Synergistic Effects of B-F/B-S and Nitrogen Vacancy Co-Doping on g-C3N4 and Photocatalytic CO2 Reduction Mechanisms: A DFT Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Geometric Structure and Thermodynamic Stability
3.2. Electronic Structure and Electronic Properties
3.3. Adsorption Properties of CO2
3.4. Catalytic Performance for the Photocatalytic CO2 Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Ind. Eng. Chem. Res. 2006, 45, 2558–2568. [Google Scholar] [CrossRef]
- Jing, L.; Zhou, W.; Tian, G.; Fu, H. Surface Tuning for Oxide-Based Nanomaterials as Efficient Photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H. Recent Organic Pollution and its Biosensing Methods. Anal. Methods 2010, 2, 430–444. [Google Scholar] [CrossRef]
- Arumugam, M.; Tahir, M.; Praserthdam, P. Effect of Nonmetals (B, O, P, and S) Doped with Porous g-C3N4 for Improved Electron Transfer towards Photocatalytic CO2 Reduction with Water into CH4. Chemosphere 2022, 286, 131765. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, B.; Chen, F.; Liu, C.; Lu, S.; Yu, Y.; Zhang, B. Thermally-Assisted Photocatalytic CO2 Reduction to Fuels. Chem. Eng. J. 2021, 408, 127280. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Liu, Y.; Zhang, C.; Pan, Y. Structural Regulation of Single-Atomic Site Catalysts for Enhanced Electrocatalytic CO2 Reduction. Nano Res. 2022, 15, 4925–4941. [Google Scholar] [CrossRef]
- Kemp, K.C.; Seema, H.; Saleh, M.; Le, N.H.; Mahesh, K.; Chandra, V.; Kim, K.S. Environmental Applications using Graphene Composites: Water Remediation and Gas Adsorption. Nanoscale 2013, 5, 3149–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, J.; Wang, X.; Antonietti, M.; Li, H. Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation. Angew. Chem. Int. Ed. 2010, 49, 3356–3359. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2010, 8, 271–275. [Google Scholar]
- Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. High-Efficiency g-C3N4 Based Photocatalysts for CO2 Reduction: Modification Methods. Adv. Fiber Mater. 2022, 4, 342–360. [Google Scholar] [CrossRef]
- Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-Doped g-C3N4 Achieving Efficient Visible-Light-Driven CO2 Reduction. ACS Sustain. Chem. Eng. 2020, 8, 8214–8222. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Zuo, C.; Li, R.; Zhou, Y.; Zhang, Y.; Wu, B. Few-Layer Porous Carbon Nitride Anchoring Co and Ni with Charge Transfer Mechanism for Photocatalytic CO2 Reduction. J. Colloid Interface Sci. 2022, 625, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Minhas, N.; Mustafa, G.; Kaur, K.; Kaur, N.; Singh, G.; Kaura, A.; Goswamy, J.K. Alkali Metal Doping in B–C3N4 Extends Carrier Lifetime and Increases the CO2 Adsorption: DFT Study and Time-Domain Ab Initio Analysis. J. Phys. Chem. Solids 2022, 170, 110905. [Google Scholar] [CrossRef]
- Zhu, Y.; Gong, L.; Zhang, D.; Wang, X.; Zhang, J.; Zhang, L.; Dai, L.; Xia, Z. Catalytic Origin and Universal Descriptors of Heteroatom-Doped Photocatalysts for Solar Fuel Production. Nano Energy 2019, 63, 103819. [Google Scholar] [CrossRef]
- Yang, J.; Jing, L.; Zhu, X.; Zhang, W.; Deng, J.; She, Y.; Nie, K.; Wei, Y.; Li, H.; Xu, H. Modulating Electronic Structure of Lattice O-Modified Orange Polymeric Carbon Nitrogen to Promote Photocatalytic CO2 Conversion. Appl. Catal. B-Environ. 2022, 320, 122005. [Google Scholar] [CrossRef]
- Hou, J.; Yang, M.; Dou, Q.; Chen, Q.; Wang, X.; Hu, C.; Paul, R. Defect Engineering in Polymeric Carbon Nitride with Accordion Structure for Efficient Photocatalytic CO2 Reduction and H2 Production. Chem. Eng. J. 2022, 450, 138425. [Google Scholar] [CrossRef]
- Li, J.; Li, K.; Du, J.; Yang, H.; Song, C.; Guo, X. Impact of Transition Metal Incorporation on the Photocatalytic CO2 Reduction Activity of Polymeric Carbon Nitride. J. CO2 Util. 2022, 64, 102162. [Google Scholar] [CrossRef]
- Cao, H.; Yan, Y.; Wang, Y.; Chen, F.-F.; Yu, Y. Dual Role of g-C3N4 Microtubes in Enhancing Photocatalytic CO2 Reduction of Co3O4 Nanoparticles. Carbon 2022, 201, 415–424. [Google Scholar] [CrossRef]
- Wu, S.; Mu, Z.; Fu, G.; Zhang, J.; Wang, Y. Multi-Regulation of Charge Separation and Band Structure by a Novel O-doped g-C3N4 Nanosheets Homojunction for Enhanced Photodegradation Performance. J. Alloys Compd. 2022, 918, 165793. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y.; et al. Unveiling the Origin of Boosted Photocatalytic Hydrogen Evolution in Simultaneously (S, P, O)-Codoped and Exfoliated Ultrathin g-C3N4 Nanosheets. Appl. Catal. B-Environ. 2019, 248, 84–94. [Google Scholar] [CrossRef]
- Wang, Y.; Di, Y.; Antonietti, M.; Li, H.; Chen, X.; Wang, X. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids. Chem. Mater. 2010, 22, 5119–5121. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. First Principle Investigation of Halogen-Doped Monolayer g-C3N4 Photocatalyst. Appl. Catal. B-Environ. 2017, 207, 27–34. [Google Scholar] [CrossRef]
- Fu, J.; Liu, K.; Jiang, K.; Li, H.; An, P.; Wang, X.; Qiu, X.; Liu, M. Graphitic Carbon Nitride with Dopant Induced Charge Localization for Enhanced Photoreduction of CO2 to CH4. Adv. Sci. 2019, 6, 1900796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaraa, N.; Kamimura, S.; Tsubota, T.; Ohno, T. Photoelectrochemical CO2 Reduction by a P-Type Boron-Doped g-C3N4 Electrode under Visible Light. Appl. Catal. B-Environ. 2016, 192, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wang, H.; Yang, C.; Li, M.; Zhao, Y.; Chen, F. Post-activation of in situ B-F Codoped g-C3N4 for Enhanced Photocatalytic H2 Evolution. Appl. Surf. Sci. 2018, 441, 621–630. [Google Scholar] [CrossRef]
- Han, X.; Yao, C.; Yuan, A.; Xi, F.; Dong, X.; Liu, J. Enhanced Charge Separation Ability and Visible Light Photocatalytic Performance of Graphitic Carbon Nitride by Binary S, B Co-Doping. Mater. Res. Bull. 2018, 107, 477–483. [Google Scholar] [CrossRef]
- Tay, Q.; Kanhere, P.; Ng, C.F.; Chen, S.; Chakraborty, S.; Huan, A.C.H.; Sum, T.C.; Ahuja, R.; Chen, Z. Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production. Chem. Mater. 2015, 27, 4930–4933. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Yan, L.; Su, Z. DFT Study on Sulfur-Doped g-C3N4 Nanosheets as a Photocatalyst for CO2 Reduction Reaction. J. Phys. Chem. C 2018, 122, 7712–7719. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Z.; Wang, S.; Wang, G.; Gao, X.; Zhang, B.; Xing, S.; Zhao, S.; Qin, Y. Origin of Synergistic Effects in Bicomponent Cobalt Oxide-Platinum Catalysts for Selective Hydrogenation Reaction. Nat. Commun. 2019, 10, 4166. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.F. Synthesis, Catalysis, Surface Chemistry and Structure of Bimetallic Nanocatalysts. Chem. Soc. Rev. 2012, 41, 7977–7979. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.-G.; Xu, Y.; Wang, J.; Zhang, B.; Robertson, J.; Kraft, M.; Xu, R. Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction. ACS Sustain. Chem. Eng. 2017, 5, 7260–7268. [Google Scholar] [CrossRef]
- Wang, K.; Fu, J.; Zheng, Y. Insights into Photocatalytic CO2 Reduction on C3N4: Strategy of Simultaneous B, K Co-Doping and Enhancement by N Vacancies. Appl. Catal. B-Environ. 2019, 254, 270–282. [Google Scholar] [CrossRef]
- Hu, C.; Lin, Y.; Connell, J.W.; Cheng, H.M.; Gogotsi, Y.; Titirici, M.M.; Dai, L. Carbon-Based Metal-Free Catalysts for Energy Storage and Environmental Remediation. Adv. Mater. 2019, 31, 1806128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Low, J.; Long, R.; Xiong, Y. Metal-free electrocatalysts for nitrogen reduction reaction. EnergyChem 2020, 2, 100040. [Google Scholar] [CrossRef]
- Zhou, S.; Pei, W.; Zhao, Y.; Yang, X.; Liu, N.; Zhao, J. Low-Dimensional Non-Metal Catalysts: Principles for Regulating P-Orbital-Dominated Reactivity. npj Comput. Mater. 2021, 7, 186. [Google Scholar] [CrossRef]
- Xue, D.; Xia, H.; Yan, W.; Zhang, J.; Mu, S. Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction. Nano-Micro Lett. 2020, 13, 5. [Google Scholar] [CrossRef]
- Mesquita, W.D.; de Jesus, S.R.; Oliveira, M.C.; Ribeiro, R.A.P.; Santos, M.R.d.C.; Junior, M.G.; Longo, E.; Gurgel, M.F.d.C. Barium strontium titanate-based perovskite materials from DFT Perspective: Assessing the Structural, Electronic, Vibrational, Dielectric and Energetic Properties. Theor. Chem. Acc. 2021, 140, 27. [Google Scholar] [CrossRef]
- Cao, L.; Wang, R.; Wang, D. Synthesis and Characterization of Sulfur Self-Doped g-C3N4 with Efficient Visible-Light Photocatalytic Activity. Mater. Lett. 2015, 149, 50–53. [Google Scholar] [CrossRef]
- Ge, L.; Han, C.; Xiao, X.; Guo, L.; Li, Y. Enhanced Visible Light Photocatalytic Hydrogen Evolution of Sulfur-Doped Polymeric g-C3N4 Photocatalysts. Mater. Res. Bull. 2013, 48, 3919–3925. [Google Scholar] [CrossRef]
- Kresse, G.; Kresse, G. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Ruan, L.; Zhu, Y.; Qiu, L.; Lu, Y. Mechanical Properties of Doped g-C3N4—A First-Principle Study. Vacuum 2014, 106, 79–85. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmiiller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals And Semiconductors using a Plane-Wave Basis Set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Liu, A.Y.; Cohen, M.L. Prediction of New Low Compressibility Solids. Science 1989, 245, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Wen, L.; Huang, M.; Zhang, Y.; Lu, Y.; Chen, Z. How does the B,F-Monodoping and B/F-Codoping Affect the Photocatalytic Water-Splitting Performance of g-C3N4? Phys. Chem. Chem. Phys. 2016, 18, 19217–19226. [Google Scholar] [CrossRef]
- Azofra, L.M.; MacFarlane, D.R.; Sun, C. A DFT Study of Planar vs. Corrugated Graphene-Like Carbon Nitride (g-C3N4) and its Role in the Catalytic Performance of CO2 Conversion. Phys. Chem. Chem. Phys. 2016, 18, 18507–18514. [Google Scholar] [CrossRef]
- Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.M.; Cheng, H.-M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648. [Google Scholar] [CrossRef]
- Luo, K.; Chen, S.; Duan, C. Indirect-Direct Band Gap Transition of Two-Dimensional Arsenic Layered Semiconductors—Cousins of Black Phosphorus. Sci. China Phys. Mech. 2015, 58, 087301–087306. [Google Scholar] [CrossRef]
- Zuluaga, S.; Liu, L.H.; Shafiq, N.; Rupich, S.M.; Veyan, J.F.; Chabal, Y.J.; Thonhauser, T. Structural Band-Gap Tuning in g-C3N4. Phys. Chem. Chem. Phys. 2015, 17, 957–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, W.; Wang, J.W.; Fan, W.J.; Song, Z.G.; Tan, C.S. The Theoretical Direct-Band-Gap Optical Gain of Germanium Nanowires. Sci. Rep. 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Chen, R.; Wu, X.; Fan, M.; Liu, Y.; Le, Z.; Jiang, S.; Song, S. Boron Doped g-C3N4 with Enhanced Photocatalytic UO22+ Reduction Performance. Appl. Surf. Sci. 2016, 360, 1016–1022. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A Fantastic Graphitic Carbon Nitride (g-C3N4) Material: Electronic Structure, Photocatalytic and Photoelectronic Properties. J. Photochem. Photobiol. C Photochem. Rev. 2014, 20, 33–50. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Liu, Y.; Cen, W.; Luo, X. Functional Group Effects on the HOMO-LUMO Gap of g-C3N4. Nanomaterials 2018, 8, 589. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2-Reduction Performance. Appl. Catal. B-Environ. 2015, 176–177, 44–52. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, G.; Song, X.; Zhao, S.; Zhang, J. Synergistic Effects of B-F/B-S and Nitrogen Vacancy Co-Doping on g-C3N4 and Photocatalytic CO2 Reduction Mechanisms: A DFT Study. Molecules 2022, 27, 7611. https://doi.org/10.3390/molecules27217611
Fu G, Song X, Zhao S, Zhang J. Synergistic Effects of B-F/B-S and Nitrogen Vacancy Co-Doping on g-C3N4 and Photocatalytic CO2 Reduction Mechanisms: A DFT Study. Molecules. 2022; 27(21):7611. https://doi.org/10.3390/molecules27217611
Chicago/Turabian StyleFu, Gang, Xiaozhuo Song, Siwei Zhao, and Jiaxu Zhang. 2022. "Synergistic Effects of B-F/B-S and Nitrogen Vacancy Co-Doping on g-C3N4 and Photocatalytic CO2 Reduction Mechanisms: A DFT Study" Molecules 27, no. 21: 7611. https://doi.org/10.3390/molecules27217611
APA StyleFu, G., Song, X., Zhao, S., & Zhang, J. (2022). Synergistic Effects of B-F/B-S and Nitrogen Vacancy Co-Doping on g-C3N4 and Photocatalytic CO2 Reduction Mechanisms: A DFT Study. Molecules, 27(21), 7611. https://doi.org/10.3390/molecules27217611