SnAr Reactions of 2,4-Diazidopyrido[3,2-d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Single Crystal X-ray Analysis
2.3. Free Energy Calculation for Azide-Tetrazole Equilibrium of Substituted Tetrazolo[1,5-a]pyrido[2,3-e] Pyrimidines
2.4. Tautomerism of Diazidopyrido[3,2-d]Pyrimidine
3. Materials and Methods
3.1. General Information
3.2. Synthesis Methods and Product Characterization
- 2,4-Diazidopyrido[3,2-d]pyrimidine (2):
- 5-(Butylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3a):
- 2-Azido-4-(butylthio)pyrido[3,2-d]pyrimidine (3aA) and 5-(butylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3a): observed in CDCl3 solution as a tautomer mixture in 11:89 ratio.
- 5-(Phenethylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3b):
- 2-Azido-4-(phenethylthio)pyrido[3,2-d]pyrimidine (3bA) and 5-(phenethylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3b): observed in CDCl3 solution as a tautomer mixture in 7:43 ratio.
- 5-(p-Tolylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3c):
- 2-Azido-4-(p-tolylthio)pyrido[3,2-d]pyrimidine (3cA) and 5-(p-tolylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3c): observed in CDCl3 solution as a tautomer mixture in 1:9 ratio.
- 5-(Isopropylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3d):
- 2-Azido-4-(isopropylthio)pyrido[3,2-d]pyrimidine (3dA) and 5-(isopropylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3d): observed in CDCl3 solution as a tautomer mixture in 13:87 ratio.
- 5-(Phenylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3e):
- 2-Azido-4-(phenylthio)pyrido[3,2-d]pyrimidine (3eA) and 5-(phenylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3e): observed in CDCl3 solution as a tautomer mixture in 19:81 ratio.
- 5-(Cyclohexylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3f):
- 5-(Cyclohexylthio)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (3f) and 2-azido-4-(cyclohexylthio)pyrido[3,2-d]pyrimidine (3fA): observed in CDCl3 solution as a tautomer mixture in 2:23 ratio.
- N-(4-Methoxybenzyl)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-amine (4a):
- 2-Azido-N-(4-methoxybenzyl)pyrido[3,2-d]pyrimidin-4-amine (4aA) and N-(4-methoxybenzyl)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-amine (4a): observed in CDCl3 solution as a tautomer mixture in 1:19 ratio.
- N-Hexylpyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-amine (4b):
- 2-Azido-N-hexylpyrido[3,2-d]pyrimidin-4-amine (4bA) and N-hexylpyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-amine (4b): observed in CDCl3 solution as a tautomer mixture in 1:19 ratio.
- 5-(Piperidin-1-yl)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (4c):
- 2-Azido-4-(piperidin-1-yl)pyrido[3,2-d]pyrimidine (4cA) and 5-(piperidin-1-yl)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (4c): observed in CDCl3 solution as a tautomer mixture in 7:43 ratio.
- 4-(Pyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-yl)morpholine (4d):
- 4-(2-Azidopyrido[3,2-d]pyrimidin-4-yl)morpholine (4dA) and 4-(pyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-yl)morpholine (4d): observed in CDCl3 solution as a tautomer mixture in 1:4 ratio.
- Pyrido[2,3-e]tetrazolo[1,5-a]pyrimidin-5-amine (4e):
- 5-Hydrazinylpyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (4f):
- 5-(4-Methylpiperazin-1-yl)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (4g):
- 2-Azido-4-(4-methylpiperazin-1-yl)pyrido[3,2-d]pyrimidine (4gA) and 5-(4-methylpiperazin-1-yl)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (4g): observed in CDCl3 solution as a tautomer mixture in a 21:79 ratio.
- 5-(Cyclopentyloxy)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (5a):
- 2-Azido-4-(cyclopentyloxy)pyrido[3,2-d]pyrimidine (5aA) and 5-(cyclopentyloxy)pyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (5a): observed in CDCl3 solution as a tautomer mixture in 7:93 ratio.
- 5-Propoxypyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (5b):
- 2-Azido-4-propoxypyrido[3,2-d]pyrimidine (5bA) and 5-propoxypyrido[2,3-e]tetrazolo[1,5-a]pyrimidine (5b): observed in CDCl3 solution as a tautomer mixture in a 2:23 ratio.
- N-(4-Methoxybenzyl)-2-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrido[3,2-d]pyrimidin-4-amine (6a):
- N-(4-Methoxybenzyl)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)pyrido[3,2-d]pyrimidin-4-amine (6b):
- 4-(1-(4-((4-Methoxybenzyl)amino)pyrido[3,2-d]pyrimidin-2-yl)-1H-1,2,3-triazol-4-yl)benzonitrile (6c):
- 2-(4-Hexyl-1H-1,2,3-triazol-1-yl)-N-(4-methoxybenzyl)pyrido[3,2-d]pyrimidin-4-amine (6d):
- Methyl 1-(4-((4-methoxybenzyl)amino)pyrido[3,2-d]pyrimidin-2-yl)-1H-1,2,3-triazole-4-carboxylate (6e):
- 2-(4-Phenyl-1H-1,2,3-triazol-1-yl)pyrido[3,2-d]pyrimidin-4-amine (7):
- N-Hexyl-2-((triphenylphosphoronylidene)amino)pyrido[3,2-d]pyrimidin-4-amine (8):
- 2-Chloro-N-hexylpyrido[3,2-d]pyrimidin-4-amine (9):
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Wang, S.; Yuan, X.-H.; Wang, S.-Q.; Zhao, W.; Chen, X.-B.; Yu, B. FDA-Approved Pyrimidine-Fused Bicyclic Heterocycles for Cancer Therapy: Synthesis and Clinical Application. Eur. J. Med. Chem. 2021, 214, 113218. [Google Scholar] [CrossRef] [PubMed]
- Xing, K.; Zhang, J.; Han, Y.; Tong, T.; Liu, D.; Zhao, L. Design, Synthesis and Bioactivity Evaluation of 4,6-Disubstituted Pyrido[3,2-d]pyrimidine Derivatives as Mnk and HDAC Inhibitors. Molecules 2020, 25, 4318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, Y.; He, L.; Sun, S.; Xia, T.; Hu, L.; Yao, L.; Wang, L.; Li, D.; Shi, H.; et al. Structure-Based Design of Highly Potent Toll-like Receptor 7/8 Dual Agonists for Cancer Immunotherapy. J. Med. Chem. 2021, 64, 7507–7532. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tian, C.; Xue, L.; Li, H.; Cong, J.; Fang, F.; Yang, J.; Yuan, M.; Chen, Y.; Guo, Y.; et al. Design, Synthesis and Biological Activity of N5-Substituted Tetrahydropteroate Analogs as Non-Classical Antifolates against Cobalamin-Dependent Methionine Synthase and Potential Anticancer Agents. Eur. J. Med. Chem. 2020, 190, 112113. [Google Scholar] [CrossRef]
- Shah, K.; Queener, S.; Cody, V.; Pace, J.; Gangjee, A. Development of Substituted Pyrido[3,2-d]pyrimidines as Potent and Selective Dihydrofolate Reductase Inhibitors for Pneumocystis Pneumonia Infection. Bioorg. Med. Chem. Lett. 2019, 29, 1874–1880. [Google Scholar] [CrossRef]
- Degorce, S.L.; Aagaard, A.; Anjum, R.; Cumming, I.A.; Diène, C.R.; Fallan, C.; Johnson, T.; Leuchowius, K.J.; Orton, A.L.; Pearson, S.; et al. Improving Metabolic Stability and Removing Aldehyde Oxidase Liability in a 5-Azaquinazoline Series of IRAK4 Inhibitors. Bioorg. Med. Chem. 2020, 28, 115815. [Google Scholar] [CrossRef]
- Mackman, R.L.; Mish, M.; Chin, G.; Perry, J.K.; Appleby, T.; Aktoudianakis, V.; Metobo, S.; Pyun, P.; Niu, C.; Daffis, S.; et al. Discovery of GS-9688 (Selgantolimod) as a Potent and Selective Oral Toll-Like Receptor 8 Agonist for the Treatment of Chronic Hepatitis B. J. Med. Chem. 2020, 63, 10188–10203. [Google Scholar] [CrossRef]
- Sebris, A.; Turks, M. Recent Investigations and Applications of Azidoazomethine-Tetrazole Tautomeric Equilibrium. Chem. Heterocycl. Compd. 2019, 55, 1041–1043. [Google Scholar] [CrossRef]
- Tišler, M. Some Aspects of Azido-Tetrazolo Isomerization. Synthesis 1973, 1973, 123–136. [Google Scholar] [CrossRef]
- Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in Tetrazole Chemistry (2009–2016). In Advances in Heterocyclic Chemistry; Scriven, E.F.V., Ramsden, C.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 123, pp. 1–62. ISBN 9780128120927. [Google Scholar]
- Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Hovakimyan, A.A.; Noravyan, A.S. New Heterocyclic Systems Derived from Pyridine: New Substrates for the Investigation of the Azide/Tetrazole Equilibrium. Tetrahedron 2014, 70, 8648–8656. [Google Scholar] [CrossRef]
- Scapin, E.; Zimmer, G.C.; Vieira, J.C.B.; Rodrigues, C.A.B.; Afonso, C.A.M.; Zanatta, N.; Bonacorso, H.G.; Frizzo, C.P.; Martins, M.A.P. Reactivity of Trifluoromethyl-tetrazolo[1,5-a]pyrimidines in Click Chemistry and Hydrogenation. J. Fluor. Chem. 2022, 257–258, 109973. [Google Scholar] [CrossRef]
- Deev, S.L.; Shestakova, T.S.; Shenkarev, Z.O.; Paramonov, A.S.; Khalymbadzha, I.A.; Eltsov, O.S.; Charushin, V.N.; Chupakhin, O.N. 15N Chemical Shifts and JN-N-Couplings as Diagnostic Tools for Determination of the Azide–Tetrazole Equilibrium in Tetrazoloazines. J. Org. Chem. 2022, 87, 211–222. [Google Scholar] [CrossRef]
- Aleksandrova, N.V.; Nikolaenkova, E.B.; Gatilov, Y.V.; Polovyanenko, D.N.; Mamatyuk, V.I.; Krivopalov, V.P. Synthesis and Study of Azide-Tetrazole Tautomerism in 2-Azido-6-phenylpyrimidin-4(3H)-one and 2-Azido-4-chloro-6-phenylpyrimidine. Rus. Chem. Bull. 2022, 71, 1266–1272. [Google Scholar] [CrossRef]
- Al-Marhabi, A.R.; Abbas, H.A.S.; Ammar, Y.A. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents. Molecules 2015, 20, 19805–19822. [Google Scholar] [CrossRef] [Green Version]
- Bräse Stefan, K.B. Organic Azides: Syntheses and Applications; Brse, S., Banert, K., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2009; ISBN 9780470682517. [Google Scholar]
- Guillou, S.; Jacob, G.; Terrier, F.; Goumont, R. An Unexpected Synthesis of 7-Azidofurazano[3,4-b]tetrazolopyrazine. Tetrahedron 2009, 65, 8891–8895. [Google Scholar] [CrossRef]
- Cmoch, P.; Stefaniak, L.; Webb, G.A. NMR Studies of the Equilibria Produced by 6- and 8-Substituted Tetrazolo[1,5-a]pyridines. Magn. Res. Chem. 1997, 35, 237–242. [Google Scholar] [CrossRef]
- Cmoch, P.; Korczak, H.; Stefaniak, L.; Webb, G.A. 1H, 13C and 15N NMR and IR Studies of Halogen-Substituted Tetrazolo[1,5-a]pyridines. J. Phys. Org. Chem. 1999, 12, 470–478. [Google Scholar] [CrossRef]
- Thomann, A.; Zapp, J.; Hutter, M.; Empting, M.; Hartmann, R.W. Steering the Azido-Tetrazole Equilibrium of 4-Azidopyrimidines via Substituent Variation-Implications for Drug Design and Azide-Alkyne Cycloadditions. Org. Biomol. Chem. 2015, 13, 10620–10630. [Google Scholar] [CrossRef]
- Novosjolova, I.; Bizdēna, E.; Turks, M. Application of 2,6-Diazidopurine Derivatives in the Synthesis of Thiopurine Nucleosides. Tetrahedron Lett. 2013, 54, 6557–6561. [Google Scholar] [CrossRef]
- Sebris, A.; Novosjolova, I.; Traskovskis, K.; Kokars, V.; Tetervenoka, N.; Vembris, A.; Turks, M. Photophysical and Electrical Properties of Highly Luminescent 2/6-Triazolyl-Substituted Push-Pull Purines. ACS Omega 2022, 7, 5242–5253. [Google Scholar] [CrossRef]
- Sebris, A.; Traskovskis, K.; Novosjolova, I.; Turks, M. Synthesis and Photophysical Properties of 2-Azolyl-6-piperidinylpurines. Chem. Heterocycl. Compd. 2021, 57, 560–567. [Google Scholar] [CrossRef]
- Šišuļins, A.; Bucevičius, J.; Tseng, Y.T.; Novosjolova, I.; Traskovskis, K.; Bizdēna, Ē.; Chang, H.T.; Tumkevičius, S.; Turks, M. Synthesis and Fluorescent Properties of N(9)-Alkylated 2-Amino-6-triazolylpurines and 7-Deazapurines. Beilstein J. Org. Chem. 2019, 15, 474–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucevicius, J.; Turks, M.; Tumkevicius, S. Easy Access to Isomeric 7-Deazapurine–1,2,3-Triazole Conjugates via SnAr and CuAAC Reactions of 2,6-Diazido-7-deazapurines. Synlett 2018, 29, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Jeminejs, A.; Novosjolova, I.; Bizdēna, Ē.; Turks, M. Nucleophile–Nucleofuge Duality of Azide and Arylthiolate Groups in the Synthesis of Quinazoline and Tetrazoloquinazoline Derivatives. Org. Biomol. Chem. 2021, 19, 7706–7723. [Google Scholar] [CrossRef] [PubMed]
- Jeminejs, A.; Goliškina, S.M.; Novosjolova, I.; Stepanovs, D.; Bizdēna, Ē.; Turks, M. Application of Azide-Tetrazole Tautomerism and Arylsulfanyl Group Dance in the Synthesis of Thiosubstituted Tetrazoloquinazolines. Synthesis 2021, 53, 1443–1456. [Google Scholar] [CrossRef]
- Leškovskis, K.; Mishnev, A.; Novosjolova, I.; Turks, M. Structural Study of Azide-Tetrazole Equilibrium in Pyrido[2,3-d]pyrimidines. J. Mol. Struct. 2022, 1269, 133784. [Google Scholar] [CrossRef]
- Boyomi, S.M.; Ismaiel, A.-K.M.; Eisa, H.M.; El-Kerdawy, M.M. Some Nucleophilic Substitutions in 2,4-and 2,4,8-Trichloro-pyrido[3,2-d]pyrimidines. Arch. Pharm. Res. 1989, 12, 8–11. [Google Scholar] [CrossRef]
- Urleb, U.; Stanovnik, B.; Tišler, M. The Synthesis and Transformations of 2-Ethoxycarbonyl-3-isothiocyanatopyridine. Pyrido[3,2-d]pyrimidines and Some Azolopyrido[3,2-d]pyrimidines. J. Heterocycl. Chem. 1990, 27, 407–412. [Google Scholar] [CrossRef]
- Ueda, T.; Cheng, Y.C.; Eisa, H.; Broom, A.D. Probing the Thymidylate Synthase Active Site with Bisubstrate Analog Inhibitors. Nucleosides Nucleosides 1988, 7, 103–115. [Google Scholar] [CrossRef]
- Petrič, A.; Tišler, M.; Stanovnik, B. Syntheses of Some Azolopyridopyrimidines. Monatsh. Chem. 1983, 114, 615–624. [Google Scholar] [CrossRef]
- Petrič, A.; Tišler, M.; Stanovnik, B. Ring-Opening Reactions of Triazolo- and Tetrazolo-Pyridopyrimidines or Quinazolines with Some Carbon Nucleophiles. Monatsh. Chem. 1985, 116, 1309–1319. [Google Scholar] [CrossRef]
- Holzhauer, L.; Liagre, C.; Fuhr, O.; Jung, N.; Bräse, S. Scope of Tetrazolo[1,5-a]quinoxalines in CuAAC Reactions for the Synthesis of Triazoloquinoxalines, Imidazoloquinoxalines, and Rhenium Complexes Thereof. Beilstein J. Org. Chem. 2022, 18, 1088–1099. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, L.; Guo, B.; Hua, R. One-Pot Synthesis of Multisubstituted 2-Aminoquinolines from Annulation of 1-Aryl Tetrazoles with Internal Alkynes via Double C–H Activation and Denitrogenation. J. Org. Chem. 2014, 79, 11541–11548. [Google Scholar] [CrossRef]
- Ozols, K.; Cirule, D.; Novosjolova, I.; Stepanovs, D.; Liepinsh, E.; Bizdena, E.; Turks, M. Development of N6-Methyl-2-(1,2,3-triazol-1-yl)-2′-deoxyadenosine as a Novel Fluorophore and Its Application in Nucleotide Synthesis. Tetrahedron Lett. 2016, 57, 1174–1178. [Google Scholar] [CrossRef]
- Kapilinskis, Z.; Novosjolova, I.; Bizdēna, Ē.; Turks, M. Synthesis of 2-Triazolylpurine Phosphonates. Chem. Heterocycl. Compd. 2021, 57, 55–62. [Google Scholar] [CrossRef]
- Cīrule, D.; Novosjolova, I.; Spuris, A.; Mishnev, A.; Bizdēna, Ē.; Turks, M. Toward Unsymmetrical 2,6-Bistriazolylpurine Nucleosides. Chem. Heterocycl. Compd. 2021, 57, 292–297. [Google Scholar] [CrossRef]
- Erasmus, C.; Aucamp, J.; Smit, F.J.; Seldon, R.; Jordaan, A.; Warner, D.F.; N’Da, D.D. Synthesis and Comparison of in Vitro Dual Anti-Infective Activities of Novel Naphthoquinone Hybrids and Atovaquone. Bioorg. Chem. 2021, 114, 105118. [Google Scholar] [CrossRef]
- Tikad, A.; Routier, S.; Akssira, M.; Léger, J.-M.; Jarry, C.; Guillaumet, G. Efficient Synthesis of 2-Substituted Pyrido[3,2-d]pyrimidines Involving SnAr and Palladium-Catalyzed Cross-Coupling Reactions. Synthesis 2009, 2009. [Google Scholar] [CrossRef]
- Tikad, A.; Routier, S.; Akssira, M.; Leger, J.-M.; Jarry, C.; Guillaumet, G. Efficient Access to Novel Mono- and Disubstituted Pyrido[3,2-d]pyrimidines. Synlett 2006, 2006, 1938–1942. [Google Scholar] [CrossRef]
- Tikad, A.; Akssira, M.; Massip, S.; Léger, J.-M.; Jarry, C.; Guillaumet, G.; Routier, S. Regiocontroled SnAr and Palladium Cross-Coupling Reactions of 2,4,7-Trichloropyrido[3,2-d]pyrimidine. Eur. J. Org. Chem. 2012, 2012, 4523–4532. [Google Scholar] [CrossRef]
- Allen, F.H.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. International Tables for Crystallography; John Wiley and Sons Limited: New York, NY, USA, 2006; Volume C, pp. 790–811. ISBN 978-0-470-68575-4. [Google Scholar] [CrossRef]
- Gein, V.L.; Prudnikova, A.N.; Kurbatova, A.A.; Dmitriev, M.V. Synthesis of (E)-5-Arylvinyl-7-methyltetrazolo[1,5-a]pyrimidines. Russ. J. Gen. Chem. 2021, 91, 621–625. [Google Scholar] [CrossRef]
- Scapin, E.; Salbego, P.R.S.; Bender, C.R.; Meyer, A.R.; Pagliari, A.B.; Orlando, T.; Zimmer, G.C.; Frizzo, C.P.; Bonacorso, H.G.; Zanatta, N.; et al. Synthesis, Effect of Substituents on the Regiochemistry and Equilibrium Studies of Tetrazolo[1,5-a]pyrimidine/2-Azidopyrimidines. Beilstein J. Org. Chem. 2017, 13, 2396–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoor, S.; Yang, J.; Tariq, Q.; Mei, H.; Yang, Z.; Hu, Y.; Cao, W.; Sinditskii, V.P.; Zhang, J. Tetrazole and Azido Derivatives of Pyrimidine: Synthesis, Mechanism, Thermal Behaviour & Steering of Azido–Tetrazole Equilibrium. Chem. Sel. 2020, 5, 5414–5421. [Google Scholar] [CrossRef]
- Russ, T.; Bats, J.W.; Ried, W.; SOWWIK. CSD Communication. 1992. Available online: https://www.ccdc.cam.ac.uk/structures/Search?JTitle=CSD%20Communication&Year=1992&DatabaseToSearch=Published (accessed on 3 November 2022).
- Deev, S.L.; Shenkarev, Z.O.; Shestakova, T.S.; Chupakhin, O.N.; Rusinov, V.L.; Arseniev, A.S. Selective 15N-Labeling and Analysis of 13C− 15N J Couplings as an Effective Tool for Studying the Structure and Azide−Tetrazole Equilibrium in a Series of Tetrazolo[1,5-b][1,2,4]triazines and Tetrazolo[1,5-a]pyrimidines. J. Org. Chem. 2010, 75, 8487–8497. [Google Scholar] [CrossRef] [PubMed]
- Krivopalov, V.P.; Denisov, Y.A.; Gatilov, Y.V.; Mamatiuk, V.I.; Mamaev, V.P. Azido-Tetrazole Tautomerism of 2, 4-Diazidopyrimidines and 4, 6-Diazidopyrimidines. Dokl. Akad. Nauk. SSSR 1988, 300, 115. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures. Acta Crystallogr. B 2002, 58, 389–397. [Google Scholar] [CrossRef]
- Spek, A.L. Single-Crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef]
Compound | 2 | 3b | 3f | 4a | 4d | 6a | 8′ |
---|---|---|---|---|---|---|---|
Structural formula | C7H3N9 | C31H26Cl2N12S2 | C13H14N6S | C15H13N7O | C11H11N7O | C24H18N8O | C33H35Cl7N5P |
Molar weight (g/mol) | 213.18 | 701.66 | 286.36 | 307.32 | 257.27 | 434.46 | 780.78 |
Crystal system | Monoclinic | Monoclinic | Orthorhombic | Monoclinic | Triclinic | Triclinic | Triclinic |
Space group | P21/n | P2/n | Pbca | P21/c | P-1 | P-1 | P-1 |
a (Å) | 7.7018 (2) | 9.5365 (2) | 5.8380 (1) | 13.9255 (3) | 6.8386 (3) | 8.0329 (5) | 9.51807 (7) |
b (Å) | 4.9727 (1) | 6.9099 (2) | 15.1883 (2) | 8.3800 (2) | 8.7709 (5) | 10.3423 (4) | 12.55333 (10) |
c (Å) | 22.0045 (4) | 24.5953 (4) | 30.4815 (4) | 13.3706 (3) | 10.4546 (5) | 13.5771 (4) | 16.07767 (12) |
α (°) | 90.00 | 90.00 | 90.00 | 90.00 | 67.195 (5) | 109.489 (3) | 96.7786 (7) |
β (°) | 92.956 (2) | 94.787 (2) | 90.00 | 115.495 (3) | 81.477 (4) | 97.968 (3) | 98.3660 (6) |
γ (°) | 90.00 | 90.00 | 90.00 | 90.00 | 71.424 (4) | 100.796 (4) | 98.8468 (6) |
V (Å3) | 841.62 (3) | 1615.08 (6) | 2702.77(7) | 1408.35 (6) | 547.72 (5) | 1019.59 (8) | 1858.49 (2) |
Z | 4 | 2 | 8 | 4 | 2 | 2 | 2 |
T (K) | 160(2) | 150(2) | 200(2) | 150(2) | 160(2) | 150(2) | 150(2) |
Absorption coefficient (mm−1) | 1.04 | 3.38 | 2.13 | 0.82 | 0.92 | 0.76 | 5.53 |
Calculated density (mg/m3) | 1.682 | 1.443 | 1.407 | 1.449 | 1.560 | 1.415 | 1.395 |
Data collected | 7965 | 15480 | 24550 | 13282 | 9722 | 12025 | 35065 |
θ-range for data collection (°) | 4.0–76.3 | 3.6–76.4 | 2.9–76.1 | 3.5–75.9 | 4.6–76.1 | 3.5–76.4 | 2.8–76.6 |
Unique reflections | 1491 | 3180 | 2757 | 2735 | 2171 | 3983 | 7454 |
Symmetry factor (Rint) | 0.024 | 0.037 | 0.043 | 0.047 | 0.051 | 0.032 | 0.036 |
Rsigma | 0.017 | 0.029 | 0.020 | 0.037 | 0.034 | 0.031 | 0.026 |
Final R1 factor for I > 2σ(I) | 0.034 | 0.048 | 0.033 | 0.041 | 0.052 | 0.037 | 0.037 |
wR2 factor for all data | 0.094 | 0.132 | 0.093 | 0.108 | 0.160 | 0.104 | 0.103 |
CCDC deposition number | 2208559 | 2208560 | 2208556 | 2208558 | 2208557 | 2208561 | 2208562 |
N1-N2 | N1-N10 | N2-N3 | N3-C3a | C3a-N4 | C3a-N10 | N4-C5 | |
---|---|---|---|---|---|---|---|
2 | 1.301(1) | 1.357(1) | 1.357(1) | 1.328(1) | 1.356(1) | 1.357(1) | 1.304(1) |
3b | 1.308(3) | 1.356(3) | 1.364(3) | 1.334(3) | 1.354(3) | 1.354(3) | 1.308(3) |
3f | 1.306(2) | 1.355(2) | 1.358(2) | 1.325(2) | 1.359(2) | 1.357(2) | 1.308(2) |
4a | 1.298(2) | 1.362(2) | 1.359(2) | 1.331(2) | 1.354(2) | 1.363(2) | 1.324(2) |
4d | 1.301(2) | 1.364(2) | 1.348(2) | 1.334(2) | 1.341(2) | 1.353(2) | 1.329(2) |
Ivajoh | 1.304(2) | 1.365(23) | 1.350(2) | 1.336(2) | 1.343(2) | 1.363(2) | 1.324(2) |
Pesvuh | 1.305(2) | 1.358(2) | 1.347(2) | 1.328(2) | 1.350(2) | 1.359(2) | 1.303(2) |
Pulsib | 1.306(3) | 1.369(3) | 1.365(3) | 1.330(3) | 1.348(3) | 1.368(3) | 1.308(3) |
Sowwik | 1.307(7) | 1.354(7) | 1.367(8) | 1.308(7) | 1.369(8) | 1.365(7) | 1.315(8) |
Uxazid | 1.300(1) | 1.351(1) | 1.345(1) | 1.326(1) | 1.348(1) | 1.363(1) | 1.309(1) |
Vendoh | 1.289(4) | 1.365(5) | 1.343(4) | 1.330(5) | 1.343(4) | 1.351(4) | 1.316(4) |
Compound | R | T (K) | K(eq) * | ΔG298 (kJ/mol) | ΔH298 (kJ/mol) | ΔS298 (J/mol·K) |
---|---|---|---|---|---|---|
3a | 298 | 8.44 | −5.29 ± 0.11 | −32.11 ± 1.94 | −90.14 ± 6.24 | |
313 | 4.32 | |||||
323 | 3.11 | |||||
3b | 298 | 6.26 | −4.54 ± 0.02 | −23.63 ± 0.38 | −64.08 ± 1.21 | |
313 | 3.92 | |||||
323 | 2.99 | |||||
3c | 298 | 12.39 | −6.24 ± 0.02 | −30.53 ± 0.34 | −81.69 ± 1.11 | |
313 | 6.37 | |||||
323 | 4.81 | |||||
3d | 298 | 6.53 | −4.65 ± 0.03 | −20.14 ± 0.61 | −51.96 ± 1.95 | |
313 | 4.49 | |||||
323 | 3.47 | |||||
3e | 298 | 4.19 | −3.55 ± 0.28 | −31.75 ± 4.90 | −94.33 ± 15.74 | |
313 | 2.57 | |||||
323 | 1.53 | |||||
3f | 298 | 15.08 | −6.11 ± 0.12 | −42.05 ± 2.13 | −120.72 ± 6.83 | |
313 | 4.96 | |||||
323 | 3.30 | |||||
4a | 298 | 20.83 | −7.52 ± 0.22 | −21.91 ± 3.91 | −48.05 ± 12.53 | |
313 | 15.05 | |||||
323 | 10.39 | |||||
4b | 298 | 19.20 | −7.32 ± 0.03 | −20.35 ± 0.56 | −43.74 ± 1.78 | |
313 | 12.77 | |||||
323 | 10.19 | |||||
4c | 298 | 5.92 | −4.40 ± 0.07 | −24.52 ± 1.31 | −67.42 ± 4.20 | |
313 | 3.81 | |||||
323 | 2.74 | |||||
4d | 298 | 3.89 | −3.36 ± 0.02 | −22.65 ± 0.32 | −64.71 ± 1.03 | |
313 | 2.53 | |||||
323 | 1.91 | |||||
4g | 298 | 3.83 | −3.33 ± 0.01 | −19.92 ± 0.25 | −55.69 ± 0.79 | |
313 | 2.59 | |||||
323 | 2.06 | |||||
5a | 298 | 8.59 | −5.33 ± 0.17 | −48.02 ± 2.95 | −143.27 ± 9.49 | |
313 | 3.36 | |||||
323 | 1.92 | |||||
5b | 298 | 11.84 | −6.12 ± 0.16 | −31.55 ± 2.75 | −85.50 ± 8.83 | |
313 | 6.00 | |||||
323 | 4.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leškovskis, K.; Mishnev, A.; Novosjolova, I.; Turks, M. SnAr Reactions of 2,4-Diazidopyrido[3,2-d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines. Molecules 2022, 27, 7675. https://doi.org/10.3390/molecules27227675
Leškovskis K, Mishnev A, Novosjolova I, Turks M. SnAr Reactions of 2,4-Diazidopyrido[3,2-d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines. Molecules. 2022; 27(22):7675. https://doi.org/10.3390/molecules27227675
Chicago/Turabian StyleLeškovskis, Kristaps, Anatoly Mishnev, Irina Novosjolova, and Māris Turks. 2022. "SnAr Reactions of 2,4-Diazidopyrido[3,2-d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines" Molecules 27, no. 22: 7675. https://doi.org/10.3390/molecules27227675
APA StyleLeškovskis, K., Mishnev, A., Novosjolova, I., & Turks, M. (2022). SnAr Reactions of 2,4-Diazidopyrido[3,2-d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines. Molecules, 27(22), 7675. https://doi.org/10.3390/molecules27227675