cartridge with Strata-X, which is a reversed-phase polymeric cartridge, at SPE for the determination of different analgesics and antiepileptic drugs in mussels, achieving yields between 83 and 94% [60]. Tanoue et al. used a Hybrid SPE-Phospholipid cartridge, which removed exogenous proteins as well as phospholipid interferences for different drugs and some of their metabolites in fish analysis, with recoveries between 70 and 120% [49].
Gao et al. developed a different type of clean-up based on SPE [79]. These authors used a metal organic framework (MOF) as adsorbent. SPE (CF@UiO-66-NH2) is a MOF based on Zr and modified with cotton fiber, resulting in CF@UiO-66-NH2, which has a high adsorption capacity because it has many active sites. After adsorption, desorption of the analytes takes place by using desorption solvents. Gao et al. [79] used this adsorbent for the extraction of some analgesics such as ketoprofen, naproxen, flurbiprofen, diclofenac sodium and ibuprofen in fish and crustaceans’ tissue, achieving recoveries between 95 and 116.99% and LODs between 0.12 and 3.50 ng mL−1.

3.3.5. Dispersive Solid Phase Extraction (dSPE)

This technique consists of the dispersion of a solid sorbent in a liquid or dissolved sample so that impurities or interferents are retained, resulting in a clean extract. After separation, the sorbent is removed, usually by centrifugation [88]. There are different types of sorbents; those used in the consulted literature will be explained below.
C18 sorbent is used for the extraction of non-polar or relatively polar compounds, being able to retain most of the organic compounds present in an aqueous phase.
QuEChERs (quick, easy, cheap, effective, rugged and safe) is one of the most user-friendly techniques. High extraction efficiencies can be achieved and it is also in agreement with green chemistry as it uses a small amount of sample as well as solvent. This makes it one of the most widely used extraction methods nowadays [89]. This technique is applied in two sequential stages. The first one is the extraction phase, which is performed using an organic solvent, normally ACN in the presence of different salts, such as MgSO4 or NaCl, whose function is to regulate pH, control polarity to favor the phase separation and contribute to the recovery of the analyte. Then, a second stage of cleaning is carried out, which consists of purification dSPE. With this step, the residual water and other interfering compounds present in the matrix are removed. For this purpose, some salts are used, such as MgSO4, which removes excess water; PSA (primary/secondary amine), which removes organic acids, fatty acids and sugars from the matrix; C18 (sorbent), which eliminates fats and other non-polar interferences; and graphitized black carbon (GCB), which removes pigments from the sample [89].

3.3.6. Others

Soxhlet. Since it involves much larger quantities of solvent and much longer times than other extraction techniques, and the yields of extraction obtained are not much better, it is a technique rarely used today. It consists of the continuous flow of solvent through the sample, using a distillation flask. When the solvent condenses, it does so with the dissolved analytes. This operation is repeated until extraction process is completed, achieving good extraction efficiencies [90]. Ojemaye and Petrick [36,48] used this technique for the extraction of a group of drugs, such an antiepileptic, antibiotics and an analgesic, in fish, bivalves, algae and echinoderms. They used MeOH and ACN (3:1, v/v) as extractant solvents and they achieved recoveries between 69.2 and 107.5% for fish and 96.1 and 100.5% for the rest of the species as well as LODs of 0.01 and 0.036 ng g−1 for fish and between 0.62 and 1.05 ng L−1 for the other species under study.
TissueLyser II. TissueLyser consists of bead mill equipment which, with adapters, is capable of lysing biological samples by agitation at high speeds. It has many applications, such as the disruption of human, animal, plant and even bacterial tissues. It is a very efficient extraction [91]. Borik et al. [53] used this type of lysis for the extraction of citalopram from rainbow trout fish brain tissue, achieving close to 100% recovery with a LOD of 0.39 ng g−1.
Mechanical shaking. This is one of the simplest extraction techniques as it consists of stirring the sample with the extraction solvent for a certain time to ensure the migration of the analytes from the solid phase to the liquid one. Generally, this agitation is followed by centrifugation so that the decantation can take place and the phases can be separated correctly, leaving the target analytes dissolved in the liquid [92,93]. Not many studies based on the use of this technique have been found, as the time required is usually longer. The most commonly used solvents are can and MeOH, sometimes acidified with formic or acetic acid. López-García et al. [61] used ACN with salts (MgSO4, NaCl, sodium citrate and DCS (sodium citrate sesquihydrate)) for the study of mussel’s tissue, with recoveries between 77% and 118% and and low LODs (<2 ng g−1). Bobrowska-Korczak et al. [64] and Miossec et al. [73], studied the presence of 98 and 41 PhACs, respectively, in fish and shrimps, with LODs between 0.1 and 40.2 ng g−1, reaching recoveries in the range of 28 to 188%.
Cell disruption. This technique is carried out in a high-speed shaking equipment that, in a very short time, is able to extract the maximum amount of DNA, RNA, proteins and other compounds with very good efficiency. This is why after this type of extraction the cleaning and purification protocol plays an essential role in the removal of interferents. Boulard et al. [61] used this extraction technique for the analysis of 26 PhACs in bream and the time required for extraction was 40 s, achieving recoveries from 70% to 130% and LODs from 0.05 to 5.5 ng mL−1.
Pulverised liquid extraction (PuLE). In this extraction technique, the sample is homogenized and the analytes are extracted simoultaneously by shaking. The solid sample is placed in a vessel together with two glass beads and then it is agitated in a homogeniser at a known speed and time. Only one study found in the scientific literature have used this extraction modality. This technique was used to extraxt 29 PhACs in the amphipod Gammarus pulex. The recoveries were between 41 and 89% [70].
Gel permeation Chromatography (GPC) is a technique traditionally used for the clean-up of the extracts because it removes biological macromolecules such as fats or proteins, separating them according to size. The column packing is a porous gel, and the beads packaged in it interact with the compounds, so it differs from other separation techniques in that it does not rely on physical or chemical interactions [94]. Rojo et al. used GPC for clean-up of the extracts of fish species when they had determined 15 PhACs and two of their metabolites, achieving recoveries between 26 and 115% [52]. Álvarez-Muñoz et al. studied 8 PhACs from different families in 9 different fish species using GPC as a clean-up technique [75].
Of all the extraction techniques described in this section, those based on the use of ultrasound (USE and FUSLE) have been the most attractive alternatives for the analysis of PhACs in biota (36% of the studies), followed by PLE (30% of the consulted studies). Both techniques are simple, provide automatization, short extraction times and low solvent consumption. For clean-up, SPE using Oasis HLB cartridges has been shown to be an efficient method and the most popular used as a clean-up procedure (71% of the studies), regardless of the aquatic organism under study.

4. Instrumental Analysis

4.1. Liquid Chromatography

LC separation technique coupled with an adequate detector allows quantitative determinations of the compounds with high selectivity, sensibility and accuracy. LC is a very suitable technique for the multiresidue PhACs separation. Furthermore, it does not require the previous derivatization step.
Regarding the retention mechanisms, a broad variety may be applicable in LC. Some examples are reverse phase chromatography (RP-LC), normal phase liquid chromatography (NP-LC), hydrophilic interaction liquid chromatography (HILIC), ion-pairing chromatography (IPC), ion exchange chromatography (IEC), or hydrophobic interaction chromatography (HIC), among others. As far as the determination of PhACs in aquatic organisms is concerned, and considering the physicochemical properties of the target compounds (polar compounds), the RP-LC modality has been the best choice for all the authors. This retention mechanism is related to non-polar selectivity consisting of a non-polar stationary phase and, as mobile phases, a solvent mixture of high polarity solvents. Consecuently, the least polar compounds of the mixture appear first in the chromatogram. RP-LC using C18 silica columns is mainly used for separation, although chiral columns based on α1-glycoprotein (AGP) and phenyl or phenyl-hexyl columns have been also used as stationary phases [44,73,78]. Generally, the most commonly used solvents in the mobile phase are water as the aqueous component (phase A), and in the organic phase, ACN or MeOH (phase B) [68,78,79]. Some authors such as Moreno-González et al. used dichloromethane and methanol (90:20, v/v) in isocratic mode as mobile phases for the analysis of 20 PhACs in fishes and molluscs, prior to a study of bioaccumulation [47]. Sometimes, the use of additives in the aqueous phase, or occasionally in both, such as formic acid, ammonium formate, ammonium acetate or acetic acid at low concentrations, assists ionization when mass spectrometry is selected as detection technique. The use of additives provides better analytical signals and thus, make it easier to determine the target analytes [52,70,73,95].
On the other hand, HILIC is considered by far an attractive alternative for the separation of polar compounds, such as pharmaceuticals. This one is associated to polar selectivity, but also using polar mobile phases. Although the reported articles were based on RP-LC, the use of diol and amine columns may be also considered, as they could provide promising results in the separation of PhACs.
In recent years, the HPLC technique has been largely replaced by UHPLC as it has many advantages over the former. The analyses are faster and more sensitive. This is due to the fact that the column packing consists of smaller and more porous particles (sub-2-micron particles) that achieve better chromatographic peaks, and therefore greater sensitivity, although the collateral effect is that the work is carried out at higher pressures. As this review work has focused on the last 10 years of research, most of the studies included the use of UHPLC technique [34,46,72] (56%) while the remaining 44% used classical HPLC (Table 1a–i). The chromatographic columns used in the first case are usually 10 cm long [13,27], although some studies achieve separation even with 5 cm columns [35,39,60]. In the case of HPLC, longer chromatographic columns are used, usually 15 cm [28,55,56,58,62], with the exception of some studies using shorter columns of 10 cm [42,52] or 12.5 cm in length [61].

4.2. Detection Systems

After chromatographic separation, spectrophotometric detection has been used on a limited, but interesting, number of cases, depending on the properties of the compounds under study [96]. For example, Gao et al. coupled an ultraviolet detection system for the determination of 5 NSAIDs in fish and shrimp muscle tissues using a new synthetic MOF in the extraction of the compounds, achieving LODs between 0.12 and 3.50 ng mL−1 [79]. It is a universal and inexpensive detector that is very useful for routine analysis.
However, MS was the most common detection system used in the literature consulted. For the ionization of the sample, the main interface used is electrospray ionization (ESI). In the literature consulted, 80 studies indicate the use of this interface. ESI involves generating ions by applying a high voltage to a liquid, generating an aerosol. It is often used in the case of macromolecules, as they tend to fragment after ionization. Other interfaces used are atmospheric pressure chemical ionization (APCI) [75] and heated electrospray ionization [63]. In both cases, they use heat and a nebulization gas to form an aerosol and ionize the molecules in the gas phase. In some cases, thermal degradation may occur due to the use of heat, so this interface is often used when the analytes are heat stable and volatile. For that reason, articles consulted in the literature mainly used ESI as an interface, as the PhACs are generally high molecular weight compounds [71].
Based on MS resolution, two main categories are typically distinguished: low resolution (LRMS) and high resolution (HRMS) mass spectrometry. The former gives two decimal m/z digits and is commonly used in targeted analysis, while the latter offers higher resolving power which is advantageous in non-targeted analysis. In the reviewed works, LRMS, in particular, tandem mass spectrometry (MS/MS) using a triple-quadrupole mass analyzer (QqQ), is the most frequently used because of its increased selectivity, low LODs and improved S/N ratio. Multiple reaction monitoring mode (MRM) is particularly useful for the simultaneous determination of different classes of PhACs in one single run and has been able to detect large amounts of analytes in complex matrices even in trace quantities [46,51,68,85]. López-García et al. [61] used a QqLit analyzer (quadrupole ion trap), consisting of three quadrupoles analyzers in which the last one acts as a linear ion trap, offering better sensitivity. In the determination of psychoactive substances in mussels, they achieved LODs below 2 ng g−1, with high recoveries. Similarly, the use of other systems based on MS/MS, as the HCT (ultra ion trap) [80] and the QTRAP mass spectrometer [48,50,74], have been proposed. In contrast, it should be noted that only one study used a simple quadrupole analyzer. They determined three drugs in sea sponge, achieving detection limits between 0.01 and 10 ng g−1 with a recovery of 80% [70].
Likewise, the HRMS counterpart has undergone a noteworthy evolution in the last years. Although it is typically used in non-targeted analyzes when the compounds are unknown a priori, it has been shown to possess sufficient resolving power for quantitative purposes as well. It is especially useful for example to know the transformation products or identify compounds with the same molecular mass, thanks to the structural fragmentation patterns, the accurate mass, and the isotopic distribution. In light of this, analyzers such as Orbitrap or TOF, which also offer very good characteristics, have been employed in some of the revised works [41,48,59,63,73,77,79]. For example, Baesu et al. and Danesaki et al. used the Q-TOF for the determination of drugs from different families in fillet of fish, reaching LODs of 0.2–2.6 ng g−1 and 20–200 ng g−1, respectively [73,77]. Kalogeropoulou et al. used a Q-Orbitrap MS achieving limits of quantification (LOQs) between 0.5–19 ng g−1 for the analysis of several antibiotics, antiepileptics and antidepressants in fish muscle [79].

5. Conclusions and Future Perspectives

Advances in analytical tools and instrumentation have allowed the development of a high number of sensitive and selective methods to determinate a broad range of PhACs in complex matrices, such as aquatic organisms. The present work provides an overview of the recent available methodologies for the analysis of PhACs in aquatic biota from different levels of the food chain. Among the PhACs, most investigated were antibiotics (ciprofloxacin, trimethoprim, and sulfamethoxazole), non-steroidal anti-inflammatory drugs (NSAIDs), analgesics (diclofenac, ibuprofen, naproxen and acetaminophen), antidepressants (venlafaxine) and antihypertensive drugs (propranolol and metoprolol), in this order, which also corresponds to those most accepted and consumed by the human population. Other groups, such as the cholesterol-lowering, antidiabetic and anticancer drugs, which have greatly increased in the last decade, have occasionally been considered in the studies consulted [97]. In addition, it should be noted that limited research has been conducted to analyze their transformation products (metabolites and degradation products) which emphasizes the need to develop analytical methods to cover this gap.
In relation to the studied taxonomic groups in the determination of PhACs, fish has been the most extensively organism investigated (33%), followed by molluscs (29%) and crustaceans (17%). In contrast, there are few proposed methods to assess the presence of these compounds in echinoderms (1%), and in biota of the first level of the food chain such as algae (2%), phytoplankton (5%), or zooplankton (8%). Therefore, more studies are needed to analyze PhACs at the lowest levels of the food chain, such as producers and benthic primary consumers, since the latter seem to be the main bioaccumulators for filter-feeding [98]. This would help to broaden the knowledge about the trophic transfer of PhACs, a barely explored field.
Given the complexity of biota matrices, special attention has been played to the sample preparation step, both extraction and purification, to obtain clean extracts and not compromise instrument sensitivity due to matrix effects. The extraction step is key in determining the analytical parameters of the method. As far as extraction techniques, extraction using ultrasound (USE, FUSLE) has been the most attractive alternative, used in 36% of the studies consulted, followed by PLE, used in 30% of the studies. Both techniques provide automatization, short extraction times and low solvent consumption, compared to other techniques, such as traditional Soxhlet extraction. ACN, MeOH and water have been the solvents of choice for UAE while for PLE, in addition to these, the combination of acetone and MeOH has been extensively used. However, other green techniques should be explored for the extraction of these compounds to further reduce solvent and extraction time, such as aqueous two-phase systems (ABS), which remove volatile organic compounds and have very promising prospects. For clean-up, SPE using cartridges has shown to be an efficient method and the most popular used as a clean-up procedure (71% of the studies), regardless of the aquatic organism under study. Polymeric reversed-phase sorbents, and in particular Oasis HLB cartridges, have been the most suitable par excellence. Future trends in PhACs analysis in biota may include the design of on-line extraction techniques to reduce sample handling and avoid tedious sample treatments.
Finally, UHPLC-MS/MS has shown to be the most widely used technology for the analysis of PhACs due to the benefits it can offer. On the one hand, there has been a trend towards the use of UHPLC since, unlike HPLC, it operates at higher pressures and provides better resolution due to shorter column lengths and smaller particle sizes. On the other hand, its coupling with MS/MS detection is advantageous as it provides high sensitivity and selectivity, allowing quantification in the low ng L−1 or ng g−1. It should also be noted that some recent works, instead, have used HRMS (Orbitrap or QTOF analyzers) for determining PhACs in the organisms under study being able to distinguish between compounds with comparable masses.

Author Contributions

Conceptualization, all authors; methodology, M.d.C.G.-R., L.M.-P., J.M. and A.Z.-G.; formal analysis and investigation, all authors; resources, M.d.C.G.-R., L.M.-P. and J.M.; data curation, J.L.S., I.A., E.A. and A.Z.-G.; writing—original draft preparation, M.d.C.G.-R., L.M.-P. and J.M.; writing—review and editing, M.d.C.G.-R., J.M, J.L.S. and A.Z.-G.; visualization and supervision, E.A. and A.Z.-G.; project administration and funding acquisition, E.A. and A.Z.-G. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by MCIN/AEI/10.13039/501100011033 (Spanish Government), grant number PID2020-117641RB-I00” and the FEDER/Regional Government of Andalusia—Ministry of Economy and Knowledge, including European funding from ERDF 2014-2020 program, grants number B.RNM.362.UGR20 and P20_00556.

Institutional Review Board Statement

The study did not require ethical approval.

Informed Consent Statement

No human subjects are involved in this study.

Data Availability Statement

The study did not report any data.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czeruckall, D.; et al. Human health and ocean pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef] [PubMed]
  2. European Environmental Agency. Contaminants in Europe’s Seas Moving Towards a Clean, Non-Toxic Marine Environment. EEA Report 2019, 25/2018. Available online: https://www.eea.europa.eu/publications/contaminants-in-europes-seas (accessed on 3 November 2022).
  3. Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. Biomarkers based tools to asses environmental and chemical stressors in aquatic systems. Ecol. Indic. 2021, 122, 107207. [Google Scholar] [CrossRef]
  4. Zhang, C.; Barron, L.; Sturzenbaum, S. The transportation, transformation and (bio)accumulation of pharmaceuticals in the terrestrial exosystem. Sci. Total Environ. 2021, 781, 146684. [Google Scholar] [CrossRef] [PubMed]
  5. Vagi, M.C.; Petsas, A.S.; Kostopoulou, M.N. Potential effect of persistent organic contaminants on Marine Biota: A review on recent research. Water 2021, 13, 2488. [Google Scholar] [CrossRef]
  6. Arnold, K.E.; Brown, A.R.; Ankley, G.T.; Sumpter, J.P. Medicating the environment: Assessing risks of pharmaceuticals to wildlife and ecosystems. Phil. Trans. R. Soc. B 2014, 369, 20130569. [Google Scholar] [CrossRef] [Green Version]
  7. Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
  8. Golbaz, S.; Yaghmaeian, K.; Isazadeh, S.; Zamanzadeh, M. Environmental risk assessment of multiclass pharmaceutical active compounds: Selection of high priority concern pharmaceuticals using entropy-utility functions. Environ. Sci. Pollut. Res. 2021, 28, 59745–59770. [Google Scholar] [CrossRef]
  9. Prionti, C.; Ricciardi, M.; Proto, A.; Bianco, P.M.; Montano, L.; Motta, O. Endocrine-disrupting compounds: An overview on their occurrence in the aquatic environment and human exposure. Water 2021, 13, 1347. [Google Scholar] [CrossRef]
  10. Ramírez-Morales, D.; Masís-Mora, M.; Montiel-Mora, J.R.; Cambronero-Heinrichs, J.C.; Pérez-Rojas, G.; Tormo-Budowski, R.; Méndez-Rivera, M.; Briceño-Guevara, S.; Gutiérrez-Quirós, J.A.; Arias-Mora, V.; et al. Multi-residue analysis of pharmaceuticals in water samples by liquid chromatography-mass spectrometry: Quality assessment and application to the risk assessment of urban-influenced surface waters in a metropolitan area of Central America. Process Saf. Environ. 2021, 153, 289–300. [Google Scholar] [CrossRef]
  11. Cravo, A.; Silva, S.; Rodrigues, J.; Cardoso, V.V.; Benoliel, M.J.; Correia, C.; Coelho, M.R.; Rosa, M.J.; Almeida, C.M.M. Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge. Environ. Res. 2022, 208, 112632. [Google Scholar] [CrossRef]
  12. Blanco, G.; Junza, A.; Barrón, D. Occurrence of veterinary pharmaceuticals in golden eagle nestlings: Unnoticed scavenging on livestock carcasses and other potential exposure routes. Sci. Total Environ. 2017, 586, 355–361. [Google Scholar] [CrossRef] [PubMed]
  13. Wu, Q.; Pan, C.-G.; Wang, Y.-H.; Xiao, S.-K.; Yu, K.-F. Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer. Sci. Total Environ. 2021, 751, 141718. [Google Scholar] [CrossRef] [PubMed]
  14. Water Framework Directive (WFD) 2000/60/EC. Available online: https://www.eea.europa.eu/policy-documents/water-framework-directive-wfd-2000 (accessed on 27 September 2022).
  15. Marine Strategy Framework Directive 2008/56/EC. Available online: https://www.eea.europa.eu/policy-documents/2008-56-ec (accessed on 27 September 2022).
  16. European Union. Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. OJEU. 2022. 197/117. Available online: https://euroalert.net/en/oj/105661/commission-implementing-decision-eu-2022-1307-of-22-july-2022-establishing-a-watch-list-of-substances-for-union-wide-monitoring-in-the-field-of-water-policy-pursuant-to-directive-2008-105-ec-of-the-european-parliament-and-of-the-council-notified-under-document-c-2022-5098 (accessed on 3 November 2022).
  17. Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2018, 90, 398–428. [Google Scholar] [CrossRef]
  18. Huerta, B.; Rodríguez-Moraz, S.; Barceló, D. Pharmaceuticals in biota in the aquatic environment: Analytical methods and environmental implications. Anal. Bioanal. Chem. 2012, 404, 2611–2624. [Google Scholar] [CrossRef] [PubMed]
  19. McCarthy, J.F.; Shugart, L.R. (Eds.) Biomarkers of Environmental Contamination, 1st ed.; Lewis Publishers: Boca Raton, FL, USA, 1990. [Google Scholar] [CrossRef]
  20. Vidal-Liñan, L.; Bellas, J.; Campillo, J.A.; Beiras, R. Integrated use of antioxidant enzymes in mussels, Mytilus galloprovincialis, for monitoring pollution in highly productive coastal areas of Galicia (NW Spain). Chemosphere 2010, 78, 265–272. [Google Scholar] [CrossRef] [PubMed]
  21. Ríos-Fuster, B.; Alomar, C.; Paniagua González, G.; Garcinuño Martínez, R.M.; Soliz Rojas, D.; Fernández Hernando, P. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. Environ. Res. 2022, 214, 114034. [Google Scholar] [CrossRef] [PubMed]
  22. Fossi, M.C.; Pedà, C.; Compa, M.; Tsangaris, C.; Alomar, C.; Claro, F.; Ioakeimidis, C.; Galgani, F.; Hema, T.; Deudero, S.; et al. Bioindicators for monitoring marine litter ingestions and its impacts on Mediterranean biodiversity. Environ. Pollut. 2018, 237, 1023–1040. [Google Scholar] [CrossRef] [PubMed]
  23. Bartolomé, L.; Etxebarria, N.; Martínez-Arkarazo, I.; Raposo, J.C.; Usobiaga, A.; Zuloaga, O.; Raingeard, D.; Cajaraville, M.P. Distribution of organic microcontaminants, butyltins, and metals in mussels from the Estuary of Bilbao. Arch. Environ. Contam. Toxicol. 2010, 59, 244–254. [Google Scholar] [CrossRef]
  24. Viñas, L.; Pérez-Fernández, B.; Soriano, J.A.; López, M.; Bargiela, J.; Alves, I. Limpet (Patella sp.) as a biomonitor for organic pollutants. A proxy for mussel? Mar. Pollut. Bull. 2018, 133, 271–280. [Google Scholar] [CrossRef]
  25. Qu, Y.; Zhang, T.; Zhang, R.; Wang, X.; Zhang, Q.; Wang, Q.; Dong, Z.; Zhao, J. Integrative assessment of biomarker responses in Mytilus galloprovincialis exposed to seawater acidification and copper ions. Sci. Total Environ. 2022, 851, 158146. [Google Scholar] [CrossRef]
  26. Ghosh, D.; Ghosh, A.; Bhadury, P. Arsenic through aquatic trophic levels: Effects, tansformations and biomagnification—A concise review. Geosci. Lett. 2022, 9, 20. [Google Scholar] [CrossRef]
  27. Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H.; Bao, X.; Zhang, X.; Sun, Y. Residues, bioaccumulation and trophic transfer of pharmaceuticals and personal care products in highly urbanizad rivers affected by water diversion. J. Hazard. Mater. 2020, 391, 122245. [Google Scholar] [CrossRef] [PubMed]
  28. Tang, J.; Wang, S.; Tai, Y.; Tam, N.F.; Su, L.; Shi, Y.; Luo, B.; Tao, R.; Yang, Y.; Zheng, X. Evaluation of factors influencing annual occurrence, bioaccumulation and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China. Water Res. 2020, 170, 115302. [Google Scholar] [CrossRef] [PubMed]
  29. Yan, N.; Long, S.; Xiong, K.; Zhang, T. Antibiotic bioaccumulation in zooplankton from the Yelang Lake Reservoir of Anshun City, Southwest China. Pol. J. Environ. Stud. 2022, 31, 2367–2380. [Google Scholar] [CrossRef]
  30. Moreira, F.W.A.; Leite, M.G.P.; Fijaco, M.A.G.; Mendoça, F.P.C.; Campos, L.P.; Eskinazi-Sant’Anna, E.M. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limol. Bras. 2016, 28, 107. [Google Scholar] [CrossRef]
  31. Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, J.M.; Galloway, T.S. Microplastic ingestion by Zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
  32. Xu, X.; Pan, B.; Shu, F.; Chen, X.; Xu, N.; Ni, J. Bioaccumulation of 35 metal(loid)s in organis of a freshwater mussel (Hyriopsis cumingii) and environmental implications in Poyang Lake, China. Chemosphere 2022, 307, 136150. [Google Scholar] [CrossRef]
  33. Sharma, J.; Behera, P.K. Abundance & distribution of aquatic macro-invertebrate families of river Ganga and correlation with environmental parameters. Environ. Monit. Assess. 2022, 194, 546. [Google Scholar] [CrossRef]
  34. Grabicová, K.; Stanová, A.V.; Svecová, H.; Nováková, P.; Kodes, V.; Leontovycová, D.; Brooks, B.W.; Grabic, R. Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring. Environ. Pollut. 2022, 309, 119715. [Google Scholar] [CrossRef]
  35. Álvarez-Muñoz, D.; Huerta, B.; Fernandez-Tejedor, M.; Rodríguez-Mozaz, S.; Barceló, D. Multi-residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. Talanta 2015, 136, 174–182. [Google Scholar] [CrossRef]
  36. Burket, S.R.; Sapozhnikova, Y.; Zheng, J.S.; Chung, S.S.; Brooks, B.W. At the Intersection of urbanization, water, and food security: Determination of select contaminants of emerging concern in mussels and oysters from Hong Kong. J. Agric. Food Chem. 2018, 66, 5009–5017. [Google Scholar] [CrossRef]
  37. Ojemaye, C.Y.; Petrik, L. Pharmaceuticals and personal care products in the marine environment around False Bay, Cape Town, South Africa: Occurrence and risk assessment study. Environ. Toxicol. Chem. 2022, 41, 614–634. [Google Scholar] [CrossRef] [PubMed]
  38. Zhou, L.-J.; Wang, W.-X.; Lv, Y.-J.; Mao, Z.-G.; Chen, C.; Wu, Q.L. Tissue concentrations, trophic transfer and human risks of antibiotics in freshwater food web in Lake Taihu, China. Ecotoxicol. Environ. Saf. 2020, 197, 110626. [Google Scholar] [CrossRef] [PubMed]
  39. Xie, H.; Hao, H.; Xu, N.; Liang, X.; Gao, D.; Xu, Y.; Gao, Y.; Tao, H.; Wong, M. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment. Sci. Total Environ. 2019, 659, 230–239. [Google Scholar] [CrossRef] [PubMed]
  40. Martínez-Morcillo, S.; Rodríguez-Gil, J.L.; Fernández-Rubio, J.; Rodríguez-Mozaz, S.; Prado Míguez-Santiyán, M.; Valdes, M.E.; Barceló, D.; Valcárcel, Y. Presence of pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk assessment for human health: Results from a case study in North-Western Spain. Int. J. Hyg. Environ. Health 2020, 223, 10–21. [Google Scholar] [CrossRef] [PubMed]
  41. Fonseca, V.F.; Duarte, I.A.; Duarte, B.; Freitas, A.; Vila Pouca, A.S.; Barbosa, J.; Gillanders, B.M.; Reis-Santos, P. Environmental risk assessment and bioaccumulation of pharmaceuticals in a large urbanized estuary. Sci. Total Environ. 2021, 783, 147021. [Google Scholar] [CrossRef]
  42. Chen, H.; Liu, S.; Xu, X.-R.; Liu, S.-S.; Zhou, G.-J.; Sun, K.-F.; Zhao, J.-L.; Ying, G.-G. Antibiotics in typical marine aquaculture farms sourrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 2015, 90, 181–187. [Google Scholar] [CrossRef]
  43. Zheng, W.; Yoo, K.-H.; Choi, J.-M.; Park, D.-H.; Kim, S.-K.; Kang, Y.-S.; El-Aty, A.M.A.; Hacimüftüoglu, A.; Wang, J.; Shim, J.-H.; et al. Residual detection of naproxen, methyltestosterone and 17 α-hydroxyprogesterone caproate in aquatic products by simple liquid-liquid extraction method coupled with liquid Chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2019, 33, e4396. [Google Scholar] [CrossRef] [Green Version]
  44. Ruan, Y.; Lin, H.; Zhang, X.; Wu, R.; Zhang, K.; Leung, K.M.Y.; Lam, J.C.W.; Lam, P.K.S. Enantiomer-specific bioaccumulation and distribution of chiral pharmaceuticals in a subtropical marine food web. J. Hazard. Mater. 2020, 394, 122589. [Google Scholar] [CrossRef]
  45. Mastángelo, M.M.; Valdés, M.E.; Eissa, B.; Ossana, N.A.; Barceló, D.; Sabater, S.; Rodríguez-Mozaz, S.; Giorgi, A.D.N. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci. Total Environ. 2022, 828, 154303. [Google Scholar] [CrossRef]
  46. Pashaei, R.; Dzingeleviciene, R.; Abbasi, S.; Szultka-Mlynska, M.; Buszewski, B. Determination of 15 pharmaceutical residues in fish and shrimp tissues by high-performance liquid chromatography-tandem mass spectrometry. Environ. Mon. Assess. 2022, 194, 325. [Google Scholar] [CrossRef] [PubMed]
  47. Mello, F.V.; Cunha, S.C.; Fogaça, F.H.S.; Alonso, M.B.; Torres, J.P.M.; Fernandes, J.O. Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. Sci. Total Environ. 2022, 803, 149744. [Google Scholar] [CrossRef] [PubMed]
  48. Moreno-González, R.; Rodríguez-Mozaz, S.; Huerta, B.; Barceló, D.; León, V.M. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon? Environ. Res. 2016, 146, 282–298. [Google Scholar] [CrossRef] [PubMed]
  49. Ojemaye, C.Y.; Petrik, L. Occurrences, levels and risk assessment studies of emerging pollutants (pharmaceuticals, perfluoroalkyl and endocrine disrupting compounds) in fish samples from Kalk Bay harbour, South Africa. Environ. Pollut. 2019, 252, 562–572. [Google Scholar] [CrossRef]
  50. Tanoue, R.; Nozaki, K.; Nomiyama, K.; Kunisue, T.; Tanabe, S. Rapid analysis of 65 pharmaceuticals and 7 personal care products in plasma and whole-body tissue samples of fish using acidic extraction, zirconia-coated silica cleanup, and liquid Chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1631, 461586. [Google Scholar] [CrossRef]
  51. Vitale, D.; Picó, Y.; Álvarez-Ruiz, R. Determination of organic pollutants in Anguilla anguilla by liquid Chromatography coupled with tandem mass spectrometry (LC-MS/MS). MEthodsX 2021, 8, 101342. [Google Scholar] [CrossRef]
  52. Ali, A.M.; Thorsen-Ronning, H.; Sydnes, L.K.; Alarif, W.M.; Kallenborn, R.; Al-Lihaibi, S.S. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea. Sci. Total Environ. 2018, 621, 654–662. [Google Scholar] [CrossRef]
  53. Rojo, M.; Álvarez-Muñoz, D.; Dománico, A.; Foti, R.; Rodriguez-Mozaz, S.; Barceló, D.; Carriquiriborde, P. Human pharmaceuticals in three major fish species from the Uruguay River (South America) with different feeding habits. Environ. Pollut. 2019, 252, 146–154. [Google Scholar] [CrossRef]
  54. Ruhí, A.; Acuña, V.; Barceló, D.; Huerta, B.; Mor, J.-R.; Rodríguez-Mozaz, S.; Sabater, S. Bioaccumulation and trophic magnification of pharmaceuticals endocrine disruptors in a Mediterranean river food web. Sci. Total Environ. 2016, 540, 250–259. [Google Scholar] [CrossRef]
  55. Wilkinson, J.L.; Hooda, P.S.; Swinden, J.; Barker, J.; Barton, S. Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms. Environ. Pollut. 2018, 234, 864–875. [Google Scholar] [CrossRef] [Green Version]
  56. Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake. Environ. Pollut. 2017, 222, 356–366. [Google Scholar] [CrossRef] [PubMed]
  57. Ding, D.; Lu, G.; Liu, J.; Yang, H.; Li, Y. Uptake, depuration and bioconcentration of two pharmaceuticals, roxithromycin and propranolol, in Daphnia magna. Ecotoxicol. Environ. Saf. 2016, 126, 85–93. [Google Scholar] [CrossRef] [PubMed]
  58. Kim, H.Y.; Jeon, J.; Hollender, J.; Yu, S.; Kim, S.D. Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer. J. Hazard. Mater. 2014, 279, 428–435. [Google Scholar] [CrossRef] [PubMed]
  59. Fu, Q.; Meyer, C.; Patrick, M.; Kosfeld, V.; Rüdel, H.; Koschorreck, J.; Hollender, J. Comprehensive screening of polar emerging organic contaminants including PFASs and evaluation of the trophic transfer behavior in a freshwater food web. Water Res. 2022, 218, 118514. [Google Scholar] [CrossRef] [PubMed]
  60. Danielle, G.; Fieu, M.; Joachim, S.; James-Casas, A.; Andres, S.; Baudoin, P.; Bonnard, M.; Bonnard, I.; Geffard, A.; Vulliet, E. Development of a multi-residue analysis of diclofenac and some transformation products in bivalves using QuEChERs extraction and liquid Chromatography-tandem mass spectrometry. Application to samples from mesocosm studies. Talanta 2016, 155, 1–7. [Google Scholar] [CrossRef]
  61. López-García, E.; Postigo, C.; López de Alda, M. Psychoactive substances in mussels: Analysis and occurrence assessment. Mar. Pollut. Bull. 2019, 146, 985–992. [Google Scholar] [CrossRef]
  62. McEneff, G.; Barron, L.; Kelleher, B.; Paull, B.; Quinn, B. The determination of pharmaceutical residues in cooked and uncooked marine bivalves using pressurized liquid extraction, solid-phase extraction and liquid Chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 9509–9521. [Google Scholar] [CrossRef]
  63. Martínez-Bueno, M.J.; Boillot, C.; Fenet, H.; Chiron, S.; Casellas, C.; Gómez, E. Fast and easy extraction combined with high resolution-mass spectrometry for residue analysis of two anticonvulsants and their transformation products in marine mussels. J. Chromatogr. A 2013, 1305, 27–34. [Google Scholar] [CrossRef] [Green Version]
  64. Álvarez-Muñoz, D.; Rodríguez-Mozaz, S.; Jacobs, S.; Serra-Compte, A.; Cáceres, N.; Sioen, I.; Verbeke, W.; Barbosa, V.; Ferrari, F.; Fernández-Tejedor, M.; et al. Pharmaceuticals and endocrine disruptors in raw and cooked seafood from European market: Concentrations and human exposure levels. Environ. Int. 2018, 119, 570–581. [Google Scholar] [CrossRef]
  65. Mijangos, L.; Ziarrusta, H.; Zabaleta, I.; Usobiaga, A.; Olivares, M.; Zuloaga, O.; Etxebarria, N.; Prieto, A. Multiresidue analytical method for the determination of 41 multiclass organic pollutants in mussel and fish tissues and biofluids by liquid Chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 493–506. [Google Scholar] [CrossRef]
  66. Núñez, M.; Borrull, F.; Pocurull, E.; Fontanals, N. Pressurized liquid extraction followed by liquid Chromatography with tandem mass spectrometry to determine pharmaceuticals in mussels. J. Sep. Sci. 2016, 39, 741–747. [Google Scholar] [CrossRef] [PubMed]
  67. Rodrigues, J.; Albino, S.; Silva, S.; Cravo, A.; Cardoso, V.V.; Benoliel, M.J.; Almeida, C.M.M. Development of a multiresidue method for the determination of 24 pharmaceuticals in clams by QuEChERs and liquid Chromatography-triple quadrupole tandem mass spectrometry. Food. Anal. Methods 2019, 12, 838–851. [Google Scholar] [CrossRef]
  68. Gao, Y.; Wang, S.; Zhang, N.; Xum, X.; Bao, T. Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residues. J. Chromatogr. A 2021, 1652, 462349. [Google Scholar] [CrossRef] [PubMed]
  69. Miossec, C.; Mille, T.; Lanceleur, L.; Monperrus, M. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid Chromatography-tandem mass spectrometry. Food Chem. 2020, 322, 126765. [Google Scholar] [CrossRef]
  70. Miller, T.H.; McEneff, G.L.; Brown, R.J.; Owen, S.F.; Bury, N.R.; Barron, L.P. Pharmaceuticals in the freshwater invertebrate, Gammarus pulex, determinet using pulverised liquid extraction, solid phase extraction and liquid Chromatograpgy-tandem mass spectrometry. Sci. Total Environ. 2015, 511, 153–160. [Google Scholar] [CrossRef] [Green Version]
  71. Rizzi, C.; Seveso, D.; Galli, P.; Villa, S. First record of emerging contaminants in sponges of an inhabited island in the Maldives. Mar. Pollut. Bull. 2020, 156, 111273. [Google Scholar] [CrossRef]
  72. Argüello-Pérez, M.A.; Ramírez-Ayala, E.; Mendoza-Pérez, J.A.; Monroy-Mendieta, M.M.; Vázquez-Guevara, M.; Lezama-Cervantes, C.; Godínez-Domínguez, E.; Silva-Bátiz, F.D.A.; Tintos-Gómez, A. Determination of the Bioaccumulative Potential Risk of emerging contaminants in fish muscle as an environmental quality indicator in Coastal Lagoons of he Central Mexican Pacific. Water 2020, 12, 22721. [Google Scholar] [CrossRef]
  73. Baesu, A.; Ballash, G.; Mollenkopf, D.; Wittum, T.; Sulliván, S.M.P.; Bayen, S. Suspect screening of pharmaceuticals in fish livers based on QuEChERs extraction coupled with high resolution mass spectrometry. Sci. Total Environ. 2021, 783, 146902. [Google Scholar] [CrossRef]
  74. Bobrowska-Korczak, B.; Stawarska, A.; Szterk, A.; Ofiara, K.; Czerwonka, M.; Giebultowicz, J. Determination of pharmaceuticals, heavy metals and oxysterols in fish muscle. Molecules 2021, 26, 1229. [Google Scholar] [CrossRef]
  75. Borik, A.; Stanová, A.V.; Brooks, B.W.; Grabicová, K.; Randák, T.; Grabic, R. Determination of citalopram in fish brain tissue: Benefits of coupling laser diode thermal desorption with low- and high-resolution mass spectrometry. Anal. Bioanal. Chem. 2021, 412, 4353–4361. [Google Scholar] [CrossRef]
  76. Boulard, L.; Parrhysius, P.; Jacobs, B.; Dierkes, G.; Wick, A.; Buchmeier, G.; Koschorreck, J.; Ternes, T.A. Development of an analytical method to quantify pharmaceuticals in fish tissues by liquid Chromatography-tandem mass spectrometry detection and application to environmental samples. J. Chromatogr. A 2020, 1633, 461612. [Google Scholar] [CrossRef] [PubMed]
  77. Danesaki, M.E.; Bletsou, A.A.; Koulis, G.A.; Thomaidis, N.S. Qualitative multiresidue screening method for 143 veterinary drugs and pharmaceuticals in milk and fish tissue using liquid Chromatography quadrupole-time-of-flght mass spectrometry. J. Agric. Food Chem. 2015, 63, 4493–4508. [Google Scholar] [CrossRef]
  78. Huang, P.; Zhao, P.; Dai, X.; Hou, X.; Zhao, L. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid Chromatography-tandem mass spectrometry. J. Chromatogr. B 2016, 1011, 136–144. [Google Scholar] [CrossRef]
  79. Kalogeropoulou, A.G.; Kosma, C.I.; Albanis, T.A. Simultaneous determinaton of pharmaceuticals and metabolites in fish tissue by QuEChERs extracion and UHPLC Q/Orbitrap MS analysis. Anal. Bioanal. Chem. 2021, 413, 7129–7140. [Google Scholar] [CrossRef] [PubMed]
  80. Wagil, M.; Kumirska, J.; Stolte, S.; Puckowskim, A.; Maszkowska, J.; Stepnowski, P.; Bialk-Bielinska, A. Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in nothern Poland. Sci. Total Environ. 2014, 493, 1006–1013. [Google Scholar] [CrossRef]
  81. Kim, J.; Park, H.; Kang, H.-S.; Cho, B.-H.; Oh, J.-H. Comparison of sample preparation and determination of 60 veterinary drugs residues in flatfish usin liquid Chromatography-tandem mass spectrometry. Molecules 2020, 25, 1206. [Google Scholar] [CrossRef] [Green Version]
  82. Sun, Y.; Zhang, L.; Zhang, X.; Chen, T.; Dong, D.; Hua, X.; Guo, Z. Enhanced bioaccumulation of fluorinated antibiotics in crucian carp (Carcassius carcassius): Influence of fluorine substituent. Sci. Total Environ. 2020, 748, 141567. [Google Scholar] [CrossRef]
  83. Lavilla, I.; Bendicho, C. Chapter 1: Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds, 1st ed.; Domínguez, H., González-Muñoz, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 291–316. [Google Scholar] [CrossRef]
  84. Blanco-Zubiaguirre, L.; Arrieta, N.; Iturregui, A.; Martinez-Arkarazo, M.; Olivares, M.; Castro, K.; Olazabal, M.A.; Madariaga, J.M. Focused ultrasound solid-liquid extraction for the determination of organic biomarkers in beachrocks. Ultrason. Sonochem. 2015, 27, 430–439. [Google Scholar] [CrossRef]
  85. Martínez-Moral, M.P.; Tena, M.T. Focused ultrasound solid-liquid extraction and selective pressurized liquid extraction to determine bisphenol A and alkylphenols in sewage sludge by gas Chromatography-mass spectrometry. J. Sep. Sci. 2011, 34, 2513–2522. [Google Scholar] [CrossRef]
  86. Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated Solvent Extraction: A Technique for Sample Preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
  87. Raisglid, M.E.; Burke, M.F. Fundamentals of solid phase extraction and its application to environmental analyses. Stud. Surf. Sci. Catal. 1999, 120, 37–75. [Google Scholar] [CrossRef]
  88. Anand, S.; Srivastava, P. Optimization strategies for purification of Mycophenolic Acid produced by Penicillium brevicompactum. Appl. Biochem. Biotechnol. 2020, 191, 867–880. [Google Scholar] [CrossRef] [PubMed]
  89. Destendau, E.; Michel, T.; Elfakir, C. Chapter 4. Microwave-assisted extraction. In Natural Product Extraction: Principles and Applications, 2nd ed.; Rostagno, M.A., Prado, J.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2013; pp. 113–498. [Google Scholar] [CrossRef]
  90. Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS-Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
  91. Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
  92. Gil-Solana, R.; Rodriguez-Mozaz, S.; Diaz-Cruz, M.S.; Sunyer-Caldú, A.; Luarte, T.; Höfer, J.; Galbán-Malagón, C.; Gago-Ferrero, P. A protocol for wide-scope non-target analysis of contaminants in small amounts of biota using bead beating tissuelyser extraction and LC-HRMS. MethodsX 2021, 8, 101193. [Google Scholar] [CrossRef]
  93. Oluseyi, T.; Olayinka, K.; Alo, B.; Smith, R.M. Comparison of extraction and clean-up techniques for the determination of polycyclic aromatic hydrocarbons in contaminated soil samples. Afr. J. Environ. Sci. Technol. 2011, 5, 482–493. [Google Scholar]
  94. Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary drugs applied to food samples: A review. Int. J. Anal. Chem. 2017, 2017, 8215271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Rimkus, G.G.; Rummler, M.; Nausch, I. Gel permeation Chromatography-high performance liquid Chromatography combination as an automated clean-up technique for the multiresidue analysis of fats. J. Chromatogr. A 1996, 737, 9–14. [Google Scholar] [CrossRef]
  96. Clarke, W. Mass spectrometry in the clinical laboratory: Determining the need and avoiding pitfalls. In Mass Spectrometry in the Clinical Laboratory, 1st ed.; Nair, H., Clarke, W., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–15. [Google Scholar] [CrossRef]
  97. González-Peña, O.I.; López-Zavala, M.A.; Cabral-Ruelas, H. Pharmaceuticasls market, consumption, trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
  98. Świacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Świeżak, J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms—Current state of knowledge. J. Hazard. Mater. 2022, 424, 127350. [Google Scholar] [CrossRef]
Figure 1. Number of consulted studies according to the different taxonomic groups in aquatic environment.
Figure 1. Number of consulted studies according to the different taxonomic groups in aquatic environment.
Molecules 27 07569 g001
Figure 2. Extraction techniques (a) and clean-up treatments (b) used in the reviewed publications.
Figure 2. Extraction techniques (a) and clean-up treatments (b) used in the reviewed publications.
Molecules 27 07569 g002
Table 1. (a) Analytical methods performance for PhACs concentration determination in biofilm. (b) Analytical methods performance for PhACs concentration determination in algae. (c) Analytical methods performance for PhACs concentration determination in plankton. (d) Analytical methods performance for PhACs concentration determination in molluscs. (e) Analytical methods performance for PhACs concentration determination in cephalopods. (f) Analytical methods performance for PhACs concentration determination in echinoderms. (g) Analytical methods performance for PhACs concentration determination in crustaceans. (h) Analytical methods performance for PhACs concentration determination in other invertebrates. (i) Analytical methods performance for PhACs concentration determination in fish.
Table 1. (a) Analytical methods performance for PhACs concentration determination in biofilm. (b) Analytical methods performance for PhACs concentration determination in algae. (c) Analytical methods performance for PhACs concentration determination in plankton. (d) Analytical methods performance for PhACs concentration determination in molluscs. (e) Analytical methods performance for PhACs concentration determination in cephalopods. (f) Analytical methods performance for PhACs concentration determination in echinoderms. (g) Analytical methods performance for PhACs concentration determination in crustaceans. (h) Analytical methods performance for PhACs concentration determination in other invertebrates. (i) Analytical methods performance for PhACs concentration determination in fish.
(a)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
No dataDiclofenac, ibuprofen, 1-OH-ibuprofen, piroxicam, diltiazem, propyphenazone, sulfamethoxazole, verapamil, norverapamil, hydrochlorothiazide, bezafibrate, gemfibrozil, pravastatin, carbamazepine, acridone, 10,11-epoxy-CBZ, 2-OH-CBZ, citalopram, fluoxetine, paroxetine, venlafaxine, azaperone, dexamethasone, metoprolol, propanolol0.2 (d.w)Freeze-dried, stored at −20 °CPLE (citric buffer (pH 4)/ACN)No dataUHPLC-MS/MSNo dataNo data[54]
Periphyton (No data)Ethinylestradiol, acetaminophen, diclofenac0.67 (d.w)Air dry, powderedUSE (ACN/
MeOH 1% acetic acid)
No dataHPLC-MS/MS62No data[55]
(b)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Sea lettuce (Ulva sp.), Red algae (Gelidium pristoides), Hanginng wrack (Bifurcaria brassicaeformis), Strap caulerpa (Caulerpa filiformis), Slippery orbits (Aeodes orbotisa)Phenytoin, lamivudine, acetaminophen, caffeine, sulfamethoxazole, diclofenac, carbamazepine10 (d.w)Rinsed, deshelled and dissected. Freeze-driedSoxhlet (MeOH/ Acetone)SPE (HLB cartridges)UHPLC-MS/MS96.1–100.50.62–1.05 ng L−1[37]
Water starwort (Callitriche sp.), Pondweed (Potamogeton sp.)Ethinylestradiol, acetaminophen, diclofenac0.5 (d.w)Air dry, powderedUSE (ACN/ MeOH 1% acetic acid)No dataHPLC-MS/MS81No data[55]
(c)
Phytoplankton
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
No dataRoxithromycin, erythromycin, ofloxacin, norfloxaxin, ciprofloxacin, tetracycline, sulfamethoxazole, sulfadiazine, sulfaquinoxaline, ibuprofen, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, sertraline, fluoxetine, norfluoxetine, citalopram, paroxetine, venlafaxine, duloxetine, bupropion, amitriptyline, clozapine, fluvoxamine, quetiapine, aripiprazole, chlorpromazine0.5 (d.w)Freeze-dried, homogenized, stored at −80 °CPLE (MeOH/ acetone)SPE (HLB cartridges)UHPLC-MS/MS66–1280.07–1.67 [27]
No dataSulfadiazine, suldapyridine, sulfacetamide, sulfamethazine, sulfamethoxazole, trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, lomefloxacin, oxytetracycline, tetracycline, erythromycin, roxithromycin0.1–0.5 (d.w)Freeze-dried, stored at −18 °CQuEChERs (ACN, acetic acid, 0.1 M EDTA, NaCl, Na2SO4)d-SPE: QuEChERs (ACN, PSA, C18, Na2SO4)LC-MS/MS80.3–104.90.04–0.1[28]
Cyanobacteria (Microcystis aeruginosa), Chlorophyceae (Pediastrum spp. Crucigenia spp. Scenedesmus spp.), Sensu lato (Coscinodiscus spp., Cyclotella spp.), Diatoms (Melosira spp., Aulacoseira spp.), Dinophycaeae (Peridiniopsis spp.), Cryptophyceae (Cryptomonas), Chrysophyceae (Dinobryon spp.), Euglenoidea (Euglena spp.)Sulfadiazine, sulfapyridine, sulfacetamide, sulfamethoxazole, sulfamethazine, trimethoprim, lomefloxacin, ciprofloxacin, norfloxacin, oxytetracycline, tetracycline, roxithromycin, dehydroerythromycin0.5–1.0 (d.w)Frozen at −80 °C, stored in a vacuum desiccatorPLE (MeOH/ acetone)SPE (HLB cartridges)UHPLC-MS/MSNo dataNo data[29]
Cyanobacteria (No data)Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, difloxacin, danofloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol1 (d.w)Washed (water), freeze-dried, stored at −20 °CUSE (MeOH, sodium acetate buffer pH 4)SPE (SAX, HLB cartridges) RRLC-MS/MS54.2–1170.02–9.38[38]
Green algae (Chlorophyta), Diatoms (Bacillariophyta), Blue green algae (Cyanophyta)Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine and sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen and indomethacin, clofibric acid, gemfibrozil and bezafibrate, 17β-estradiol, 17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline0.25 (d.w)Freeze-dried, ground, stored at −20 °CPLE (MeOH/ acetone)SPE (HLB cartridges)LC-MS/MS68–1160.01–1.12[56]
Zooplankton
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Water flea (Daphnia magna)Roxithromycin, propanololEach sample point consisted by 10 daphnia individualsHomogenizedSonication (ACN)SPE (HLB cartridges) UHPLC-MS/MS83–1060.2 [57]
Water flea (Daphnia magna)Tetracycline30
organisms
HomogenizedMeOH, formic acid, EDTANo dataLC-MS/MS84.230.31 µg L−1[58]
No dataSulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol1 (d.w)Washed (water), freeze-dried, stored at −20 °CUSE (MeOH, sodium acetate buffer pH 4)SPE (SAX, HLB cartridges)RRLC-MS/MS54.2–1170.02–9.38[38]
No dataRoxithromycin, erythromycin, ofloxacin, norfloxaxin, ciprofloxacin, tetracycline, sulfamethoxazole, sulfadiazine, sulfaquinoxaline, ibuprofen, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, clozapine, quetiapine, aripiprazole, chlorpromazine0.5 (d.w)Freeze-dried, homogenized, stored at −80 °CPLE (MeOH/ acetone)SPE (HLB
cartridges)
UHPLC-MS/MS66–1280.07–1.67[27]
Copepoda, Cladocera, Rotifera (No data)Sulfadiazine, suldapyridine, sulfacetamide, sulfamethazine, sulfamethoxazole, trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, lomefloxacin, oxytetracycline, tetracycline, erythromycin, roxithromycin0.1–0.5 (d.w)Freeze-dried, stored at −18 °CQuEChERs (ACN, acetic acid, 0.1 M EDTA, NaCl, Na2SO4)d-SPE: QuEChERs (ACN, PSA, C18, Na2SO4)LC-MS/MS81.1–100.70.01–0.12[28]
Copepoda, Cladocera, Rotifera (No data)Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine, sulfadiazine, sulfamethoxazole, ibuprofen, ketoconazole, diclofenac, naproxen, indomethacin, clofibric acid, gemfibrozil, bezafibrate, 17β-estradiol, sertraline, propranolol, 17α-ethynylestradiol, carbamazepine0.25 g (d.w)Freeze-dried, ground, stored at −20 °CPLE (MeOH/ acetone)SPE (HLB cartridges)LC-MS/MS68–1160.01–1.12[39]
Copepoda, Cladocera, Rotifera (No data)Sulfadiazine, sulfapyridine, sulfacetamide, sulfamethoxazole, sulfamethazine, trimethoprim, lomefloxacin, ciprofloxacin, norfloxacin, oxytetracycline, tetracycline, dehydroerythromycin, roxithromycin0.5–1.0 (d.w)Frozen at −80 °C, stored in a vacuum
desiccator
PLE (MeOH/ acetone)SPE (HLB cartridges)UHPLC-MS/MSNo dataNo data[29]
No dataNicotine, haloperidol, pyremethamine0.14–0.2 (d.w)Freeze-driedUSE (ACN, MeOH, H2O), vortex, USESPE (No data)LC-HRMS/MS70–1300.05–5.70 *[59]
Green algae (Chlorophyta), Diatoms (Bacillariophyta), Blue green algae (Cyanophyta) Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, ibuprofen, diclofenac, naproxen, indomethacin, clofibric acid, sulfamerazine, sulfadiazine, sulfamethoxazole, gemfibrozil, bezafibrate, propranolol, carbamazepine, sertraline, ketoconazole, 17β-estradiol, 17α-ethynylestradiol0.25 (d.w)Freeze-dried, ground, stored at −20 °CPLE (MeOH/ acetone)SPE (HLB cartridges) LC-MS/MS68–1160.01–1.12[56]
(d)
Bivalves
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Oysters (C. Gigas), Clams (C. gallina), Mussels (M. galloprovincialis)Ronidazole, metronidazole, dimetridazole, sulfamethoxazole, N-acetyl-sulfamethoxazole, azithromycin, erythromycin, venlafaxine, O-desmethylvenlafaxine, carbamazepine, 10,11-Epoxycarbamazepine, citalopram,2-Hydroxycarbamazepine, alprazolam, codeine, phenazone, propyphenazone, piroxicam, azaperone, azaperol, diltiazem, hydrochlorthiazide, tamsulosin0.5 (d.w)Shells removed, pooled for homogenizing, freeze-dried, ground and kept at −20 °CPLE (MeOH/ H2O)SPE (HLB cartridges)UHPLC-MS/MS40–1150.01–0.80[35]
Zebra mussels (Dreissena polymorpha)Diclofenac0.1 (d.w)Freeze-dried and grindedQuEChERs (H2O, ACN, heptane, acetate salt, DMSO) d-SPE: QuEChERs (acetate salt)UHPLC-MS/MS73–1170.02–1[60]
Mussels (Perna viridis), Oysters (Cassostrea hongkongensis)Acetaminophen, amitrimtyline, aripiprazole, benzoylecgonine, buprenorphine, caffeine, carbamazepine, diclofenac, diltiazem, diphenydramine, fluoxetine, methylphenidate, norfluoxetine, promethazine, sertraline, amlodipine, desmethylsertraline, trimethoprim, erythromycin, sucralose, sulfamethoxazole1 (w.w)Separated from their shells, homogenized and frozen at −20 °CMechanical shaking (0.1 M acetic acid, MeOH)No dataLC-MS/MS80–1200.01–0.75[36]
Mussel (Mytilus galloprovincialis)Cocaine, benzoylecgonine, cocathylene, amphetamine, metamphetamine, MDMA, morphine, methadone, 6-monoacetylmorphine, EDDP, ketamine, lysergic acid diethylamide, A tetrahydrocannabinol, 11-hydroxy-A THC, 11-nor-9-carboxy-A THC, AH-7921, mephedrone, MDPV, caffeine, ephedrine, alprazolam, a-hydroxyalprazolam, midazolam, lormetazepam, a-hydroxymidazolam, diazepam, oxazepam, temazepam, citalopram, fluoxetine, sertraline, venlafaxine, zolpidem, chlorpromazine, hydroxyzine10 (w.w)HomogenizedManual shaking (ACN, MgSO4, NaCl, NaCitrate, DCS)d-SPE: QuEChERs (PSA, C18, MgSO4)LC-MS/MS77–118<2[61]
Mussel (Mytilus spp.)Diclofenac, mefenamic acid, trimethoprim, carbamazepine, gemfibrozil1 (d.w)Freeze-dried, groundPLE (ACN/H2O), Al2O3SPE (Strata-X SPE cartridges)LC-MS/MS83–944–29 *[62]
Mussel (Mytilus galloprovincialis)Carbamazepine, oxcarbazepine + non target compounds (caffeine, metoprolol, cotinine, ketoprofen)2 (d.w)Freeze-driedQuEChERs (ACN, Na2SO4, NaCl, Na3Cit: 2H2O, Na2HCit: 3H2O)d-SPE: QuEChERs (Na2SO4, PSA, C18, formic acid)LC-HRMS67–1100.1–0.3[63]
Mussel (Mytilus galloprovincialis)Diclofenac, diazepam, sotalol, carbamazepine, citalopram, venlafaxine, azithromycin, sulfamethoxazoleAll edible meat (no data)Pooled,
homogenized, freeze-dried, kept at −20 °C
PLE (MeOH/ H2O)SPE (HLB cartridges) UHPLC-MS/MSNo data0.01–0.65[64]
Mussel (Mytilus galloprovincialis), Razor shell (Ensis siliqua), Cockle (cerastoderma edule)Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, azaperol, azaperone, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, chlorothiazide, codeine, phenazone, piroxicam, propyphenazone, ronidazole, dimetridazole, metronidazole, azithromycin, erythromycin0.5 (d.w)Freeze-driedPLE (MeOH/ H2O)SPE (HLB cartridges)UHPLC-MS/MSNo data0.01–2 [40]
Mussel (Mytilus galloprovincialis)Trimethoprim, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethoxazole, amitriptyline, clomipramine, imipramine, nortriptyline, eprosartan, irbesartan, losartan, diclofenac, telmisartan, valsartan, propanolol, acetaminophen, ketoprofen, bezafibrate, clofibric acid, carbamazepine, phenytoin0.5 (d.w)Freeze-dried, ground,
homogenized
FUSLE (MeOH/ H2O)SPE (HLB cartridges)LC-MS/MS71–1264–48[65]
Carib pointed-venus (Anomalocardia brasiliana), Blue Mussel (Mytilus edulis)Bezafibrate, carbamazepine, chloramphenicol, diclofenac, 4′-Hydroxydiclofenac, furosemide, gemfibrozil, ibuprofen, indapamide, ketoprofen, naproxen, simvastatin0.5 (d.w)Dissection to obtain the morphometric measures, freeze-driedQuEChERs (ACN, formic acid, NH4Cl)QuEChERs (MgSO4, Z-Sep)HPLC-MS/MS77–1260.002–1.09[47]
Limpets (Cymbula granatina and cymbula oculis), Sea snail (Oxystele sinensis and oxytele tigrina), Mussel (mytilus galloprovincialis)Phenytoin, lamivudine, acetaminophen, caffeine, sulfamethoxazole, diclofenac, carbamazepine10 (d.w)Rinsed, deshelled and dissected, freeze-driedSoxhlet (MeOH/ Acetone)SPE (HLB
cartridges)
UHPLC-MS/MS96.1–100.50.62–1.05 ng L−1[37]
Oyster (Ostrea gigas), Scallop (Mimachlamys nobilis), Mussel (Mytilus edulis)Sulfadiazine, sulfamerazine, sulfamethazine, trimethoprim, sulfamethoxazole, sulfathiazole, sulfapyridine, ciprofloxacin, norfloxacin, ofloxacin, tetracycline, flumequine, oxytetracycline, gemfibrozil isochlortetracycline, penicillin G sodium, cefotaxime, spectinomycin, roxithromycin, erythromycin, clarithromycin, thiamphenicol, chloramphenicol, paracetamol, naproxen, ibuprofen, ketoprofen, diclofenac acid, carbamazepine, diltiazem, diphenhydramine0.2 (d.w)Freeze-dried, ground into powder, mixedSonication (ACN/H2O)SPE (HLB cartridges)UHPLC-MS/MS43–1270.01–1.9[39]
Zebra mussels (Dreissena polymorpha)Nicotine, haloperidol, pyremethamine0.14–0.2 (d.w)Gut clearance, frozen, shelled, cryo-storageUSE (ACN, MeOH, H2O), vortex, USESPE (No data)LC-HRMS/MS70–1300.05–5.70 *[59]
Mussels (Mytilus galloprovincialis, Mytilus edulis)Salicylic acid, clofibric acid, ketoprofen, naproxen, bezafibrate, diclofenac, ibuprofen1 (d.w)Lyophilized, homogenizedPLE (Ottawa sand, ultrapure water) SPE (Oasis MAX cartridges)LC-MS/MS61–902–50[66]
Clams (Ruditapes decussatus, ruditapes philippinarum)Acetaminophen, clofibric acid, atenolol, bezafibrate, carbamazepine, cortisone, diclofenac, erythromycin, fluoxetine, ibuprofen, naproxen, propanolol, sulfadiazine, sulfapyridine, caffeine, sulfamethoxazole, testosterone, gestodene, metoprolol, diethylsilbestrol, estradiol, estriol, estrone, 17α-ethinylestradiol1 (w.w)Depurated, frozen at −20 °C,
homogenized before analysis
Manual shaking (ACN)QuEChERs (Hexane)LC-MS/MS35.2–1180.35–5.86[67]
Mussel (Anodonta), Snail (Bellamya sp.), Bivalve (Corbiculidae)Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine and sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen and indomethacin, clofibric acid, gemfibrozil and bezafibrate, 17β-estradiol and 17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline0.5 (d.w)Freeze-dried, ground, stored at −20 °CPLE (MeOH/ acetone)SPE (HLB cartridges)LC-MS/MS68–1160.01–1.12[56]
Asian clam (Corbicula fluminea)Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol1 (d.w)Washed
(water),
homogenized, freeze-dried, stored at −20 °C
USE (AcONa buffer/ MeOH)SPE (SAX/PSA-HLB tandem cartridges)RRLC-MS/MS47.9–136.70.01–1.99[38]
Mussel (Anodonta woodiana)Roxithromycin, erythromycin, ofloxacin, norfloxaxin, ciprofloxacin, tetracycline, sulfamethoxazole, sulfadiazine, sulfaquinoxaline, ibuprofen, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, trihexylphenidyl, clozapine, quetiapine, aripiprazole, chlorpromazine0.5 (d.w)Freeze-dried, homogenized, stored at −80 °CPLE (MeOH/ acetone)SPE (HLB cartridges)UHPLC-MS/MS66–1280.07–1.67[27]
Clam (Ruditapes decussatus), Cockle (Cerastodema glaucum), Noble pen shell (Pinna nobilis), Sea snail (Murex trunculus)Diclofenac, codeine, carbamazepine, citalopram, diazepam, lorazepam, atenolol, sotalol, propanolol, nadolol, carazolol, hydrochlorothiazide, clopidogrel, salbutamol, levamisole1 (d.w)Freeze-dried, milledPLE (50 °C)GPC, HPLC-DADUHPLC-MS/MS<20–151.90.0004–6[48]
Pen shell (Atrina pectinate Linnaeus), Asian hard clam (Meretrix lusoria), Magallana rivularis (Crassostrea rivvularis Gould).Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfathiazole, sulfisoxazole, trimethoprim, chlortetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin-H2O, leucomycin, roxithromycin, oleandomycin2 muscle
(w.w)
Frozen, muscle dissectedUSE (MeOH/ H2O 0.1 mol L−1 acetic acid)SPE Cartridges (SAX/PSA and HLB cartridges)LC-MS/MS50–1500.05–9.06[42]
Clam (Anadara ferruginea)Atenolol, metoprolol, venlafaxine, chloramphenicol2 (d.w)Washed (water), dissected, homogenized, freeze-dried, stored at −50 °CUSE (MeOH/ H2O)SPE (MCX cartridges)LC-MS/MS68–960.05–0.25[44]
Gastropods
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Snail (Bellamya aeruginosa)Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonomethoxine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, leucomycin, clarithromycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol1 soft
tissues (d.w)
Washed
(water),
homogenized, freeze-dried, stored at −20 °C
USE (AcONa buffer/ MeOH)SPE (SAX/PSA−HLB tandem
cartridges)
RRLC-MS/MS47.9–136.70.01–1.99[38]
Snail (Bellamya aeruginosa)Roxithromycin, erythromycin, ofloxacin, norfloxaxin, ciprofloxacin, tetracycline, sulfamethoxazole, sulfadiazine, sulfaquinoxaline, ibuprofen, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, clozapine, fluvoxamine, trihexylphenidyl, quetiapine, aripiprazole, chlorpromazine0.5 (d.w)Freeze-dried, homogenized, stored at −80 °CPLE (MeOH/ acetone)SPE (HLB
cartridges)
UHPLC-MS/MS66–1280.07–1.67[27]
Conch (Bufonaria perelegans)Sulfadiazine, sulfamerazine, sulfamethazine, trimethoprim, sulfamethoxazole, sulfathiazole, sulfapyridine, ciprofloxacin, norfloxacin, ofloxacin, flumequine, tetracycline, oxytetracycline, isochlortetracycline, penicillin G sodium, cefotaxime sodium, spectinomycin, roxithromycin, erythromycin- H2O, clarithromycin, thiamphenicol, chloramphenicol, paracetamol, naproxen, ibuprofen, ketoprofen, diclofenac acid, carbamazepine, diltiazem, diphenhydramine, gemfibrozil0.2 (d.w)Freeze-dried, ground into powder. The whole body was mixedUSE (ACN/H2O)SPE (PRiME HLB cartridges)UHPLC-MS/MS43–1270.01–1.9[39]
Sea snail (Murex trunculus)Diclofenac, codeine, carbamazepine, citalopram, diazepam, lorazepam, atenolol, sotalol, propanolol, nadolol, carazolol, hydrochlorothiazide, clopidogrel, salbutamol, levamisole1 (d.w)Freeze-dried and milledPLE (MeOH)GPC, HPLC-DADUHPLC-MS/MS<20–151.90.0004–6[48]
Snail (B. tentaculata)Ethinylestradiol, acetaminophen, diclofenac0.35 (d.w)Freeze-dried, poweredUSE (ACN/MeOH 1% acetic acid)No dataHPLC-MS/MS67No data[55]
River limpet (Ancylus fluviatilis)Diclofenac, ibuprofen, 1-OH-ibuprofen, piroxicam, acridone, propyphenazone, sulfamethoxazole, diltiazem, verapamil, norverapamil, hydrochlorothiazide, bezafibrate, gemfibrozil, pravastatin, carbamazepine, 10,11-epoxy-CBZ, 2-OH-CBZ, citalopram, fluoxetine, paroxetine, venlafaxine, azaperone, dexamethasone, metoprolol, propanolol0.1 (d.w)Homogenized with a mortar, kept at 20 °CUSE (MeOH)Protein Precipitation and Phospholipid Removal, PlateOSTRO™ plateUHPLC-MS/MSNo dataNo data[54]
Turritella bacillum Murex trapa, Bufonaria rana (No data)Atenolol, metoprolol, venlafaxine, chloramphenicol2 (d.w)Washed (water), dissected, homogenized, freeze-dried, stored at −50 °CUSE (MeOH/ H2O)SPE (MCX cartridges)LC-MS/MS68–960.05–0.25[44]
(e)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Octopus (Octopus vulgaris)Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, azaperol, azaperone, hydrochlorothiazide, codeine, phenazone, propyphenazone, piroxicam, ronidazole, dimetridazole, metronidazole, azithromycin, erythromycin1 (d.w)Freeze-driedPLE (MeOH/ H2O)GPCUHPLC-MS/MSNo data0.02–0.3[40]
Sepia (Sepia indica), Octopus (Octopus rugosus), Octopus minor (Polypus variabilis), Urotheutis (Loligo oshimai)Sulfamethazine, sulfapyridine, sulfathiazole, sulfanlamide, sulfadiazine, sulfadimethoxine, sulfamonomethoxin, sulfamerazine, sulfamethoxazole, norfloxacin, enoxacin, ofloxacin, ciprofloxacin, enrofloxacin, dehydrated erythromycin, clarithromycin, azithromycin, roxithromycin, florfenicol, chloramphenicol, trimethoprim, lincomycin5 (d.w)Washed (water), dissected, homogenized, stored at −20 °CUSE (ACN, citric acid)SPE (SAX-HLB cartridges)UHPLC-MS/MS47.7–172.70.04–0.24[13]
(f)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-upRecovery (%)LOD
(ng g−1)
Starfish (Marthasterias glacialis), Sea urchins (parechinus angulosus)Phenytoin, lamivudine, acetaminophen, caffeine, sulfamethoxazole, diclofenac, carbamazepine10 (d.w)Rinsed, deshelled, dissected, freeze-driedSoxhlet (MeOH/ Acetone)SPE (HLB cartridges)UHPLC-MS/MS96.1–100.50.62–1.05 ng L−1[37]
(g)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Barnacle (Balanus perforatus) Atenolol, ranitidine, acetaminophen, caffeine, trimethoprim, atrazine, amitriptyline, carbamazepine, chloropheniramine malate, ciprofloxacin, diclofenac, fluoxetine, ibuprofen, metronidazole, sulfamethoxazole, warfarin, cephalexin.1 (d.w)Dried, ground, pooled,
homogenized, freeze-dried
USE (0.1 M acetic acid, MeOH)SPE (Oasis MCX)HPLC-MS/MS30–1030.1–13 ng mL−1[52]
Shrimp (Caridea), Brown crab (Cancer pagurus)Diclofenac, diazepam, sotalol, carbamazepine, citalopram, venlafaxine, azithromycin, sulfamethoxazoleAll edible meat (no data)Pooled, homogenized by grinding, freeze-dried, −20 °CPLE (MeOH/ H2O)SPE (HLB cartridges)UHPLC-MS/MSNo data0.01–0.65[64]
Crabs (Calappa philargius), pen shell Atrina pectinate Linnaeus), shrimps (Fenneropenaeus penicillatus)Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonomethoxine, sulfaquinoxaline, sulfathiazole, sulfisoxazole, trimethoprim, chlortetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin-H2O, leucomycin, roxithromycin, oleandomycin2 muscle
(w.w)
Frozen and muscle dissectedUSE (MeOH/ H2O 0.1 mol L−1 acetic acidSPE (SAX/PSA, HLB cartridges) LC-MS/MS50–1500.05–9.06[42]
No dataKetoprofen, naproxen, flurbiprofen, diclofenac sodium, ibuprofen5 muscle tissue
(w.w)
Chopped into minceUSE (ACN)SPE (CF@UiO−66 NH2)UHPLC-PDA95–116.990.12–3.50 ng mL−1[68]
Goose Barnacle (Pollicipes,) Carb (Necora púber)Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, azaperone, azaperol, hydrochlorothiazide, codeine, phenazone, propyphenazone, piroxicam, ronidazole, dimetridazole, metronidazole, azithromycin, erythromycin1 (d.w)Freeze-driedPLE (MeOH)GPCUHPLC-MS/MSNo data0.03–0.09[40]
Shrimp (Palaemon serratus)Metronidazole, acetaminophen, amoxicillin, acetazolamide, sulfadiazine, atenolol, caffeine, ampicillin, trimethoprim, norfloxacin, ofloxacin, ciprofloxacin, tetracycline, phenazone, metoprolol, spiramycin, azithromycin, sulfamethoxazole, oxolinic acid, erythromycin A, piperacillin, tylosine, cyclophosphamide, carbamazepine, flumequine, oxazepam, clarithromycin, roxithromycin, lorazepam, losartan, nordiazepam, josamycin, ketoprofen, 19-norethind-rone, amiodarone, hydrochlorothiazide, acetylsalicylic acid, niflumic acid, diclofenac, ibuprofen, gemfibrozil0.2 (d.w)Separated abdomen muscle, freeze-driedMechanical shaking (MeOH 1% acetic acid)No dataUHPLC-MS/MS26–1320.1–40.2 *[69]
Freshwater amphipod (Gammarus pulex)Propanolol hydrochloride, ketoprofen, diclofenac salt, bezafibrate, warfarin, flurbiprofen, indomethacin, ibuprofen sodium salt, meclofenamic acid sodium salt, gemfibrozil, atenolol, sulfamethoxazole, sulfamethazine, furosemide, carbamazepone, nimesulide, (+-metoprolol) (+) tartrate, cimetidine, ranitidine, antipyrin, temazepam, diazepam, fluoxetine, nifedipine, mefenamic acid, trimethoprim, caffeine, naproxen0.1 (d.w)Freeze-dried, pulverizedPuLE (ACN)SPE (HLB cartridges)LC-MS/MS41–891–13[70]
Green crab (Carcinus maenas)Alprazolan, amoxicillin, atenolol, atorvastatin, azithromycin, bisoprolol, benzylpenicillin, bezafibrate, carbamazepine, carvedilol, cinoxacin, ciprofloxacin, ceftiofur, cephalexin, chlortetracycline, danofloxacin, diclofenac, doxicycline, enoxacin, enrofloxacin, epi-chlortetracycline, epi-tetracycline, erythromycin, epotetracycline, fenofibrate, flumequine, fluoxetine, furosemide, gabapentin, gemfibrozil, ibersartan, ibuprofen, indapamide, lorazepam, losartan, marbofloxacin, nalidixic acid, norfloxacin, nimesulide, ofloxacin, oxolinic acid, oxytetracycline, paracetamol, propanolol, sertraline, simvastatin, spiramycin, sulfachloropyridazine, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanilamide, sulfapyridine, sulfisomidine, sulfadoxine, sulfamethoxazole, sulfaquinoxaline, sulfathiazole, sulfisoxazole, tetracycline, tilmicosin, trimethoprim, venlafaxine, topiramate2 (w.w)HomogenizedMechanical shaking (ACN, EDTA)No dataUHPLC-MS/MS79.2–109.50.59–4.11[41]
Shrimps: White vannamei prawn, Indian prawn, kiddi shrimp (No data)Amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ketoprofen, ibuprofen, naproxen, sulfamethoxazole, tetracycline2 (w.w)Abdomen muscle
separated, cut into small parts, frozen at −20 °C
Mechanical shaking (ACN, 0.1 M EDTA, hexane)No dataUHPLC-MS/MS81.2–99.40.017–1.371[46]
Shrimp (Harpiosquilla harpax), Crab (Charybdis japonica), Spear shrimp (Parapenaeopsis hardwickii), Giant tiger prawn (Penaeus monodon), Green mud crab (Scylla paramamosain), Prawn (Trachypenaeus sedili)Sulfamethazine, sulfapyridine, sulfathiazole, sulfanilamide, sulfadiazine, sulfadimethoxine, sulfamonomethoxin, sulfamerazine, sulfamethoxazole, norfloxacin, enoxacin, ofloxacin, ciprofloxacin, enrofloxacin, dehydrated, erythromycin, clarithromycin, azithromycin, roxithromycin, florfenicol, chloramphenicol, trimethoprim, lincomycin5 (d.w)Washed
(water),
dissected,
homogenized, stored at −20 °C
USE (ACN, citric acid)SPE (SAX-HLB cartridges)UHPLC-MS/MS47.67–172.670.04–0.24[13]
Mud prawun (Meapenaeus ensis), Smoothshell shrimp (Parapenaeopsis tenella), Three-spot swimming crab (Portunus sanguinolentus), Jinga shrimp (Metapenaeus affinis), Robber harpiosquillid mantis shrimp (Harpiosquilla harpax)Atenolol, metoprolol, venlafaxine, chloramphenicol2 (d.w)Washed
(water),
dissected,
homogenized, freeze-dried, stored at −50 °C
USE (MeOH/ H2O)SPE (MCX cartridges)LC-MS/MS68–960.05–0.25[44]
White shrimp (Exopalaemon modestus) Taihu shrimp (Macrobranchium nipponense)Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine, sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen and indomethacin, clofibric acid, gemfibrozil, bezafibrate, 17β-estradiol,17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline0.5 (d.w)Separated
muscle of shrimp. Freeze-dried, ground and stored at −20 °C
PLE (MeOH/ acetone)SPE (HLB
cartridges)
LC-MS/MS68–1160.01–1.12[56]
Water flea (Gammarus pulex)Ethinylestradiol, acetaminophen, diclofenac0.34 (d.w)Freeze-dry, poweredUSE (ACN/
MeOH 1% acetic acid)
No dataHPLC-MS/MS67No data[55]
Shrimps (Paranthura sp., Macrobrachium nipponense), Crab (Eriocheir sinensis)Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol1 (d.w)Washed
(water),
homogenized, freeze-dried, stored at −20 °C
USE
(sodium acetate buffer/ MeOH)
SPE (SAX/PSA−HLB tandem cartridges)RRLC-MS/MS47.9–136.70.01–1.99[38]
Shrimp (Macrobranchium nipponense)Roxithromycin, erythromycin, ofloxacin, norfloxaxin, ciprofloxacin, tetracycline, sulfadiazine, sulfamethoxazole, sulfaquinoxaline, naproxen, ibuprofen, diclofenac, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, trihexylphenidyl, clozapine, quetiapine, aripiprazole, chlorpromazine0.5 (d.w)Freeze-dried, homogenized, stored at −80 °CPLE (MeOH/ acetone)SPE (HLB cartridges)UHPLC-MS/MS66–1280.07–1.67[27]
Shrimps (No data)Naproxen, methyltestosterone, 17α-hydroxyprogesterone caproate, progesterone2 (w.w)Ground,
homogenized
Manual shaking (ACN 0.1% acetic acid)No dataLC-MS/MS68–1171–2[43]
Crabs: Spectacled box crab (Calappa philargius). Shrimps: Redtail shrimpredtail prawn (Fenneropenaeus penicillatus)Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonomethoxine, sulfaquinoxaline, sulfathiazole, sulfisoxazole, trimethoprim, chlortetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin- H2O, leucomycin, roxithromycin, oleandomycin2 (w.w)Frozen and muscle
dissected
USE (MeOH/ H2O, 0.1 M acetic acid)SPE Cartridges (SAX/PSA, and HLB cartridges) LC-MS/MS50–1500.05–9.06[42]
(h)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD (ng g−1)
Ragworm (Hedyste diversicolor)Alprazolan, amoxicillin, atenolol, atorvastatin, azithromycin, bisoprolol, benzylpenicillin, bezafibrate, carbamazepine, carvedilol, cinoxacin, ciprofloxacin, ceftiofur, cephalexin, chlortetracycline, danofloxacin, diclofenac, doxicycline, enoxacin, enrofloxacin, fluoxetine, epi-chlortetracycline, epi-tetracycline, erythromycin, epotetracycline, fenofibrate, flumequine, furosemide, gabapentin, gemfibrozil, ibersartan, ibuprofen, indapamide, lorazepam, losartan, marbofloxacin, nalidixic acid, norfloxacin, nimesulide, ofloxacin, oxolinic acid, oxytetracycline, paracetamol, propanolol, sertraline, simvastatin, spiramycin, sulfachloropyridazine, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanilamide, sulfapyridine, sulfisomidine, sulfadoxine, sulfamethoxazole, sulfaquinoxaline, sulfathiazole, sulfisoxazole, tetraccline, tilmicosin, trimethoprim, tylosin venlafaxine, topiramate2.0 (w.w)HomogenizedMechanical shaking (ACN, EDTA)No dataUHPLC-MS/MS79.2–109.50.59–4.11[41]
Polychaetas (Perinereis aibuhitensis, Notomastus latericeus, Sabella pavonina). Insecta (Chironomidae sp.). Worm (Limnodrilus hoffmeisteri)Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, clarithromycin, leucomycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol1.0 (d.w)Washed
(water),
homogenized, freeze-dried, stored at −20 °C
USE
(sodium acetate buffer/ MeOH)
SPE (SAX/PSA−HLB tandem cartridges)RRLC-MS/MS47.9–136.70.01–1.99[38]
Porifera: Sponge (Cf. Hyrtios)Caffeine, fluoxetine, norfluoxetine0.25 (d.w)Squeezed, wrapped in aluminium foil, and freeze-driedUSE
(acidified methanol, acetonitrile/ methanol, acetonitrile)
SPE (HLB)UHPLC-MS800.01–10[71]
Insecta (Hydropsyche sp., Phagocata vitta)Diclofenac, ibuprofen, 1-OH-ibuprofen, piroxicam, propyphenazone, sulfamethoxazole, diltiazem, verapamil, norverapamil, hydrochlorothiazide, bezafibrate, gemfibrozil, pravastatin, carbamazepine, acridone, 10,11-epoxy-CBZ, 2-OH-CBZ, citalopram, fluoxetine, paroxetine, venlafaxine, dexamethasone, azaperone, metoprolol, propanolol0.1 (d.w)Homogenized with a mortar, kept at 20 °CUSE (MeOH)Protein
precipitation and
phospholipid removal, PlateOSTRO™ plate
UHPLC-MS/MSNo dataNo data[54]
(i)
SpeciePharmaceuticalsType and Amount of Sample (g)Pre-TreatmentTreatmentAnalysisAnalytical FeaturesRef.
Extraction
Technique
Clean-UpRecovery (%)LOD
(ng g−1)
Surgeonfish (Acanthurus xanthoperus), Smallmouth catfish (Ariopsis felis), Bull fish (Caranx caninus), Milkfish (Chanos chanos), Yellowfin mojarra (Gerres cinereus), Elongated grunt (Haemulopsis elongatus), Silk snapper (Lutjanus peru), White mullet (mugil curema), California halibut (Paralichthys californicus), Bigscale goatfish (Pseudupeneus grandisquamis), Peruvian moonfish (Selene peruvian), Common snook (Centropomus robalito), Reef Lizardfish (Synodus lacertinus), Striped bonito (Sarda orientalis)Diclofenac, ibuprofen, ketorolac, naproxen25–30 (w.w)Minced,
homogenized
USE (No data)No dataUHPLC-MS/MS92–950.97–23.1[72]
Black Crappie (Pomoxis nigromaculatus), Black Redhorse (Moxostoma duquesni), Bluegill (Lepomis macrochirus), Common Carp (Cyprinus carpio), Flathead Catfish (Pylodictis olivaris), Freshwater Drum (Aplodinotus grunniens), Gizzard Shad (Dorosoma cepedianum), Golden Redhorse (Moxostoma erythrurum), Hybrid White x Striped Bass (Morone chrysops x Morone saxatilis), Largemouth Bass (Micropterus salmoides), Mooneye (Hiodontidae), Nothern Hogsucker (Hypentelium nigricans), Quillback Carpsucker (Carpiodes cyprinus), River Carpsucker (Carpiodes carpio), Sauger (Sander canadensis), Saugeye (Sander canadensis x Sander vitreus), Silver Redhorse (Moxostoma anisurum), Smallmouth Bass (Micropetrus dolomieu), Smallmouth Buffalo (Ictiobus bubalus), Smallmouth Redhorse (Moxostoma breviceps), Spotted Sucker (Minytrema melanops), White Bass (Morone chrysops), White Crappie (Pomoxis annularis)Tylosin, lincomycin, furazolidone, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfanilamide, cotinine, carbamazepine, acetaminophen, thiamphenicol, florfenicol, chloramphenicol, caffeine, trimethoprim, azithromycin, triclosan erythrohydrobupropion0.5 (w.w)HomogenizedQuEChERs (ACN/H20 1% acetic acid, MgSO4, AcONa)d-SPE: QuEChERs (MgSO4, PSA, C18)UHPLC-MS/MS67–1480.2–2.6[73]
Perch (Perca fluviatilis), Flounder (Platichthys flesus), Turbot (Scophthalmus maximus), Plaice (Pleuronectes platessa), Cod (Gadus morhua callarias), Bream (Abramis brama), Crucian (Carassius carassius)Bisoprolol, carbamazepine, clarithromycin, erythromycin, fluoxetine, metronidazole, ofloxacin, promazine, sulfadimethoxine, thiabenzadole, tianeptine, acebutolol, 1-Naphthoxyacetic acid, amitriptyline, amlodipine, atenolol, azithromycin, bosentan, cefotaxime, chlorpromazine, chlortetracycline, clindamycin, clomipramine, codeine, desipramine, dextromethorphan, diclofenac, diltiazem, doxepin, drotaverine, duloxetine, enalapril, escitalopram, fenofibrate, fleroxacin, fluconazole, fluvoxamine, guaifenesin, imipramine, labetalol, losartan, levofloxacin, lincomycin, lomefloxacin, lovastatin, maprotiline, mebendazole, metformin, methoxyverapamil, metoprolol, mianserin, mirtazapine, moclobemide, morantel, mycophenolic acid, nalidixic acid, nifedipine, norfloxacin, nortriptyline, omeprazole, opipramol, oxymetazoline, oxytetracycline, pantoprazole, paroxetine, pefloxacin, piperacillin, propafenone, propanolol, protriptyline, pseudophedrine, quinapril, ramipril, ranitidine, roxithromycin, salbutamol, sotalol, sertraline, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfanilamide, sulfathiazole, telmisartan, tetracycline, tiamulin, tianeptine, tolperisone, trazodone, trimethoprim, tylosin, valsartan, verapamil, xylometazoline0.05 (w.w)HomogenizedMechanical shaking (ACN 0.1% formic acid), frozen, centrifuged. Added ammonium acetate and stirredd-SPE: C18 sorbentLC-QTRAPNo data0.01–0.88[74]
Rainbow trout (Oncorhynchus mykis)CitalopramBrain tissue (no data)Brain separatedTissueLyser II at 30 Hz for 10 min. (ACN:i-propanol 3:1 with 0.1% formic acid)No dataLDTD- HRPS97–1080.39[75]
Bream (no data)Bezafibrate, carbamazepine, 2-hydroxicarbamazepine, 10,11-dihydroxy-10,11-dihydrocarbamazepine, cetirizine, citalopram, desmehylcitalopram, clopidogrel, diclofenac, diphenhydraine, fexodenadine, fluconazole, norfluoxetine, furosemide, hydrochlorothiazide, metoprolol, oxazepam, primidone, sertraline, sulfamethoxazole, trimethoprim, N-acetylsulfamethoxazole, telmisartan, tramadol, valsartan, venlafaxine, O-desmethylvenlafaxine.0.05 (fish liver), 0.1 for (fish fillet) (d.w)Homogenized, lyophilizedCell
disruption (4 m/s for
40 s)
d-SPE: Silica gelLC-MS/MS70–1300.05–5.5 ng mL−1 *[76]
Gilthead sea bream (Sparus aurata), Sea bass (Dicentrarchus labrax)Ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, flumequine, marbofloxacin, norfloxacin, ofloxacin, oxolinic acid, sarafloxacin, chlortetracycline, doxycycline, minocycline, oxytetracycline, tetracycline, cefaclor, cefadroxil, cefalexin, cefapirin, ceftiofur, cefazolinamoxicillin, ampicillin, cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, azithromycin, clarithromycin, erythromycin- H2O, tiamulin, tilmicosin, dapsone, sulfachlorpyridazine, sulfaclozine, sulfadiazine, sulfadoxine, sulfadimethoxine, sulfadimidine, sulfaguanidine, sulfameter, sulfamerazine, sulfamethizole, sulfamethoxazole, sulfamethoxypuridazine, sulfaonomethoxine, sulfamoxole, sulfapyridine, sulfaquinoxaline, sulfathiazole, sulfisoxazole, carbadox, olaquindox, florfenicol, thiampenicol, baquiloprin, trimthoprim, lincomycin, novobiocin, rifaximin, albendazole, albendazole oxide, albendazole sulfone, febantel, dimetridazole, fenbendazole, flubendazole, morantel, levamisole, mebendazole, metronidazole, oxfendazole, piperazine, ronidazole, ternidazole, thiabenzadole, triclabendazole, arprinocid, clopidol, decoquinate, diaveridine, ethopabate, halofuginone, imidocarb, lasalocid, monensin, narasin, nigericin, robenidine, salinomycin, 5-hydroxyflunixin, aceclofenac, diclofenac, flunixin, ketoprofen, mefenamic acid, naproxen, meloxicam, niflumic acid, phenylbuntazone, tolfenamic acid, vedaprofen, cimaterol, clenbuterol, clenpenterol, mabuterol, ractopamine, salbutamol, terbutaline, betamethasone, cortisol, cortison, dexamethazone, methyl-thiouracil, methylprednisolone, progesteron, phenyl- thiouracil, propyl-thiouracil, ambroxol, atenolol, atorvastatin, caffeine, carbamazepine, cimetidine, gemfibrozil, haloperidol, indapamide, metformin, metoprolol, paracetamol, propranolol, ranitidine, simvastatin, theophyline, tramadol, triamterene, valsartan, bromhexine, chlorpromazine, colchicine, melamine, coumaphos1.0 (w.w)Homogenized, stored at −20 °CUltrasonic bath (H2O containing 0.1% formic acid, 0.1% EDTA (w/v), MeOH, ACN). Precipitation of
lipids and proteins
Hexane and further low temperatureUHPLC-MS/MSNo data20–200[77]
No dataChloramphenicol, thiamphenicol, tinidazole, metronidazole, malachite green, crystal violet2.0 (d.w)Cleaned, scaled and muscle tissue was taken.
Homogenised, blotted dried, freeze at −20 °C
MAE (ACN)SPE (Activated neutral alumina column), USE (ACN) and DLLME (H2O, CH2Cl2, ACN)UHPLC-MS/MS>874.54–101.3 pg kg−1[78]
Sea bream (Sparus aurata)Erythromycin, N-acetyl sulfamethoxazole, sulfadiazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfamethoxypyridazine, sulfapyridine, sulfaquinoxaline, sulfathiazole, trimethoprim, caffeine, paracetamol, phenazone, carbamazepine, carbamazepine-10,11- epoxide, citalopram, fluoxetine, N desmethyl sertraline, norfluoxetine, O desmethyl venlafaxine, sertraline, venlafaxine1.0 (w.w)FilletedQuEChERs (ACN, MgSO4, NaCl)d-SPE: Z-Sep+UHPLC-MS/-MS62–1070.5–19 *[79]
Sonek (Thyrsites atun), Bonito (Sarda orientalis), Panga (Pachymetopon blochii), Hottentot (Pterogymnus laniarius)Acetaminophen, caffeine, diclofenac, lamivudine, sulfamethoxazole, carbamazepine10 (d.w)Dissection of different parts (fillet, gills, liver and
intestine), freeze-dried and ground
Soxhlet (MeOH/ Acetone)SPE (HLB cartridges)UHPLC-MS/MS69.2–107.50.010–0.036[49]
Sabalo (Prochilodus lineatus), Boga (Megaleporinus obtusidens), Dorado (Salminus brasiliensis)Atenolol, carazolol, metoprolol, nadolol, propanolol, sotalol, diazepam, lorazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-hydroxycarbamazepine, venlafaxine, clopidogrel, salbutamol, codeine, diclofenac, hydrochlorothiazide1.0 (d.w)Pooled,
homogenized
PLE (MeOH)GPCUHPLC-MS/MS26–1150.028–2.7[53]
Carps (Carassius), Japanese medakas (Oryzias latipes), Mosquitofish (Gambussia affinis)Diclofenac, indomethacin, mefenamic acid, ibuprofen, bezafibrate, fenofibric acid, clofibric acid, gemfibrozil, diltiazem, amlodipine, propanolol, carvedilol, losartan, telmisartan, irbesartan, valsartan, rebamipide, cetirizine, diphenhydramine, chlorpheniramine, fexofenadine, epinastine, warfarin, tramadol, O-desmethyl tramadol, N-desmethyl tramadol, sertraline, norsertraline, fluoxetine, norfluoxetine, paroxetine, citalopram, venlafaxine, haloperidol, risperidone, quetiapine, chlorpromazine, aripiprazole, zotepine, phentyon, carbamazepine, clonazepam, diazepam, zolpidem, nitrazepam, oxazepam, flunitrazepam, lorazepam, alprazolam, etizolam, sulfapyridine, sulfamerazine, sulfisozole, sulfamethizole, sulfamethazine, sulfamonomethoxine, sulfamethoxazole, sulfadimethoxine, trimethoprim, lincomycin, fluconazole erythromycin, clarithromycin, rixothromycin, florfenicol200 µL plasma (Carassius carassius) and 0.1 g whole-body tissue (rest)HomogenizedUSE (MeOH/ ACN, and acetic acid- ammonium acetate buffer)SPE (HybridSPE®-Phospholipid cartridge)LC-MS/MS70–1200.0077–0.93 ng mL−1[50]
European eel (Anguilla anguilla)Acetaminophen, atenolol, caffeine, diclofenac, etoricoxib, ibuprofen, naproxen, salicylic acid, triclosan, vildagliptin)1.0 pool (w.w)Pooled, chopped, and homogenizedd-SPE: QuEChERs (ACN, MgSO4, NaCl, DCS and TCD)d-SPE: EMR-Lipid (MgSO4 and NaCl)UHPLC-MS/MS70–1201.4–12[51]
Rainbow trout (Oncorhynchus mykiss)Enrofloxacin, norfloxacin, ciprofloxacin5.0 muscle (w.w)BonedSPE (0.1 M K2HPO4 (pH = 6.5))SPE (Strata XC cartridges) LC-MS/MS91.1–108.93.3–3.6[80]
Nile Tilapia (Oreochromis niloticus), Milk fish (chanos chanos), Common silver biddy (gerres oyena), Golden snapper (lutjanus johni), Emperor fish (ethrinus nebulosus)Atenolol, ranitidine, acetaminophen, caffeine, trimethoprim, atrazine, amitriptyline, carbamazepine, chloropheniramine malate, ciprofloxacin, diclofenac, fluoxetine, ibuprofen, metronidazole, sulfamethoxazole, warfarin, cephalexin.1.0 (d.w)Filleted and cut into small
sections and lyophilized. Pooled and homogenized
USE (0.1 M aqueous acetic
acid/MeOH and NH4OH 0.1 M)
SPE (Oasis MCX
cartridges)
HPLC-MS/MS30–1030.1−13 ng mL−1[52]
Mackerel (Scomber scombrus), tuna (Thunnus thynnus), cod (Gadus morhua), perch (Perca fluviatilis), Pangas catfish (Pangasius pangasius), sole (Solea solea), seabream (Sparus aurata), plaice (Pleuronectes platessa), salmon (Salmonidae)Diclofenac, diazepam, sotalol, carbamazepine, citalopram, venlafaxine, azithromycin, sulfamethoxazoleFillet (no data)Pooled, homogenized by grinding, freeze-dried, kept at −20 °CPLE (MeOH)GPC UHPLC-MS/MSNo data0.01–0.65[64]
Rusell’s snapper (Lutjanus ruselli), Saddle tailed sea perch (Lutjanus erythopterus), Silverfish (Trachinotus ovatus)Sulfadiazine, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfameter, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfamonomethoxine, sulfaquinoxaline, sulfathiazole, sulfisoxazole, trimethoprim, chlortetracycline, doxycycline, methacycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, fleroxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, clarythromycin, erythromycin, leucomycin, roxithromycin, oleandomycin2 (w.w)Frozen, muscle dissectedUSE: MeOH/H2O, 0.1 M acetic acidSPE (SAX/PSA, HLB cartridges) LC-MS/MS50–1500.05–9.06[42]
No dataKetoprofen, naproxen, flurbiprofen, diclofenac, ibuprofen5 (w.w)Chopped into minceUSE (ACN)SPE CF@UiO-66 NH2UHPLC-
PDA
95–116.990.12–3.50 ng mL−1[68]
European pilchardus (Sardina pilchardus)Atenolol, metoprolol, nadolol, propanolol, sotalol, salbutamol, diazepam, carbamazepine, 10,11-epoxycarbamazepine, 2-OH-carbamazepine, citalopram, venlafaxine, alprazolam, azaperone, azaperol, hydrochlorothiazide, codeine, phenazone, propyphenazone, piroxicam, ronidazole, dimetridazole, metronidazole, azithromycin, erythromycin1 (d.w)Freeze-driedPLE (MeOH, 4 extraction cycles)GPCUHPLC-MS/MSNo data0.1–0.6[40]
Hake (Merluccius merluccius), Red mullet (Mullus surmuletus), Sole (Solea solea)Metronidazole, acetaminophen, amoxicillin, acetazolamide, sulfadiazine, atenolol, caffeine, ampicillin, trimethoprim, norfloxacin, ofloxacin, ciprofloxacin, tetracycline, phenazone, metoprolol, spiramycin, azithromycin, sulfamethoxazole, oxolinic acid, erythromycin A, piperacillin, tylosine, cyclophosphamide, carbamazepine, flumequine, oxazepam, clarithromycin, roxithromycin, lorazepam, losartan, nordiazepam, josamycin, ketoprofen, 19-norethind-rone, amiodarone, hydrochlorothiazide, acetylsalicylic acid, niflumic acid, diclofenac, ibuprofen, gemfibrozil0.2 (d.w)Separated white dorsal muscle, freeze-dried.Mechanical shaking (MeOH, 1% acetic acid)No dataUHPLC-MS/MS28–1880.1–40.2 *[69]
Sea bream (Sparus aurata)Trimethoprim, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethoxazole, amitriptyline, clomipramine, imipramine, nortriptyline, eprosartan, irbesartan, losartan, telmisartan, valsartan, propanolol, acetaminophen, diclofenac, ketoprofen, bezafibrate, clofibric acid, carbamazepine, phenytoin0.5 fish muscle and liver; 0.1 fish gills and brain (d.w)Freeze-dried, ground,
homogenized
FUSLE (MeOH/ H2O)SPE (HLB
cartridges)
LC-MS/MS71–1264–48[79]
Mullet (Mugil spp., Mugil curema), Snook (Centropomus spp.)Bezafibrate, carbamazepine, chloramphenicol, diclofenac, 4′-Hydroxydiclofenac, furosemide, gemfibrozil, ibuprofen, indapamide, ketoprofen, naproxen, simvastatin0.5 (d.w)Dissection to obtain the morphometric measures, freeze-driedQuEChERs (ACN,
formic acid, NH4Cl)
d-SPE: QuEChERs (MgSO4, Z-Sep)HPLC-MS/MS70–1330.004–2.16[43]
Golden grey mullet (Liza aurata), Black goby (Gobius niger)Diclofenac, codeine, carbamazepine, citalopram, diazepam, lorazepam, atenolol, sotalol, propanolol, nadolol, carazolol, hydrochlorothiazide, clopidogrel, salbutamol, levamisole1.0 golden grey mullet muscle and black goby; 0.5 liver golden grey mullet (d.w)Freeze-dried, milledPLE (MeOH)GPCUHPLC-MS/MS<20–2000.02–6.6[48]
Yellow grouper (Epinephelus awoara), Orbfish (Ephippus orbis), Topmouth culter (Culter alburnus)Sulfadiazine, sulfamerazine, sulfamethazine, trimethoprim, sulfamethoxazole, sulfathiazole, sulfapyridine, ciprofloxacin, norfloxacin, ofloxacin, flumequine, tetracycline, penicillin G sodium, oxytetracycline, isochlortetracycline, cefotaxime sodium, spectinomycin, roxithromycin, erythromycin- H2O, clarithromycin, thiamphenicol, chloramphenicol, paracetamol, naproxen, ibuprofen, ketoprofen, diclofenac acid, diltiazem, carbamazepine, diphenhydramine, gemfibrozil0.2 (d.w)Freeze-dried, ground into powder. Separation of back muscles and abdominal muscles USE (ACN/H2O)SPE (PRiME HLB cartridges)UHPLC-MS/MS43–1270.01–1.9[39]
Senegal seabram (Diplodus bellottii), European sea bass (Dicentrarchus labrax), Meagre (Argyrosomus regius), Lusitanian toadfish (Halobatrachus didactylus)Alprazolan, amoxicillin, atenolol, atorvastatin, azithromycin, bisoprolol, benzylpenicillin, bezafibrate, carbamazepine, carvedilol, cinoxacin, ciprofloxacin, ceftiofur, cephalexin, chlortetracycline, danofloxacin, diclofenac, doxicycline, enoxacin, enrofloxacin, epi-chlortetracycline, epi-tetracycline, erythromycin, epotetracycline, fenofibrate, flumequine, fluoxetine, furosemide, gabapentin, gemfibrozil, ibersartan, ibuprofen, indapamide, lorazepam, losartan, marbofloxacin, nalidixic acid, norfloxacin, nimesulide, ofloxacin, oxolinic acid, oxytetracycline, paracetamol, propanolol, sertraline, simvastatin, spiramycin, sulfachloropyridazine, sulfadoxine, sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethizole, sulfanilamide, sulfapyridine, sulfisomidine, sulfamethoxazole, sulfaquinoxaline, sulfathiazole, sulfisoxazole, tetracycline, tilmicosin, trimethoprim, tylosin venlafaxine, topiramate2 (w.w)HomogenizedMechanical shaking (ACN, EDTA)No dataUHPLC-MS/MS79.2–109.50.59–4.11[41]
White bream, roach, bleak, perch, asp, pike, pikeperch (No data)Nicotine, haloperidol, pyremethamine0.14–0.2 (d.w)Dissected into fillet and carcass, frozenUSE (ACN, MeOH, H2O) SPE
(No data)
LC-HRMS/MS70–1300.05–5.7 *[59]
Atlantic salmon, Atlantic sea wolf, rainbow trout, Atlantic cod (No data)Amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ketoprofen, ibuprofen, naproxen, sulfamethoxazole, tetracycline2 (w.w)Dorsal muscle separated, cut into small parts, frozen at −20 °CMechanical shaking (ACN, 0.1 M EDTA, hexane)No dataUHPLC-MS/MS81.2–99.40.017–1.371[46]
Flatfish (No data)Albendazole, 2-amino albendazole sulfone, albendazole sulfone, albendazole sulfoxide, febantel, fenbendazole, flubendazole, 2-amino flubendazole, oxfendazole, oxfendazole sulfone, oxibendazole, cefapirin, desacetylcefapirin, cefazoline, cefoperazone, halofuginone, azithromycin, tildipirosin, dimetridazole, ipronidazole, ipronidazole-OH, metronidazole, metronidazole-OH, tinidazole, ronidazole, dicloxacillin, nafcillin, oxacillin, penicillin V, 2-hydroxymethyl−1-methyl-5-nitromidazole, 4-methylaminoantipyrine, sarafloxacin, orbifloxacin, carbadox, quinoxaline-2-carboxylic acid, olaquindox, 3-methylquinoxaline-2-carboxilic acid, dapsone, N-acetyl dapsone, sulfapyridine, arprinocid, azaperol, azaperon, carazolol, caffeine, clenbuterol, clochicine, diphehydramine, flunixin, imidocarb, isometamidium, ketoprofen, loperamide, metoclopramide, nitroxynil, phenacetin, ractopamine, scopolamine, triamcinolone, valnemuline2 (w.w)Homogenized, stored at −20 °CMechanical shaking (Water/ ACN)d-SPE: C18UHPLC-MS/MS73.2–1150.5–5 *[81]
Goldsilk seabream (Acanthopagrus berda), Indo-Malaysian barracuda (Sphyraena jello), Pale-edged stingray (Dasyatis zugei), Japanese scaled sardine (Sardinella zunasi), Yellow seabream (Acanthopagrus latus), Spotted scat (Scatophagus argus), Dotted gizzard shad (Konosirus punctatus), Porgies (Acanthopagrus schleg), Grey large-eye bream (Gymnocranius griseus), Pompano (Trachinotus ovaus), Saddleback silver (Gerres limbatus), Asian seabasses (Lateolabrax maculatus), Silver sea bream (Rhabdosargus sarba), Rough flathead (Grammoplites scaber), Bloch’s gizzard shad (Nematalosa nasus), Gangetic anchovy (Thryssa mysiax), Japanese goatfosh (Upeaneus japonicus), Genus (Johnius fasciatus)Sulfamethazine, sulfapyridine, sulfathiazole, sulfanilamide, sulfadiazine, sulfadimethoxine, sulfamonomethoxin, sulfamerazine, sulfamethoxazole, norfloxacin, enoxacin, ofloxacin, ciprofloxacin, enrofloxacin, dehydrated erythromycin, clarithromycin, azithromycin, roxithromycin, florfenicol, chloramphenicol, trimethoprim, lincomycin5 (d.w)Washed
(water),
dissected,
homogenized, stored at −20 °C
USE (ACN, citric acid)SPE (SAX-HLB cartridges)UHPLC-MS/MS47.67–172.670.04–0.24[13]
Eel, flatfish (No data)Naproxen, methyltestosterone, 17α-hydroxyprogesterone caproate, progesterone2 (w.w)Ground,
homogenized
Manual shaking (ACN 0.1% acetic acid)No dataLC-MS/MS68–1171–2[43]
Silver carp (Hypophthalmichthys molitrix), Bighead carp (Aristichthys nobilis), Common carp (Cyprinus carpio), Goldfish (Carassius auratus), Common skygazer (Cultrichthys erythropterus), Topmouth culter (Culter alburnus), Japanese grenadier anchovy (Coilia ectenes taihuensis), Asian pencil halfbeak (Hyporhamphus intermedius), Clearhead icefish (Protosalanx hyalocranius), Common sawbelly (Hemiculter leucisculus), Bitterling (Rhodeus sinensis), River sand pond snakehead (Odontobutis potamophila), Yellow catfish (Pelteobagrus fulvidraco), Asian swamp eel (Monopterus albus)Sulfachlorpyridazine, sulfadiazine, sulfadoxine, sulfamerazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole, sulfamonomethoxine, sulfapyridine, sulfaquinoxaline, sulfisoxazole, sulfathiazole, trimethoprim, chlortetracycline, doxycycline, oxytetracycline, tetracycline, ciprofloxacin, danofloxacin, enrofloxacin, fleroxacin, difloxacin, lomefloxacin, marbofloxacin, norfloxacin, ofloxacin, pefloxacin, sarafloxacin, azithromycin, leucomycin, clarithromycin, oleandomycin, roxithromycin, tylosin, salinomycin, monensin, florfenicol, chloramphenicol0.2 liver; 1.0 muscle (d.w)Washed
(water),
dissected,
homogenized, freeze-dried, stored at −20 °C
No dataNo dataRRLC-MS/MS37.6–1350.01–1.99[38]
Grass carp (Ctenopharyngodon idellus), Silver carp
(Hypophtha lmichthys molitrix), Common carp (Cyprinus carpio), Crucian carp (Carassius auratus), Bighead carp (Hypophthalmichthys nobilis), Whitebait (Reganisalanx brachyrostralis), Yellow catfish (Pelteobagrus fulvidraco),
Catfish (Silurus asotus), Loach (Paramisgurnus dabryanus)
Roxithromycin, erythromycin, ofloxacin, norfloxaxin, ciprofloxacin, tetracycline, sulfamethoxazole, ibuprofen, sulfaquinoxaline, sulfadiazine, diclofenac, naproxen, bezafibrate, propranolol, ketoconazole, carbamazepine, caffeine, fluoxetine, norfluoxetine, citalopram, paroxetine, sertraline, venlafaxine, duloxetine, bupropion, amitriptyline, fluvoxamine, trihexylphenidyl, clozapine, quetiapine, aripiprazole, chlorpromazine0.5 (d.w)Freeze-dried, homogenized, stored at −80 °CPLE (MeOH/ acetone)SPE (HLB
cartridges)
UHPLC-MS/MS66–1280.07–1.67[27]
Red bigeye (Priacanthus macracanthus), Horn dragonet (Callionymus curvicornis), White-spotted spinefoot (Siganus canaliculatus), Silver jewfish (Pennahia argentata), Burrowing goby (Trypauchen vagina), Threadfin porgy (Evynnis cardinalis), Palad (Solea ovata), Anchovy (Thryssa kammalensis), Bony fishes (Johnius heterolepis), Japanese flathead (Inegocia japonica), Shortnose ponyfish (Leiognathus brevirostris), Big head croaker (Collichthys lucidus), Goatee croaker (Dendrophysa russelii), Yellow croaker (Larimichthys crocea), Largehead hairtail (Trichiurus lepturus)Atenolol, metoprolol, venlafaxine, chloramphenicol2 (d.w)Washed
(water),
dissected,
homogenized, freeze-dried, stored at −50 °C
USE
(MeOH/ H2O)
SPE (Oasis MCX
cartridges)
LC-MS/MS68–960.05–0.25[44]
Silver carp (Hypophtha lmichtyts molitrix), Common carp (Cyprinus carpio), Crucian carp (Carassius auratus), Lake anchovy (Coilia extenes), whitebait (Reganisalanx brachyrostralis), Redfin culter (Cultrichthys erythropterus), Yellow catfish (Pelteobagrus fulvidraco)Roxithromycin, erythromycin, ofloxacin, norfloxacin, ciprofloxacin, tetracycline, chloramphenicol, sulfamerazine and sulfadiazine, sulfamethoxazole, ibuprofen, diclofenac, naproxen, indomethacin, clofibric acid, gemfibrozil, bezafibrate, 17β-estradiol, 17α-ethynylestradiol, propranolol, carbamazepine, ketoconazole, sertraline0.5 (d.w)Separation of liver, brain, gills, and
muscle. Freeze-dried, ground, stored at −20 °C
PLE (MeOH/ acetone)SPE (HLB
cartridges)
LC-MS/MS68–1160.01–1.12[56]
Crucian carp (Carcassius carcassius)Florfenicol, thiamphenicol, ofloxacin, pipemidic acidNo dataLiver, muscle, gill and bile separated, washed with 0.15 M KCl, stored at −20 °CUSE (0.1 M AcONa, MeOH)SPE (SAX/PSA-HLB tandem
cartridges)
LC-MS/MS79.2–91.00.5–0.6[82]
* Limit of quantification; ACN: acetonitrile; DAD: diode-Array detection; DLLME: dispersive liquid-liquid microextraction; DMSO: dimethyl sulfoxide; d-SPE: dispersive solid phase extraction; d.w.: dry weight; FUSLE: focused ultrasonic solid-liquid extraction; GPC: gel permeation chromatography; HPLC: high performance liquid chromatography; HRMS: high resolution mass spectrometry; HRPS: high resolution product scan; LDTD: laser diose thermal desorption; LC: liquid chromatography; MAE: microwave assisted extraction; MeOH: methanol; MS: mass spectrometry; MS/MS: tandem mass spectrometry; PLE: pressurized liquid extraction; PSA: primary secondary amine; PuLE: pulverised liquid extraction; QuEChERs: Quick, easy, cheap, effective, rugged and safe; RRLC: rapid resolution liquid chromatography; UHPLC: ultra-high performance liquid chromatography; USE: ultrasound assisted extraction; w.w.: wet weight.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gómez-Regalado, M.d.C.; Martín-Pozo, L.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E.; Zafra-Gómez, A. An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms. Molecules 2022, 27, 7569. https://doi.org/10.3390/molecules27217569

AMA Style

Gómez-Regalado MdC, Martín-Pozo L, Martín J, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms. Molecules. 2022; 27(21):7569. https://doi.org/10.3390/molecules27217569

Chicago/Turabian Style

Gómez-Regalado, María del Carmen, Laura Martín-Pozo, Julia Martín, Juan Luis Santos, Irene Aparicio, Esteban Alonso, and Alberto Zafra-Gómez. 2022. "An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms" Molecules 27, no. 21: 7569. https://doi.org/10.3390/molecules27217569

APA Style

Gómez-Regalado, M. d. C., Martín-Pozo, L., Martín, J., Santos, J. L., Aparicio, I., Alonso, E., & Zafra-Gómez, A. (2022). An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms. Molecules, 27(21), 7569. https://doi.org/10.3390/molecules27217569

Article Metrics

Back to TopTop