A Comparative Study between Screen-Printed and Solid-Contact Electrodes for the Stability-Indicating Determination of Bromazepam
Abstract
:1. Introduction
2. Results
2.1. Manufactured Membranes’ Calibration and Performance Evaluation
2.2. Determination of BRZ in Presence of Its Main Degradation Product
2.3. Determination of BRZ in Pharmaceutical Preparation
2.4. Statistical Analysis with a Reported Method
3. Discussion
4. Materials and Methods
4.1. Instrumentation
4.2. Chemicals, Reagents, and Dosage Form
4.3. Standard Solutions
4.3.1. BRZ Standard Solutions
4.3.2. Preparation of Sodium Tetraphenylborate (Na-TPB) Solution
4.4. Procedures
4.4.1. Preparation of the BRZ-SCE
4.4.2. Preparation of the BRZ-SPE
4.4.3. Sensors’ Conditioning and Calibration
4.4.4. Sensors’ Optimization and Validation
4.5. Application
4.5.1. Quantification of BRZ in Presence of Its Degradation Product
4.5.2. Determination of BRZ in Pharmaceutical Preparation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Budavaried, S. The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals, 13th ed.; Merck & Co. Inc.: Kenilworth, NJ, USA, 2002. [Google Scholar]
- Sweetman, S.C. Martindale: The Complete Drug Reference, 36th ed.; The Pharmaceutical Press: London, UK, 2009; p. 1039. [Google Scholar]
- Williams, D.A.; Lemke, T.L. Foye’s Principle of Medicinal Chemistry, 6th ed.; Lippincott Williams & Wilkins: New York, NY, USA, 2008. [Google Scholar]
- Laurence, D.R.; Bennett, P.N. Clinical Pharmacology, 5th ed.; Elsevier: Amsterdam, The Netherland, 1980; pp. 274–275. [Google Scholar]
- Trevor, A.J.; Katzung, B.G.; Masters, S.B. Katzung and Trevor’s Pharmacology, 8th ed.; McGraw-Hill: Boston, MA, USA, 2007. [Google Scholar]
- Rang, H.P.; Flower, R.J.; Ritter, J.M. Rang and Dale’s Pharmacology, 6th ed.; Elsevier Health: Amsterdam, The Netherlands, 2007; pp. 535–542. [Google Scholar]
- British Pharmacopoeia Commission, British Pharmacopoeia, The British Pharmacopoeia Secretariat of the Medicines and Healthcare Products Regulatory Agency. 2009. Available online: https://www.gov.uk/government/organisations/british-pharmacopoeia (accessed on 13 September 2021).
- Salem, A.A.; Barsoum, B.N.; Izake, E.L. Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples. Spectrochim. Acta A 2004, 60, 771–780. [Google Scholar] [CrossRef]
- Salem, A.A.; Barsoum, B.N.; Izake, E.L. Determination of bromazepam and clonazepam in pure and pharmaceutical dosage forms using chloranil as a charge transfer complexing agent. Anal. Lett. 2002, 35, 1631–1648. [Google Scholar] [CrossRef]
- Berzas Nevado, J.J.; Castañeda Peñalvo, G.; Guzmán Bernardo, F.J. A contribution on the determination of bromazepam by its ferrous complex formation. Anal. Lett. 1997, 30, 2515–2525. [Google Scholar] [CrossRef]
- El Khateeb, S.Z.; Amer, M.M.; Abdel Razek, S.A. Stability-indicating method for the determination of bromazepam via its mercury (II), silver (I) and zirconium (IV) chelates. Anal. Lett. 1998, 31, 631–649. [Google Scholar] [CrossRef]
- Sultan, S.M.; Hassan, Y.A.; Ibrahim, K.E. Sequential injection spectrophotometric assay of bromazepam complexed with iron (II) in hydrochloric acid with chemometric optimization. Talanta 1999, 50, 841–849. [Google Scholar] [CrossRef]
- Attia, M.S. Spectrofluorimetric quantification of bromazepam using a highly selective optical probe based on Eu3+−bromazepam complex in pharmaceutical and serum samples. Spectrochim. Acta A 2009, 74, 972–976. [Google Scholar] [CrossRef]
- Gonçalves, J.C.S.; Monteiro, T.M.; de Miranda Neves, C.S.; da Silva Gram, K.R.; Volpato, N.M.; Silva, V.A.; Noël, F. On-line solid-phase extraction coupled with high-performance liquid chromatography and tandem mass spectrometry (SPE-HPLCMS-MS) for quantification of bromazepam in human plasma: An automated method for bioequivalence studies. Ther. Drug Monit. 2005, 27, 601–607. [Google Scholar] [CrossRef]
- Al-Hawasli, H.; Al-Khayat, M.A.; Al-Mardini, M.A. Development of a validated HPLC method for the separation and analysis of bromazepam, medazepam and midazolam mixture. J. Pharm. Anal. 2012, 2, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Podilsky, G.; Berger-Gryllaki, M.; Testa, B.; Pannatier, A. Development and validation of an HPLC method for the simultaneous monitoring of bromazepam and omeprazole. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 878–890. [Google Scholar] [CrossRef]
- Laurito, T.L.; Mendes, G.D.; Santagada, V.; Caliendo, G.; de Moraes, M.E.A.; De Nucci, G. Bromazepam determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: A highly sensitive and specific tool for bioequivalence studies. J. Mass Spectrom. 2004, 39, 168–176. [Google Scholar] [CrossRef]
- He, W.; Parissis, N.; Kiratzidis, T. Determination of benzodiazepines in forensic samples by HPLC with photo-diode array detection. J. Forensic Sci. 1998, 43, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Degreef, M.; Berry, E.M.; Covaci, A.; Maudens, K.E.K.; van Nuijs, A.L.N. Qualitative and semi-quantitative screening of selected psychoactive drugs in blood: Usefulness of liquid chromatography—Triple quadrupole and quadrupole time-of-flight mass spectrometry in routine toxicological analyses. J. Chromatogr. B 2022, 1206, 123279. [Google Scholar] [CrossRef]
- Uddin, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the determination of six 1,4-benzodiazepines in pharmaceuticals and human biological fluids. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1258–1282. [Google Scholar] [CrossRef]
- Uddin, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Validation of SPE-HPLC determination of 1,4-benzodiazepines and metabolites in blood plasma, urine, and saliva. J. Separ. Sci. 2008, 31, 3704–3717. [Google Scholar] [CrossRef]
- Chèze, M.; Villain, M.; Pépin, G. Determination of bromazepam, clonazepam and metabolites after a single intake in urine and hair by LC–MS/MS: Application to forensic cases of drug facilitated crimes. Forensic Sci. Inter. 2004, 145, 123–130. [Google Scholar] [CrossRef]
- Albishri, H.M.; Aldawsari, N.A.; Abd El-Hady, D. A Simple and Reliable Liquid Chromatographic Method for Simultaneous Determination of Five Benzodiazepine Drugs in Human Plasma. Analytica 2022, 3, 251–265. [Google Scholar] [CrossRef]
- Mercolini, L.; Mandrioli, R.; Amore, M.; Raggi, M.A. Separation and HPLC analysis of 15 benzodiazepines in human plasma. J. Separ. Sci. 2008, 31, 2619–2626. [Google Scholar] [CrossRef]
- Ming, D.S.; Heathcote, J. A rapid and accurate UPLC/MS/MS method for the determination of benzodiazepines in human urine. J. Chromatogr. B 2011, 879, 421–428. [Google Scholar] [CrossRef]
- Boukhabza, A.; Lugnier, A.A.J.; Kintz, P.; Tracqui, A.; Mangin, P.; Chaumont, A.J. High performance liquid chromatographic determination of bromazepam in human plasma. Analyst 1989, 114, 639–641. [Google Scholar] [CrossRef]
- Aebi, B.; Sturny-Jungo, R.; Bernhard, W.; Blanke, R.; Hirsch, R. Quantitation using GC–TOF-MS: Example of bromazepam. Forensic Sci. Int. 2002, 128, 84–89. [Google Scholar] [CrossRef]
- Inoue, H.; Maeno, Y.; Iwasa, M.; Matoba, R.; Nagao, M. Screening and determination of benzodiazepines in whole blood using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci. Int. 2000, 113, 367–373. [Google Scholar] [CrossRef]
- Papoutsis, I.I.; Athanaselis, S.A.; Nikolaou, P.D.; Pistos, C.M.; Spiliopoulou, C.A.; Maravelias, C.P. Development and validation of an EI–GC–MS method for the determination of benzodiazepine drugs and their metabolites in blood: Applications in clinical and forensic toxicology. J. Pharm. Biomed. Anal. 2010, 52, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Okuyama, T. Application of capillary electrophoresis to the simultaneous screening and quantitation of benzodiazepines. J. Chromatogr. B 1996, 678, 331–337. [Google Scholar] [CrossRef]
- Hancu, G.; Gáspár, A.; Gyéresi, A. Separation of 1,4-benzodiazepines by micellar electrokinetic capillary chromatography. J. Bioch. Bioph. Meth. 2007, 69, 251–259. [Google Scholar] [CrossRef]
- Al Attas, A.S. Construction and analytical application of ion selective Bromazepam sensor. Int. J. Electrochem. Sci. 2009, 4, 20–29. [Google Scholar]
- Salem, A.E.A.; Barsoum, B.N.; Saad, G.R.; Izake, E.L. Potentiometric determination of some 1,4-benzodiazepines in pharmaceutical preparations and biological samples. J. Electroanal. Chem. 2002, 536, 1–9. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Arab, H.H. Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. Chemosensors 2022, 10, 74. [Google Scholar] [CrossRef]
- Salem, A.A.; Barsoum, B.N.; Izake, E.L. Potentiometric determination of diazepam, bromazepam and clonazepam using solid contact ion-selective electrodes. Anal. Chim. Acta 2003, 498, 79–91. [Google Scholar] [CrossRef]
- Darwish, H.W.; Ali, N.A.; Naguib, I.A.; El Ghobashy, M.R.; Al-Hossaini, A.M.; Abdelrahman, M.M. Stability indicating spectrophotometric methods for quantitative determination of bromazepam and its degradation product. Spectrochim. Acta A 2020, 238, 118433. [Google Scholar] [CrossRef]
- Sawada, H.; Hara, A. Studies on metabolism of bromazepam. VI. Reduction of 2-(2-amino-5-bromobenzoyl) pyridine, a metabolite of bromazepam, in the rabbit, rat, and Guinea pig. Drug Metab. Dispos. 1978, 6, 205–212. [Google Scholar]
- Schwartz, M.A.; Postma, E.; Kolis, S.J.; Leon, A.S. Metabolites of bromazepam, a benzodiazepine, in the human, dog, rat, and mouse. J. Pharm. Sci. 1973, 62, 1776–1779. [Google Scholar] [CrossRef] [PubMed]
- El-Khateeb, S.Z.; Amer, S.M.; Abdel-Razek, S.A.; Amer, M.M. Stability-indicating method for the determination of bromazepam and delorazepam via proton magnetic resonance spectroscopy. Spectrosc. Lett. 1997, 30, 915–932. [Google Scholar] [CrossRef]
- Panderi, I.; Archontaki, H.; Gikas, E.; Parissi-Poulou, M. Acidic hydrolysis of bromazepam studied by high performance liquid chromatography. Isolation and identification of its degradation products. J. Pharm. Biomed. Anal. 1998, 17, 327–335. [Google Scholar] [CrossRef]
- Darwish, H.W.; Ali, N.A.; Naguib, I.A.; El Ghobashy, M.R.; Al-Hossaini, A.M.; Abdelrahman, M.M. Development and validation of a stability-indicating RP-HPLC-DAD method for the determination of bromazepam. PLoS ONE 2021, 16, e0244951. [Google Scholar] [CrossRef] [PubMed]
- Coşofre, V.V.; Buck, R.P. Recent advances in pharmaceutical analysis with potentiometric membrane sensors. Crit. Rev. Anal. Chem. 1993, 24, 1–58. [Google Scholar]
- Topcu, C. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite. Talanta 2020, 161, 623–631. [Google Scholar] [CrossRef]
- Topcu, C.; Isildak, I. Novel Micro Flow Injection Analysis System for the Potentiometric Determination of Tetraborate Ions in Environmental Samples. Anal. Lett. 2021, 54, 854–866. [Google Scholar] [CrossRef]
- Özbek, O.; Isildak, O. Potentiometric PVC Membrane Sensor for the Determination of Anti-Epileptic Drug Levetiracetam in Pharmaceutical Formulations. Chem. Sel. 2022, 7, e202103988. [Google Scholar] [CrossRef]
- Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3984. [Google Scholar]
- Li, M.; Li, Y.; Li, D.; Long, Y. Recent Developments and applications of screen-printed electrodes in environmental assays—A review. Anal. Chim. Acta 2012, 734, 31–44. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Pchelintsev, N.A.; Millner, P.A. A novel procedure for rapid surface functionalisation and mediator loading of screen-printed carbon electrodes. Anal. chim. Acta 2008, 612, 190–197. [Google Scholar] [CrossRef]
- Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Ma, T.S.; Hassan, S.M. Organic Analysis Using Ion Selective Electrodes. Academic Press: London, UK, 1982. [Google Scholar]
- Attiyat, A.S.; Christian, G.D.; Hallman, J.L.; Bartsch, R.A. A comparative study of the effect of o-nitrophenyl octyl ether and o-nitrophenyl pentyl ether as plasticizers on the response and selectivity of carrier-based liquid membrane ion-selective electrodes. Talanta 1988, 35, 789–794. [Google Scholar] [CrossRef]
- Nie, L.; Liu, D.; Yao, S. Potentiometric determination of diazepam with a diazepam ion-selective electrode. J. Pharm. Biomed. Anal. 1990, 8, 379–383. [Google Scholar] [CrossRef]
Parameter | BRZ-SPE | BRZ-SCE | Published Method [32] | Published Method [33] | Published Method [34] | Published Method [35] |
---|---|---|---|---|---|---|
Slope (mV decade−1) * | 59.70 ± 0.40 | 58.10 ± 0.60 | 52.00 ± 0.10 | 50.00–65.00 | 57.00 ± 0.22 | 50.00–65.00 |
Response time (S) | 10–20 | 10–20 | >20 | - | 10–20 | |
Working pH range | 3.0–6.0 | 3.0–6.0 | 3.0 | 3.0–7.0 | 3.0–6.0 | 4.0–7.0 |
Concentration range (M) | 1.0 × 10−6–1.0 × 10−2 | 1.0 × 10−6–1.0 × 10−2 | 1.0 × 10−4–1.0 × 10−2 | 1.0 × 10−6–1.0 × 10−4 | 1.0 × 10−6–1.0 × 10−3 | - |
Stability (days) | 28 | 28 | 28 | 28 | 21 | 28 |
Accuracy (Mean a ± SD) | 100.07 ± 1.06 | 100.42 ± 0.93 | NA | - | 99.71 ± 0.84 | - |
Intra-day precision (Mean a ± SD) | 101.55 ± 1.21 | 101.11 ± 1.45 | NA | - | - | - |
Inter-day precision (Mean a ± SD) | 102.13 ± 1.45 | 101.79 ± 1.69 | NA | - | - | - |
Limit of detection (M) | 0.8 × 10−6 | 0.8 × 10−6 | 30.0 × 10−6 | - | 0.8 × 10−6 | - |
Ruggedness † | 99.51 * ± 1.28 | 98.41 * ± 1.66 | NA | - | 102.96 * ± 1.97 | - |
Robustness Ψ | 101.14 * ± 1.13 | 101.64 * ± 0.84 | NA | - | 99.36 * ± 0.59 | - |
Interferent | BRZ-SPE * | BRZ-SCE * |
---|---|---|
Na+ | 2.50 × 10−3 | 2.30 × 10−3 |
K+ | 3.60 × 10−3 | 3.50 × 10−3 |
NH4+ | 1.30 × 10−3 | 1.50 × 10−3 |
BRZ degradation product (ABBP) | 4.10 × 10−3 | 4.20 × 10−3 |
Diazepam | 4.90 × 10−3 | 5.10 × 10−3 |
Clonazepam | 4.40 × 10−3 | 4.60 × 10−3 |
Intact BRZ | Degradation Product (ABBP) | BRZ-SPE Recovery% ± S.D. * | BRZ-SCE Recovery% ± S.D. * |
---|---|---|---|
90% | 10% | ||
9.0 × 10−3 M | 1.0 × 10−3 M | 100.89 ± 0.53 | 102.34 ± 0.93 |
70% | 30% | ||
7.0 × 10−4 M | 3.0 × 10−4 M | 101.55 ± 0.73 | 101.46 ± 0.78 |
50% | 50% | ||
5.0 × 10−5 M | 5.0 × 10−5 M | 100.93 ± 0.68 | 101.24 ± 0.55 |
30% | 70% | ||
3.0 × 10−6 M | 7.0 × 10−6 M | 101.59 ± 0.56 | 102.43 ± 0.76 |
20% | 80% | ||
2.0 × 10−4 M | 8.0 × 10−4 M | 99.83 ± 0.78 | 102.14 ± 0.57 |
10% | 90% | ||
1.0 × 10−4 M | 9.0 × 10−4 M | 101.44 ± 0.66 | 101.55 ± 0.53 |
Item | BRZ-SPE | BRZ-SCE | |
---|---|---|---|
Added (M) | Found (M) ± S.D. * | Found (M) ± S.D. * | |
Lexotanil® tablets labeled to contain 3 mg BRZ per tablet (Batch No. M1139B01 and A506716) | 10.0 × 10−4 | 10.1 × 10−4 ± 0.77 | 10.1 × 10−4 ± 0.72 |
Item | BRZ-SPE | BRZ-SCE | Reported Method [23] * |
---|---|---|---|
Mean ± S.D. | 100.07 ± 1.06 | 100.42 ± 0.93 | 99.81 ± 0.59 |
RSD | 1.06 | 0.93 | 0.59 |
Variance | 1.12 | 0.86 | 0.35 |
n | 5 | 5 | 5 |
Student’s t-test (2.30) | 0.48 | 1.24 | - |
F-test (6.39) | 3.25 | 2.50 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Gawad, S.A.; Altharawi, A. A Comparative Study between Screen-Printed and Solid-Contact Electrodes for the Stability-Indicating Determination of Bromazepam. Molecules 2022, 27, 7616. https://doi.org/10.3390/molecules27217616
Abdel-Gawad SA, Altharawi A. A Comparative Study between Screen-Printed and Solid-Contact Electrodes for the Stability-Indicating Determination of Bromazepam. Molecules. 2022; 27(21):7616. https://doi.org/10.3390/molecules27217616
Chicago/Turabian StyleAbdel-Gawad, Sherif A., and Ali Altharawi. 2022. "A Comparative Study between Screen-Printed and Solid-Contact Electrodes for the Stability-Indicating Determination of Bromazepam" Molecules 27, no. 21: 7616. https://doi.org/10.3390/molecules27217616
APA StyleAbdel-Gawad, S. A., & Altharawi, A. (2022). A Comparative Study between Screen-Printed and Solid-Contact Electrodes for the Stability-Indicating Determination of Bromazepam. Molecules, 27(21), 7616. https://doi.org/10.3390/molecules27217616