New Non-Fullerene Acceptor with Extended Conjugation of Cyclopenta [2,1-b:3,4-b’] Dithiophene for Organic Solar Cells
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis
2.1.1. Synthesis of Compound 2
2.1.2. Synthesis of Compound 3
2.1.3. Synthesis of M-Me-ITIC Acceptors
3. Result and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.Y.; Marder, S.R.; Zhan, X. NFAsfor organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kan, B.; Sun, Y.; Wang, Y.; Xia, R.; Ke, X.; Yi, Y.-Q.; Li, C.; Yip, H.-L.; Wan, X.; et al. Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Adv. Mater. 2018, 30, e1707508. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ma, X.; Zhang, Z.; Yu, J.; Zhou, J.; Yin, X.; Yang, L.; Geng, R.; Zhu, R.; Zhang, F.; et al. Dithieno[3,2-b:2′,3′-d]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells. Adv. Mater. 2018, 30, e1707150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, H.S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720–731. [Google Scholar] [CrossRef]
- Kim, G.; Sun, C.; Lee, D.; Choi, G.; Park, J.S.; Seo, S.; Lee, S.; Choi, D.; Kwon, S.; Cho, S.; et al. Effect of the Selective Halogenation of Small Molecule Acceptors on the Blend Morphology and Voltage Loss of High-Performance Solar Cells. Adv. Funct. Mater. 2022, 32, 2201150. [Google Scholar] [CrossRef]
- Kim, C.; Chen, S.; Park, J.S.; Kim, G.-U.; Kang, H.; Lee, S.; Phan, T.N.-L.; Kwon, S.-K.; Kim, Y.-H.; Kim, B.J. Green solvent-processed, high-performance organic solar cells achieved by outer side-chain selection of selenophene-incorporated Y-series acceptors. J. Mater. Chem. A 2021, 9, 24622–24630. [Google Scholar] [CrossRef]
- Labanti, C.; Sung, M.J.; Luke, J.; Kwon, S.; Kumar, R.; Hong, J.; Kim, J.; Bakulin, A.A.; Kwon, S.-K.; Kim, Y.-H.; et al. Selenium-Substituted Non-Fullerene Acceptors: A Route to Superior Operational Stability for Organic Bulk Heterojunction Solar Cells. ACS Nano 2021, 15, 7700–7712. [Google Scholar] [CrossRef]
- Ouyang, X.; Peng, R.; Ai, L.; Zhang, X.; Ge, Z. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat. Photon. 2015, 9, 520–524. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, K.; Xia, R.; Wu, Z.; Sun, C.; Cao, J.; Qian, L.; Li, W.; Liu, S.; Huang, F.; et al. High-Performance Polymer Tandem Solar Cells Employing a New n-Type Conjugated Polymer as an Interconnecting Layer. Adv. Mater. 2016, 28, 4817–4823. [Google Scholar] [CrossRef]
- Xu, X.; Li, Z.; Wang, Z.; Li, K.; Feng, K.; Peng, Q. 10.20% Efficiency polymer solar cells via employing bilaterally hole-cascade diazaphenanthrobisthiadiazole polymer donors and electron-cascade indene-C70 bisadduct acceptor. Nano Energy 2016, 25, 170–183. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. [Google Scholar] [CrossRef]
- Liu, T.; Troisi, A. What Makes Fullerene Acceptors Special as Electron Acceptors in Organic Solar Cells and How to Replace Them. Adv. Mater. 2012, 25, 1038–1041. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2010, 13, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Y.; Lin, H.; Liu, Y.; Jiang, K.; Mu, C.; Ma, T.; Lai, J.Y.L.; Hu, H.; Yu, D.; et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 2014, 8, 520–525. [Google Scholar] [CrossRef]
- Shi, H.; Fu, W.; Shi, M.; Ling, J.; Chen, H. A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells. J. Mater. Chem. A 2014, 3, 1902–1905. [Google Scholar] [CrossRef]
- Bin, H.; Yao, J.; Yang, Y.; Angunawela, I.; Sun, C.; Gao, L.; Ye, L.; Qiu, B.; Xue, L.; Zhu, C.; et al. High-Efficiency All-Small-Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilyl-Thienyl Conjugated Side Chains. Adv. Mater. 2018, 30, e1706361. [Google Scholar] [CrossRef]
- Huang, J.; Carpenter, J.H.; Li, C.-Z.; Yu, J.-S.; Ade, H.; Jen, A.K.-Y. Highly Efficient Organic Solar Cells with Improved Vertical Donor-Acceptor Compositional Gradient Via an Inverted Off-Center Spinning Method. Adv. Mater. 2015, 28, 967–974. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Zhao, X.; Zhang, T.; Zhang, J.; Yang, X. Achieving an Efficiency Exceeding 10% for Fullerene-based Polymer Solar Cells Employing a Thick Active Layer via Tuning Molecular Weight. Adv. Funct. Mater. 2017, 28, 1705257. [Google Scholar] [CrossRef]
- Li, W.; Cai, J.; Cai, F.; Yan, Y.; Yi, H.; Gurney, R.S.; Liu, D.; Iraqi, A.; Wang, T. Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination. Nano Energy 2018, 44, 155–163. [Google Scholar] [CrossRef]
- Yuan, J.; Qiu, L.; Zhang, Z.-G.; Li, Y.; Chen, Y.; Zou, Y. Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%. Nano Energy 2016, 30, 312–320. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Y.; Luo, Q.; Lin, Y.; Tan, H.; Wang, H.; Ma, C.-Q. A 9,9′-spirobi[9H-fluorene]-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. Chem. Commun. 2015, 52, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Z.; Shi, M.; Li, C.-Z.; Chen, H. Molecular electron acceptors for efficient fullerene-free organic solar cells. Phys. Chem. Chem. Phys. 2016, 19, 3440–3458. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yao, H.; Yang, Y.; Zhang, Y.; Zhao, W.; Hou, J. New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Guo, C.; Li, D.; Li, W.; Du, B.; Chen, M.; Wang, Y.; Liu, D.; Wang, T. Molecular Ordering and Performance of Ternary Nonfullerene Organic Solar Cells via Bar-Coating in Air with an Efficiency over 13%. ACS Appl. Mater. Interfaces 2019, 11, 35827–35834. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, S.; Liu, T.; Hao, P.; Liu, Z.; Li, F.; Yang, L.-M.; Zhang, Y.; Li, D.; Yang, S.; et al. Non-fullerene acceptor engineering with three-dimensional thiophene/selenophene-annulated perylene diimides for high performance polymer solar cells. J. Mater. Chem. C 2018, 6, 12601–12607. [Google Scholar] [CrossRef]
- Yao, C.; Liu, B.; Zhu, Y.; Hong, L.; Miao, J.; Hou, J.; He, F.; Meng, H. Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22 eV and high PCEs of over 13%. J. Mater. Chem. A 2019, 7, 10212–10216. [Google Scholar] [CrossRef]
- Lee, S.; Park, K.H.; Lee, J.; Back, H.; Sung, M.J.; Lee, J.; Kim, J.; Kim, H.; Kim, Y.; Kwon, S.; et al. Achieving Thickness-Insensitive Morphology of the Photoactive Layer for Printable Organic Photovoltaic Cells via Side Chain Engineering in Nonfullerene Acceptors. Adv. Energy Mater. 2019, 9, 1900044. [Google Scholar] [CrossRef]
- Lin, Y.; Zhan, X. Designing Efficient Non-Fullerene Acceptors by Tailoring Extended Fused-Rings with Electron-Deficient Groups. Adv. Energy Mater. 2015, 5, 1501063. [Google Scholar] [CrossRef]
- Wadsworth, A.; Moser, M.; Marks, A.; Little, M.S.; Gasparini, N.; Brabec, C.J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2018, 48, 1596–1625. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Isakova, A.; Abudulimu, A.; Berg, M.V.D.; Kwon, O.K.; Meixner, A.J.; Park, S.Y.; Zhang, D.; Gierschner, J.; Lüer, L. Designing high performance all-small-molecule solar cells with non-fullerene acceptors: Comprehensive studies on photoexcitation dynamics and charge separation kinetics. Energy Environ. Sci. 2017, 11, 211–220. [Google Scholar] [CrossRef]
- Jia, J.; Liu, G.; Jia, T.; Wang, Z.; Lin, K.; Li, Y.; Huang, F.; Cao, Y. Fused nonacyclic electron acceptors with additional alkyl side chains for efficient polymer solar cells. Org. Electron. 2019, 68, 151–158. [Google Scholar] [CrossRef]
- Gao, W.; Liu, T.; Luo, Z.; Zhang, L.; Ming, R.; Zhong, C.; Ma, W.; Yan, H.; Yang, C. Regulating exciton bonding energy and bulk heterojunction morphology in organic solar cells via methyl-functionalized non-fullerene acceptors. J. Mater. Chem. A 2019, 7, 6809–6817. [Google Scholar] [CrossRef]
- Song, J.; Li, C.; Ye, L.; Koh, C.; Cai, Y.; Wei, D.; Woo, H.Y.; Sun, Y. Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. J. Mater. Chem. A 2018, 6, 18847–18852. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, L.; Gautam, B.; Bin, H.-J.; Lin, J.-D.; Wu, F.-P.; Zhang, Z.; Jiang, Z.-Q.; Zhang, Z.-G.; Gundogdu, K.; et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 2017, 10, 1610–1620. [Google Scholar] [CrossRef]
- Liu, D.; Kan, B.; Ke, X.; Zheng, N.; Xie, Z.; Lu, D.; Liu, Y. Extended Conjugation Length of Nonfullerene Acceptors with Improved Planarity via Noncovalent Interactions for High-Performance Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1801618. [Google Scholar] [CrossRef]
- Liang, J.; Yin, P.; Zheng, T.; Wang, G.; Zeng, X.; Cui, C.; Shen, P. Conjugated side-chain optimization of indacenodithiophene-based nonfullerene acceptors for efficient polymer solar cells. J. Mater. Chem. C 2019, 7, 10028–10038. [Google Scholar] [CrossRef]
- Tu, Q.; Ma, Y.; Zhou, X.; Ma, W.; Zheng, Q. Enhancing the Photovoltaic Performance of Ladder-Type Dithienocyclopentacarbazole-Based Nonfullerene Acceptors through Fluorination and Side-Chain Engineering. Chem. Mater. 2019, 31, 5953–5963. [Google Scholar] [CrossRef]
- Yan, C.; Wu, Y.; Wang, J.; Li, R.; Cheng, P.; Bai, H.; Zhan, Z.; Ma, W.; Zhan, X. Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes Pigments 2017, 139, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, Y.-T.; Li, C.-H.; Chang, S.-L.; Heo, S.; Tajima, K.; Cheng, Y.-J.; Hsu, C.-S. Haptacyclic Carbazole-Based Ladder-Type Nonfullerene Acceptor with Side-Chain Optimization for Efficient Organic Photovoltaics. ACS Appl. Mater. Interfaces 2017, 9, 42035–42042. [Google Scholar] [CrossRef]
- Liu, T.; Gao, W.; Wang, Y.; Yang, T.; Ma, R.; Zhang, G.; Zhong, C.; Ma, W.; Yan, H.; Yang, C. Unconjugated Side-Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Non-Fullerene Organic Solar Cells: Insights into the Fine-Tuning of Acceptor Properties and Micromorphology. Adv. Funct. Mater. 2019, 29, 1902155. [Google Scholar] [CrossRef]
- Yan, C.; Wang, W.; Lau, T.-K.; Li, K.; Wang, J.; Liu, K.; Lu, X.; Zhan, X. Enhancing the performance of non-fullerene organic solar cells via end group engineering of fused-ring electron acceptors. J. Mater. Chem. A 2018, 6, 16638–16644. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Hu, H.; Zhang, G.; Ade, H.; Yan, H. Chlorinated Thiophene End Groups for Highly Crystalline Alkylated Non-Fullerene Acceptors toward Efficient Organic Solar Cells. Chem. Mater. 2019, 31, 6672–6676. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.; Ade, H.; Hou, J. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. J. Am. Chem. Soc. 2018, 140, 7159–7167. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Xiao, Y.; Xiao, T.; Zhu, R.; Yan, C.; Fu, Y.; Lu, G.; Lu, X.; Marder, S.R.; et al. Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. J. Am. Chem. Soc. 2018, 140, 9140–9147. [Google Scholar] [CrossRef]
- Jia, B.; Wang, J.; Wu, Y.; Zhang, M.; Jiang, Y.; Tang, Z.; Russell, T.P.; Zhan, X. Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. J. Am. Chem. Soc. 2019, 141, 19023–19031. [Google Scholar] [CrossRef]
- Jiang, K.; Wei, Q.; Lai, J.Y.L.; Peng, Z.; Kim, H.K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule 2019, 3, 3020–3033. [Google Scholar] [CrossRef]
- Kim, G.; Sun, C.; Park, J.S.; Lee, H.G.; Lee, D.; Lee, J.; Kim, H.J.; Cho, S.; Kim, Y.; Kwon, S.; et al. Importance of Terminal Group Pairing of Polymer Donor and Small-Molecule Acceptor in Optimizing Blend Morphology and Voltage Loss of High-Performance Solar Cells. Adv. Funct. Mater. 2021, 31, 2100870. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lu, Y.J.; Tsao, C.S.; Saeki, A.; Li, J.X.; Chen, C.H.; Wang, H.C.; Chen, H.C.; Meng, D.; Wu, K.H.; et al. Enhancing photovoltaic performance by tuning the domain sizes of a small-molecule acceptor by side-chain-engineered polymer donors. J. Mater. Chem. A 2019, 7, 3072–3082. [Google Scholar] [CrossRef]
- Wang, H.-C.; Chen, C.-H.; Li, R.-H.; Lin, Y.-C.; Tsao, C.-S.; Chang, B.; Tan, S.; Yang, Y.; Wei, K.-H. Engineering the Core Units of Small-Molecule Acceptors to Enhance the Performance of Organic Photovoltaics. Sol. RRL 2020, 4, 2000253. [Google Scholar] [CrossRef]
- Meng, D.; Wang, R.; Lin, J.B.; Yang, J.L.; Nuryyeva, S.; Lin, Y.; Yuan, S.; Wang, Z.; Zhang, E.; Xiao, C.; et al. Chlorinated Spiroconjugated Fused Extended Aromatics for Multifunctional Organic Electronics. Adv. Mater. 2021, 33, e2006120. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Meng, L.; Gao, H.; Guo, Z.; Zheng, N.; Xie, Z.; Zhang, H.; Li, C.; Wan, X.; Chen, Y. Achieving organic solar cells with efficiency over 14% based on a non-fullerene acceptor incorporating a cy-clopentathiophene unit fused backbone. J. Mater. Chem. A 2020, 8, 5194–5199. [Google Scholar] [CrossRef]
- Lu, L.; Luo, Z.; Xu, T.; Yu, L. Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells. Nano Lett. 2012, 13, 59–64. [Google Scholar] [CrossRef]
- Koster, L.J.A.; Kemerink, M.; Wienk, M.M.; Maturová, K.; Janssen, R.A.J. Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells. Adv. Mater. 2011, 23, 1670–1674. [Google Scholar] [CrossRef] [Green Version]
- Xing, S.; Wang, H.; Zheng, Y.; Yu, J. Förster resonance energy transfer and energy cascade with a favorable small molecule in ternary polymer solar cells. Sol. Energy 2016, 139, 221–227. [Google Scholar] [CrossRef]
- Yao, E.-P.; Chen, C.-C.; Gao, J.; Liu, Y.; Chen, Q.; Cai, M.; Hsu, W.-C.; Hong, Z.; Li, G.; Yang, Y. The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2014, 130, 20–26. [Google Scholar] [CrossRef]
- Suman, S.; Singh, S.P. Impact of end groups on the performance of non-fullerene acceptors for organic solar cell applications. J. Mater. Chem. A 2019, 7, 22701–22729. [Google Scholar] [CrossRef]
Materials | HOMOcv (eV) | LUMOopt (eV) | λmaxsol (nm) | λmaxfilm (nm) | λonset (nm) | ε (mol−1 cm−1 L) | Egopt (eV) |
---|---|---|---|---|---|---|---|
m-Me-ITIC | −5.60 | −4.20 | 760 | 788 | 885 | 2.04 × 105 | 1.40 |
m-Me-ITIC-Me | −5.58 | −4.19 | 756 | 789 | 890 | 1.88 × 105 | 1.39 |
m-Me-ITIC-F | −5.63 | −4.29 | 775 | 830 | 920 | 1.83 × 105 | 1.35 |
m-Me-ITIC-Cl | −5.66 | −4.35 | 790 | 846 | 930 | 1.72 × 105 | 1.33 |
Photoactive Materials | VOC (V) | JSC (mA·cm−2) | EQE (mA·cm−2) | FF | PCEbest/PCEavga (%) |
---|---|---|---|---|---|
b PBDB-T:m-Me-ITIC | 0.90 (0.89 ± 0.01) | 12.00 (9.97 ± 1.22) | 12.64 | 0.54 (0.54 ± 0.05) | 5.90 (4.79 ± 0.41) |
b PBDB-T:m-Me-ITIC-Me | 0.92 (0.92 ± 0.01) | 8.10 (6.90 ± 0.80) | 8.30 | 0.49 (0.48 ± 0.02) | 3.60 (3.05 ± 0.33) |
c PBDB-T:m-Me-ITIC-F | 0.78 (0.78 ± 0.00) | 22.80 (21.04 ± 1.38) | 22.80 | 0.67 (0.68 ± 0.02) | 11.80 (11.07 ± 0.50) |
d PBDB-T:m-Me-ITIC-Cl | 0.75 (0.75 ± 0.00) | 21.50 (18.64 ± 1.91) | 22.19 | 0.67 (0.69 ± 0.02) | 10.80 (9.74 ± 0.79) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Lee, S.; Choi, C.; Jeong, S.; Oh, J.; Kim, J.-H.; Kim, J.; Baek, H.E.; Kang, H.; Jang, S.-Y.; et al. New Non-Fullerene Acceptor with Extended Conjugation of Cyclopenta [2,1-b:3,4-b’] Dithiophene for Organic Solar Cells. Molecules 2022, 27, 7615. https://doi.org/10.3390/molecules27217615
Sun C, Lee S, Choi C, Jeong S, Oh J, Kim J-H, Kim J, Baek HE, Kang H, Jang S-Y, et al. New Non-Fullerene Acceptor with Extended Conjugation of Cyclopenta [2,1-b:3,4-b’] Dithiophene for Organic Solar Cells. Molecules. 2022; 27(21):7615. https://doi.org/10.3390/molecules27217615
Chicago/Turabian StyleSun, Cheng, Sanseong Lee, Changeun Choi, Soyeong Jeong, Juhui Oh, Ju-Hyeon Kim, Jaeyoung Kim, Ho Eon Baek, Hongkyu Kang, Soo-Young Jang, and et al. 2022. "New Non-Fullerene Acceptor with Extended Conjugation of Cyclopenta [2,1-b:3,4-b’] Dithiophene for Organic Solar Cells" Molecules 27, no. 21: 7615. https://doi.org/10.3390/molecules27217615
APA StyleSun, C., Lee, S., Choi, C., Jeong, S., Oh, J., Kim, J. -H., Kim, J., Baek, H. E., Kang, H., Jang, S. -Y., Choi, H. H., Lee, K., & Kim, Y. -H. (2022). New Non-Fullerene Acceptor with Extended Conjugation of Cyclopenta [2,1-b:3,4-b’] Dithiophene for Organic Solar Cells. Molecules, 27(21), 7615. https://doi.org/10.3390/molecules27217615