Radiochemical Feasibility of Mixing of 99mTc-MAA and 90Y-Microspheres with Omnipaque Contrast
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of 99mTc-MAA with Omnipaque Contrast Media
3.2. Preparation of 90Y-Microsphere in Various Concentrations of Omnipaque in D5 or Saline Solution
3.3. Microscopic Imaging of 90Y-Microspheres
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lau, W.Y.; Ho, S.; Leung, T.W.; Chan, M.; Ho, R.; Johnson, P.J.; Li, A.K. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 583–592. [Google Scholar] [CrossRef]
- Lee, E.W.; Thakor, A.S.; Tafti, B.A.; Liu, D.M. Y90 selective internal radiation therapy. Surg. Oncol. Clin. N. Am. 2015, 24, 167–185. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, C.; Greally, M.; McCaffrey, J.; Hughes, P.; Lawler, L.L.P.; O’Connell, M.; Geoghegan, T.; Farrelly, C. Single-institution experience with selective internal radiation therapy (SIRT) for the treatment of unresectable colorectal liver metastases. Ir. J. Med. Sci. 2019, 188, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Hickey, R.; Lewandowski, R.; Salem, R. Yttrium-90 radioembolization is a viable treatment option for unresectable, chemorefractory colorectal cancer liver metastases: Further evidence in support of a new treatment paradigm. Ann. Surg. Oncol. 2015, 22, 706–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, J.S.; Kennedy, A.S.; Thomadsen, B. Selective internal radiation therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, S62–S73. [Google Scholar] [CrossRef]
- Uthappa, M.C.; Ravikumar, R.; Gupta, A. Selective internal radiation therapy: 90Y (yttrium) labeled microspheres for liver malignancies (primary and metastatic). Indian J. Cancer 2011, 48, 18–23. [Google Scholar] [CrossRef]
- Singh, P.; Anil, G. Yttrium-90 radioembolization of liver tumors: What do the images tell us? Cancer Imaging 2014, 13, 645–657. [Google Scholar] [CrossRef]
- Garrean, S.; Muhs, A.; Bui, J.T.; Blend, M.J.; Owens, C.; Helton, W.S.; Espat, N.J. Complete eradication of hepatic metastasis from colorectal cancer by Yttrium-90 SIRT. World J. Gastroenterol. 2007, 13, 3016–3019. [Google Scholar] [CrossRef]
- Mafeld, S.; Littler, P.; Hayhurst, H.; Manas, D.; Jackson, R.; Moir, J.; French, J. Liver resection after selective internal radiation therapy with yttrium-90: Safety and outcomes. J. Gastrointest Cancer. 2020, 51, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.C. Radioembolization for the treatment of hepatocellular carcinoma. Clin. Mol. Hepatol. 2017, 23, 109–114. [Google Scholar] [CrossRef]
- Riaz, A.; Awais, R.; Salem, R. Side effects of yttrium-90 radioembolization. Front. Oncol. 2014, 4, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pini, S.; Pinto, C.; Angelelli, B.; Giampalma, E.; Blotta, A.; Di Fabio, F.; Santini, D.; Golfieri, R.; Martoni, A.A. Multimodal sequential approach in colorectal cancer liver metastases: Hepatic resection after yttrium-90 selective internal radiation therapy and cetuximab rescue treatment. Tumori 2010, 96, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Spina, J.C.; Hume, I.; Pelaez, A.; Peralta, O.; Quadrelli, M.; Garcia Monaco, R. Expected and unexpected imaging findings after 90Y transarterial radioembolization for liver tumors. Radiographics 2019, 39, 578–595. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadehfar, H.; Sabet, A.; Biermann, K.; Muckle, M.; Brockmann, H.; Kuhl, C.; Wilhelm, K.; Biersack, H.-J.; Ezziddin, S. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J. Nucl. Med. 2010, 51, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, Y.H.; Tan, A.E.H.; Burgmans, M.C.; Irani, F.G.; Khoo, L.S.; Lo, R.H.G.; Tay, K.H.; Tan, B.S.; Chow, P.K.H.; Ng, D.C.E.; et al. Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J. Nucl. Med. 2012, 53, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancho, L.; Rodriguez-Fraile, M.; Bilbao, J.I.; Arteta, C.B.; Iñarrairaegui, M.; Moran, V.; Sangro, B. Is a technetium-99m macroaggregated albumin scan essential in the workup for selective internal radiation therapy withyYttrium-90? An analysis of 532 patients. J. Vasc. Interv. Radiol. 2017, 28, 1536–1542. [Google Scholar] [CrossRef]
- Gayed, I.; Tripathee, N.; Kaur, H.; Cohen, A. Quantification of Tc-99m macroaggregated albumin liver perfusion as a predictor of tumor response to intra-arterial therapy with yttrium 90 spheres. Am. J. Interv. Oncol. 2021, 5, 20. [Google Scholar] [CrossRef]
- Gates, V.L.; Singh, N.; Lewandowski, R.J.; Spies, S.; Salem, R. Intraarterial hepatic SPECT/CT imaging using 99mTc-macroaggregated albumin in preparation for radioembolization. J. Nucl. Med. 2015, 56, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Gates, V.L.; Salem, R.; Lewandowski, R.J. Principles of radioembolization. Interv. Oncol. Princ. Pract. Image-Guided Cancer Ther. 2016, 31, 44. [Google Scholar]
- Kafrouni, M.; Allimant, C.; Fourcade, M.; Vauclin, S.; Guiu, B.; Mariano-Goulart, D.; Bouallègue, F.B. Analysis of differences between 99mTc-MAA SPECT- and 90Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res. 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-C.; Kim, Y.-H.; Uhm, S.-H.; Seo, Y.S.; Park, E.-K.; Oh, S.-Y.; Jeong, E.; Lee, S.; Choe, J.-G. Radiation safety issues in Y-90 microsphere selective hepatic radioembolization therapy: Possible radiation exposure from the patients. Nucl. Med. Mol. Imaging 2010, 44, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Wagemans, M.E.H.M.; Braat, A.J.A.T.; Smits, M.L.J.; Bruijnen, R.C.G.; Lam, M.G.E.H. Nuclear medicine therapy of liver metastasis with radiolabelled spheres. In Nuclear Medicine and Molecular Imaging; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 117–126. [Google Scholar] [CrossRef]
- Collinson, E.; Dainton, F.S.; Kroh, J. Effects of linear energy transfer on the radiolysis of water and heavy water. Nature 1960, 187, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Son, M.H.; Ha, L.N.; Bang, M.H.; Bae, S.; Giang, D.T.; Thinh, N.T.; Paeng, J.C. Diagnostic and prognostic value of 99mTc-MAA SPECT/CT for treatment planning of 90Y-resin microsphere radioembolization for hepatocellular carcinoma: Comparison with planar image. Sci. Rep. 2021, 11, 3207. [Google Scholar] [CrossRef] [PubMed]
Sample | Omnipaque (mL) | MAA (mL) | 99mTc-MAA (mCi) | Time Elapsed (Hrs) | ||
---|---|---|---|---|---|---|
1 | 3 | 0.7 | 5.30 | 3.5 | ||
2 | 5 | 1.2 | 2.94 | 4 | ||
3 | 5 | 1.5 | 6.67 | 4 | ||
4 | 5 | 1.2 | 7.32 | 4 | ||
5 | 5 | 2.1 | 6.55 | 4 | ||
6 | 5 | 2.5 | 6.28 | 4 | ||
Before Addition of Omnipaque | After Addition of Omnipaque | |||||
Omnipaque (mL) | Lower Half | Upper Half | %RCP | Lower Half | Upper Half | %RCP |
3 | 263,315 | 130 | 99.95 | 18,478 | 255 | 98.64 |
5 | 138,511 | 250 | 99.82 | 17,484 | 340 | 98.09 |
5 | 93,462 | 174 | 99.81 | 56,710 | 567 | 99.01 |
5 | 125,548 | 284 | 99.77 | 10,764 | 204 | 98.14 |
5 | 130,513 | 178 | 99.86 | 35,848 | 405 | 98.88 |
5 | 101,388 | 239 | 99.76 | 48,381 | 181 | 99.63 |
Average | 99.83 | Average | 98.73 | |||
SD | 0.068 | SD | 0.578 |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
Omnipaque conc and vol, D5 or Saline vol. added | 100%, 5 mL | 75%, 3.75 mL; D5, 1.25 mL | 50%, 2.5 mL; D5, 2.5 mL | 75%, 3.75 mL; saline, 1.25 mL | 50%, 2.5 mL; saline, 2.5 mL |
1 | 98.35% | 94.67% | 98.11% | 90.02% | 93.61% |
2 | 97.59% | 94.63% | 96.35% | 97.02% | 97.08% |
3 | 98.29% | 98.17% | 98.48% | 97.85% | 96.31% |
Average | 98.08% | 95.82% | 97.65% | 94.96% | 95.67% |
SD | 0.004 | 0.020 | 0.011 | 0.043 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-T.; Ngam, P.I.; Phua, V.J.X.; Yu, S.W.K.; Apoorva, G.; Ng, D.C.E.; Huang, H.L. Radiochemical Feasibility of Mixing of 99mTc-MAA and 90Y-Microspheres with Omnipaque Contrast. Molecules 2022, 27, 7646. https://doi.org/10.3390/molecules27217646
Yang C-T, Ngam PI, Phua VJX, Yu SWK, Apoorva G, Ng DCE, Huang HL. Radiochemical Feasibility of Mixing of 99mTc-MAA and 90Y-Microspheres with Omnipaque Contrast. Molecules. 2022; 27(21):7646. https://doi.org/10.3390/molecules27217646
Chicago/Turabian StyleYang, Chang-Tong, Pei Ing Ngam, Vanessa Jing Xin Phua, Sidney Wing Kwong Yu, Gogna Apoorva, David Chee Eng Ng, and Hian Liang Huang. 2022. "Radiochemical Feasibility of Mixing of 99mTc-MAA and 90Y-Microspheres with Omnipaque Contrast" Molecules 27, no. 21: 7646. https://doi.org/10.3390/molecules27217646
APA StyleYang, C. -T., Ngam, P. I., Phua, V. J. X., Yu, S. W. K., Apoorva, G., Ng, D. C. E., & Huang, H. L. (2022). Radiochemical Feasibility of Mixing of 99mTc-MAA and 90Y-Microspheres with Omnipaque Contrast. Molecules, 27(21), 7646. https://doi.org/10.3390/molecules27217646