Structural Dynamics of Chloromethanes through Computational Spectroscopy: Combining INS and DFT
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tetrachloromethane—CCl4
2.2. Trichloromethane—CHCl3
2.3. Dichloromethane—CH2Cl2
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araujo, C.F.; Coutinho, J.A.P.; Nolasco, M.M.; Parker, S.F.; Ribeiro-Claro, P.J.A.; Rudić, S.; Soares, B.I.G.; Vaz, P.D. Inelastic neutron scattering study of reline: Shedding light on the hydrogen bonding network of deep eutectic solvents. Phys. Chem. Chem. Phys. 2017, 19, 17998–18009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilela, C.; Freire, C.S.R.; Araújo, C.; Rudić, S.; Silvestre, A.J.D.; Vaz, P.D.; Ribeiro-Claro, P.J.A.; Nolasco, M.M. Understanding the structure and dynamics of nanocellulose-based composites with neutral and ionic poly(methacrylate) derivatives using inelastic neutron scattering and DFT calculations. Molecules 2020, 25, 1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro-Claro, P.J.A.; Rudić, S.; Silvestre, A.J.D.; Vaz, P.D.; Sousa, A.F. Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules 2018, 51, 3515–3526. [Google Scholar] [CrossRef]
- Nolasco, M.M.; Araujo, C.F.; Vaz, P.D.; Amado, A.M.; Ribeiro-Claro, P. Vibrational dynamics of crystalline 4-phenylbenzaldehyde from INS spectra and periodic DFT calculations. Molecules 2020, 25, 1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Claro, P.J.A.; Vaz, P.D.; Nolasco, M.M.; Gil, F.P.S.C.; de Carvalho, L.A.E.; Marques, M.P.M.; Amado, A.M. New Insights on the Vibrational Dynamics of 2-Methoxy-, 4-Methoxy- and 4-Ethoxy-Benzaldehyde from INS Spectra and Periodic DFT Calculations. Materials 2021, 14, 4561. [Google Scholar] [CrossRef] [PubMed]
- Adilina, I.B.; Aulia, F.; Fitriady, M.A.; Oemry, F.; Widjaya, R.R.; Parker, S.F. Computational and spectroscopic studies of carbon disulfide. Molecules 2020, 25, 1901. [Google Scholar] [CrossRef] [PubMed]
- Zachariou, A.; Hawkins, A.P.; Collier, P.; Howe, R.F.; Lennon, D.; Parker, S.F. The methyl torsion in unsaturated compounds. ACS Omega 2020, 5, 2755–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Claro, P.J.A.; Vaz, P.D.; Nolasco, M.M.; Amado, A.M. Understanding the vibrational spectra of crystalline isoniazid: Raman, IR and INS spectroscopy and solid-state DFT study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 452–459. [Google Scholar] [CrossRef]
- Barone, V.; Alessandrini, S.; Biczysko, M.; Cheeseman, J.R.; Clary, D.C.; McCoy, A.B.; DiRisio, R.J.; Neese, F.; Melosso, M.; Puzzarini, C. Computational molecular spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 38. [Google Scholar] [CrossRef]
- Shimanouchi, T. Tables of Molecular Vibrational Frequencies. Consolidated Volume II. J. Phys. Chem. Ref. Data 1977, 6, 993. [Google Scholar] [CrossRef]
- Anderson, A.; Andrews, B.; Torrie, B.H. Raman and infrared studies of the lattice vibrations of some halogen derivatives of methane. J. Chim. Phys. 1985, 82, 99–109. [Google Scholar] [CrossRef]
- Anderson, A.; Torrie, B.H.; Tse, W.S. Raman and far infrared spectra of the solid phases of carbon tetrachloride. Chem. Phys. Lett. 1979, 61, 119–123. [Google Scholar] [CrossRef]
- Anderson, A.; Torrie, B.H.; Danagher, D.J.; Laurin, D.G.; White, J.K.; Zung, W.W.E. Raman and far-infrared spectra of crystalline methylene chloride. J. Raman Spectrosc. 1986, 17, 325–328. [Google Scholar] [CrossRef]
- Shurvell, H.F. The Raman spectrum of solid CCl4 and isotopically enriched C35Cl4. Spectrochim. Acta Part A Mol. Spectrosc. 1971, 27, 2375–2383. [Google Scholar] [CrossRef]
- Cook, C.F.; Person, W.B.; Hall, L.C. Absolute infrared intensities of the fundamental absorption bands in solid CCl4. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 1425–1433. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Hunter, B.K. Raman spectra and factor-group analyses of crystalline group IV tetrachlorides. J. Chem. Soc. A Inorg. Phys. Theor. Chem. 1971, 2999–3006. [Google Scholar] [CrossRef]
- Kenney, J.T.; Powell, F.X. Difference bands in the raman spectrum of carbon tetrachloride. J. Chem. Phys. 1967, 47, 3270–3275. [Google Scholar] [CrossRef]
- Abramowitz, S.; Comeford, J.J. Fermi resonance in condensed CF4 and CCl4. Spectrochim. Acta 1965, 21, 1479–1486. [Google Scholar] [CrossRef]
- Chakraborty, T.; Rai, S.N. Comparative study of infrared and Raman spectra of CCl4 in vapour and condensed phases: Effect of LO-TO splitting resulting from hetero-isotopic TD-TD interactions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 65, 406–413. [Google Scholar] [CrossRef]
- D’Alessio, E.A.; Dodero, E.; Pomposiello, C. Infrared spectra in polarized light of crystalline chloroform. J. Chem. Phys. 1972, 57, 4136–4142. [Google Scholar] [CrossRef]
- Dumas, J.P. Evidence for 4 Crystalline Phases for Ccl4 at Atmospheric-Pressure. Comptes Rendus Hebd. Des Seances L Acad. Des. Sci. Ser. C 1977, 284, 857–860. [Google Scholar]
- Dows, D.A. Intermolecular coupling of vibrations in molecular crystals. II. Intermolecular forces in CH3Cl and CD3Cl. J. Chem. Phys. 1961, 35, 270–281. [Google Scholar] [CrossRef]
- Brown, C.W.; Obremski, R.J.; Allkins, J.R.; Lippincott, E.R. Vibrational spectra of single crystals and polycrystalline films of CH2Cl2 and CH2Br2. J. Chem. Phys. 1969, 51, 1376–1384. [Google Scholar] [CrossRef]
- Andrews, B.; Anderson, A.; Torrie, B. Raman and infrared spectra of crystalline chloroform. Chem. Phys. Lett. 1984, 104, 65–70. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Giju, K.T.; Sundararajan, K.; Sankaran, K.; Vidya, V.; Viswanathan, K.S.; Leszczynski, J. An ab initio and matrix isolation infrared study of the 1:1 C2H2- CHCl3 adduct. J. Mol. Struct. 1999, 510, 59–68. [Google Scholar] [CrossRef]
- Kimoto, A.; Yamada, H. Infrared Spectra of Crystalline CHCl3 and CDCl3. Bull. Chem. Soc. Jpn. 1968, 41, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Tsyashch, Y.P.; Bankova, L.E. Infrared Absorption of CHCl3-CHBr3 Mixed Crystals. Opt. Spectrosc. 1965, 18, 93. [Google Scholar]
- Vaz, P.D.; Nolasco, M.M.; Gil, F.P.S.C.; Ribeiro-Claro, P.J.A.; Tomkinson, J. Hydrogen-bond dynamics of C-H···O interactions: The chloroform···acetone case. Chem. A Eur. J. 2010, 16, 9010–9017. [Google Scholar] [CrossRef]
- Rudman, R.; Post, B. Carbon tetrachloride: A new crystalline modification. Science 1966, 154, 1009–1012. [Google Scholar]
- Moratalla, M.; Gebbia, J.F.; Ramos, M.A.; Pardo, L.C.; Mukhopadhyay, S.; Rudić, S.; Fernandez-Alonso, F.; Bermejo, F.J.; Tamarit, J.L. Emergence of glassy features in halomethane crystals. Phys. Rev. B 2019, 99, 024301. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.F.; Lennon, D.; Albers, P.W. Vibrational Spectroscopy with Neutrons: A Review of New Directions. Appl. Spectrosc. 2011, 65, 1325–1341. [Google Scholar] [CrossRef]
- ISIS Facility INS/TOSCA. Available online: https://www.isis.stfc.ac.uk/Pages/tosca.aspx (accessed on 15 September 2022).
- Parker, S.F.; Fernandez-Alonso, F.; Ramirez-Cuesta, A.J.; Tomkinson, J.; Rudic, S.; Pinna, R.S.; Gorini, G.; Fernandez Castanon, J. Recent and future developments on TOSCA at ISIS. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; Volume 554, p. 012003. [Google Scholar]
- Pinna, R.S.; Rudić, S.; Parker, S.F.; Armstrong, J.; Zanetti, M.; Škoro, G.; Waller, S.P.; Zacek, D.; Smith, C.A.; Capstick, M.J.; et al. The neutron guide upgrade of the TOSCA spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 896, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Arnold, O.; Bilheux, J.C.; Borreguero, J.M.; Buts, A.; Campbell, S.I.; Chapon, L.; Doucet, M.; Draper, N.; Leal, R.F.; Gigg, M.A.; et al. Mantid-Data analysis and visualization package for neutron scattering and mu SR experiments. Nucl. Instrum. Methods Phys. Res. A 2014, 764, 156–166. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Fur Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Refson, K.; Tulip, P.R.; Clark, S.J. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 2006, 73, 155114. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Podsiadło, M.; Dziubek, K.; Katrusiak, A. In situ high-pressure crystallization and compression of halogen contacts in dichloromethane. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 595–600. [Google Scholar] [CrossRef]
- Dziubek, K.; Podsiadlo, M.; Katrusiak, A. Molecular Symmetry and Isostructural Relations in Crystal Phases of Trihalomethanes CHCl3, CHBrCl2, CHBr2Cl, and CHBr3. J. Phys. Chem. B 2009, 113, 13195–13201. [Google Scholar] [CrossRef]
- Cohen, S.; Powers, R.; Rudman, R. Polymorphism of the crystalline methylchloromethane compounds. VI. The crystal and molecular structure of ordered carbon tetrachloride. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 1670–1674. [Google Scholar] [CrossRef]
- Ramirez-Cuesta, A.J. aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Comput. Phys. Commun. 2004, 157, 226–238. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolasco, M.M.; Coimbra, M.M.; Parker, S.F.; Vaz, P.D.; Ribeiro-Claro, P.J.A. Structural Dynamics of Chloromethanes through Computational Spectroscopy: Combining INS and DFT. Molecules 2022, 27, 7661. https://doi.org/10.3390/molecules27217661
Nolasco MM, Coimbra MM, Parker SF, Vaz PD, Ribeiro-Claro PJA. Structural Dynamics of Chloromethanes through Computational Spectroscopy: Combining INS and DFT. Molecules. 2022; 27(21):7661. https://doi.org/10.3390/molecules27217661
Chicago/Turabian StyleNolasco, Mariela M., Mariana Matos Coimbra, Stewart F. Parker, Pedro D. Vaz, and Paulo J. A. Ribeiro-Claro. 2022. "Structural Dynamics of Chloromethanes through Computational Spectroscopy: Combining INS and DFT" Molecules 27, no. 21: 7661. https://doi.org/10.3390/molecules27217661
APA StyleNolasco, M. M., Coimbra, M. M., Parker, S. F., Vaz, P. D., & Ribeiro-Claro, P. J. A. (2022). Structural Dynamics of Chloromethanes through Computational Spectroscopy: Combining INS and DFT. Molecules, 27(21), 7661. https://doi.org/10.3390/molecules27217661